| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3dvdsdec | Structured version Visualization version GIF version | ||
| Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
| 3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| 3dvdsdec | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12612 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 9p1e10 12611 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | eqcomi 2738 | . . . . . . 7 ⊢ ;10 = (9 + 1) |
| 4 | 3 | oveq1i 7363 | . . . . . 6 ⊢ (;10 · 𝐴) = ((9 + 1) · 𝐴) |
| 5 | 9cn 12246 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
| 6 | ax-1cn 11086 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 7 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 12414 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 9 | 5, 6, 8 | adddiri 11147 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
| 10 | 8 | mullidi 11139 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
| 11 | 10 | oveq2i 7364 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
| 12 | 4, 9, 11 | 3eqtri 2756 | . . . . 5 ⊢ (;10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
| 13 | 12 | oveq1i 7363 | . . . 4 ⊢ ((;10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
| 14 | 5, 8 | mulcli 11141 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
| 15 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0cni 12414 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 8, 16 | addassi 11144 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 18 | 1, 13, 17 | 3eqtri 2756 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 19 | 18 | breq2i 5103 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 20 | 3z 12526 | . . 3 ⊢ 3 ∈ ℤ | |
| 21 | 7 | nn0zi 12518 | . . . 4 ⊢ 𝐴 ∈ ℤ |
| 22 | 15 | nn0zi 12518 | . . . 4 ⊢ 𝐵 ∈ ℤ |
| 23 | zaddcl 12533 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
| 24 | 21, 22, 23 | mp2an 692 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
| 25 | 9nn 12244 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 26 | 25 | nnzi 12517 | . . . . 5 ⊢ 9 ∈ ℤ |
| 27 | zmulcl 12542 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
| 28 | 26, 21, 27 | mp2an 692 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
| 29 | zmulcl 12542 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
| 30 | 20, 21, 29 | mp2an 692 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
| 31 | dvdsmul1 16206 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
| 32 | 20, 30, 31 | mp2an 692 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
| 33 | 3t3e9 12308 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2738 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 7363 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
| 36 | 3cn 12227 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 37 | 36, 36, 8 | mulassi 11145 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
| 38 | 35, 37 | eqtri 2752 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
| 39 | 32, 38 | breqtrri 5122 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
| 40 | 28, 39 | pm3.2i 470 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
| 41 | dvdsadd2b 16235 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
| 42 | 20, 24, 40, 41 | mp3an 1463 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 43 | 19, 42 | bitr4i 278 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 3c3 12202 9c9 12208 ℕ0cn0 12402 ℤcz 12489 ;cdc 12609 ∥ cdvds 16181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-dvds 16182 |
| This theorem is referenced by: 257prm 47546 139prmALT 47581 31prm 47582 |
| Copyright terms: Public domain | W3C validator |