MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvdsdec Structured version   Visualization version   GIF version

Theorem 3dvdsdec 16366
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = 𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dvdsdec (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 12734 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
2 9p1e10 12733 . . . . . . . 8 (9 + 1) = 10
32eqcomi 2744 . . . . . . 7 10 = (9 + 1)
43oveq1i 7441 . . . . . 6 (10 · 𝐴) = ((9 + 1) · 𝐴)
5 9cn 12364 . . . . . . 7 9 ∈ ℂ
6 ax-1cn 11211 . . . . . . 7 1 ∈ ℂ
7 3dvdsdec.a . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 12536 . . . . . . 7 𝐴 ∈ ℂ
95, 6, 8adddiri 11272 . . . . . 6 ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴))
108mullidi 11264 . . . . . . 7 (1 · 𝐴) = 𝐴
1110oveq2i 7442 . . . . . 6 ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴)
124, 9, 113eqtri 2767 . . . . 5 (10 · 𝐴) = ((9 · 𝐴) + 𝐴)
1312oveq1i 7441 . . . 4 ((10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵)
145, 8mulcli 11266 . . . . 5 (9 · 𝐴) ∈ ℂ
15 3dvdsdec.b . . . . . 6 𝐵 ∈ ℕ0
1615nn0cni 12536 . . . . 5 𝐵 ∈ ℂ
1714, 8, 16addassi 11269 . . . 4 (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵))
181, 13, 173eqtri 2767 . . 3 𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵))
1918breq2i 5156 . 2 (3 ∥ 𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
20 3z 12648 . . 3 3 ∈ ℤ
217nn0zi 12640 . . . 4 𝐴 ∈ ℤ
2215nn0zi 12640 . . . 4 𝐵 ∈ ℤ
23 zaddcl 12655 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
2421, 22, 23mp2an 692 . . 3 (𝐴 + 𝐵) ∈ ℤ
25 9nn 12362 . . . . . 6 9 ∈ ℕ
2625nnzi 12639 . . . . 5 9 ∈ ℤ
27 zmulcl 12664 . . . . 5 ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ)
2826, 21, 27mp2an 692 . . . 4 (9 · 𝐴) ∈ ℤ
29 zmulcl 12664 . . . . . . 7 ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ)
3020, 21, 29mp2an 692 . . . . . 6 (3 · 𝐴) ∈ ℤ
31 dvdsmul1 16312 . . . . . 6 ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴)))
3220, 30, 31mp2an 692 . . . . 5 3 ∥ (3 · (3 · 𝐴))
33 3t3e9 12431 . . . . . . . 8 (3 · 3) = 9
3433eqcomi 2744 . . . . . . 7 9 = (3 · 3)
3534oveq1i 7441 . . . . . 6 (9 · 𝐴) = ((3 · 3) · 𝐴)
36 3cn 12345 . . . . . . 7 3 ∈ ℂ
3736, 36, 8mulassi 11270 . . . . . 6 ((3 · 3) · 𝐴) = (3 · (3 · 𝐴))
3835, 37eqtri 2763 . . . . 5 (9 · 𝐴) = (3 · (3 · 𝐴))
3932, 38breqtrri 5175 . . . 4 3 ∥ (9 · 𝐴)
4028, 39pm3.2i 470 . . 3 ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))
41 dvdsadd2b 16340 . . 3 ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))))
4220, 24, 40, 41mp3an 1460 . 2 (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
4319, 42bitr4i 278 1 (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106   class class class wbr 5148  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  3c3 12320  9c9 12326  0cn0 12524  cz 12611  cdc 12731  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-dvds 16288
This theorem is referenced by:  257prm  47486  139prmALT  47521  31prm  47522
  Copyright terms: Public domain W3C validator