| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3dvdsdec | Structured version Visualization version GIF version | ||
| Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
| 3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| 3dvdsdec | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12652 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 2 | 9p1e10 12651 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | eqcomi 2738 | . . . . . . 7 ⊢ ;10 = (9 + 1) |
| 4 | 3 | oveq1i 7397 | . . . . . 6 ⊢ (;10 · 𝐴) = ((9 + 1) · 𝐴) |
| 5 | 9cn 12286 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
| 6 | ax-1cn 11126 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 7 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 12454 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 9 | 5, 6, 8 | adddiri 11187 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
| 10 | 8 | mullidi 11179 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
| 11 | 10 | oveq2i 7398 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
| 12 | 4, 9, 11 | 3eqtri 2756 | . . . . 5 ⊢ (;10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
| 13 | 12 | oveq1i 7397 | . . . 4 ⊢ ((;10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
| 14 | 5, 8 | mulcli 11181 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
| 15 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0cni 12454 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 8, 16 | addassi 11184 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 18 | 1, 13, 17 | 3eqtri 2756 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
| 19 | 18 | breq2i 5115 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 20 | 3z 12566 | . . 3 ⊢ 3 ∈ ℤ | |
| 21 | 7 | nn0zi 12558 | . . . 4 ⊢ 𝐴 ∈ ℤ |
| 22 | 15 | nn0zi 12558 | . . . 4 ⊢ 𝐵 ∈ ℤ |
| 23 | zaddcl 12573 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
| 24 | 21, 22, 23 | mp2an 692 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
| 25 | 9nn 12284 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 26 | 25 | nnzi 12557 | . . . . 5 ⊢ 9 ∈ ℤ |
| 27 | zmulcl 12582 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
| 28 | 26, 21, 27 | mp2an 692 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
| 29 | zmulcl 12582 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
| 30 | 20, 21, 29 | mp2an 692 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
| 31 | dvdsmul1 16247 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
| 32 | 20, 30, 31 | mp2an 692 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
| 33 | 3t3e9 12348 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2738 | . . . . . . 7 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 7397 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
| 36 | 3cn 12267 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 37 | 36, 36, 8 | mulassi 11185 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
| 38 | 35, 37 | eqtri 2752 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
| 39 | 32, 38 | breqtrri 5134 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
| 40 | 28, 39 | pm3.2i 470 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
| 41 | dvdsadd2b 16276 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
| 42 | 20, 24, 40, 41 | mp3an 1463 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
| 43 | 19, 42 | bitr4i 278 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 3c3 12242 9c9 12248 ℕ0cn0 12442 ℤcz 12529 ;cdc 12649 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-dvds 16223 |
| This theorem is referenced by: 257prm 47562 139prmALT 47597 31prm 47598 |
| Copyright terms: Public domain | W3C validator |