Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3dvdsdec | Structured version Visualization version GIF version |
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
3dvdsdec | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 12369 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
2 | 9p1e10 12368 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
3 | 2 | eqcomi 2747 | . . . . . . 7 ⊢ ;10 = (9 + 1) |
4 | 3 | oveq1i 7265 | . . . . . 6 ⊢ (;10 · 𝐴) = ((9 + 1) · 𝐴) |
5 | 9cn 12003 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
6 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
7 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 12175 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
9 | 5, 6, 8 | adddiri 10919 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
10 | 8 | mulid2i 10911 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
11 | 10 | oveq2i 7266 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
12 | 4, 9, 11 | 3eqtri 2770 | . . . . 5 ⊢ (;10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
13 | 12 | oveq1i 7265 | . . . 4 ⊢ ((;10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
14 | 5, 8 | mulcli 10913 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
15 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
16 | 15 | nn0cni 12175 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
17 | 14, 8, 16 | addassi 10916 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
18 | 1, 13, 17 | 3eqtri 2770 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
19 | 18 | breq2i 5078 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
20 | 3z 12283 | . . 3 ⊢ 3 ∈ ℤ | |
21 | 7 | nn0zi 12275 | . . . 4 ⊢ 𝐴 ∈ ℤ |
22 | 15 | nn0zi 12275 | . . . 4 ⊢ 𝐵 ∈ ℤ |
23 | zaddcl 12290 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
24 | 21, 22, 23 | mp2an 688 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
25 | 9nn 12001 | . . . . . 6 ⊢ 9 ∈ ℕ | |
26 | 25 | nnzi 12274 | . . . . 5 ⊢ 9 ∈ ℤ |
27 | zmulcl 12299 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
28 | 26, 21, 27 | mp2an 688 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
29 | zmulcl 12299 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
30 | 20, 21, 29 | mp2an 688 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
31 | dvdsmul1 15915 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
32 | 20, 30, 31 | mp2an 688 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
33 | 3t3e9 12070 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
34 | 33 | eqcomi 2747 | . . . . . . 7 ⊢ 9 = (3 · 3) |
35 | 34 | oveq1i 7265 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
36 | 3cn 11984 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
37 | 36, 36, 8 | mulassi 10917 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
38 | 35, 37 | eqtri 2766 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
39 | 32, 38 | breqtrri 5097 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
40 | 28, 39 | pm3.2i 470 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
41 | dvdsadd2b 15943 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
42 | 20, 24, 40, 41 | mp3an 1459 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
43 | 19, 42 | bitr4i 277 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 3c3 11959 9c9 11965 ℕ0cn0 12163 ℤcz 12249 ;cdc 12366 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-dvds 15892 |
This theorem is referenced by: 257prm 44901 139prmALT 44936 31prm 44937 |
Copyright terms: Public domain | W3C validator |