MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvdsdec Structured version   Visualization version   GIF version

Theorem 3dvdsdec 16149
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = 𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dvdsdec (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 12554 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
2 9p1e10 12553 . . . . . . . 8 (9 + 1) = 10
32eqcomi 2747 . . . . . . 7 10 = (9 + 1)
43oveq1i 7360 . . . . . 6 (10 · 𝐴) = ((9 + 1) · 𝐴)
5 9cn 12187 . . . . . . 7 9 ∈ ℂ
6 ax-1cn 11043 . . . . . . 7 1 ∈ ℂ
7 3dvdsdec.a . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 12359 . . . . . . 7 𝐴 ∈ ℂ
95, 6, 8adddiri 11102 . . . . . 6 ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴))
108mulid2i 11094 . . . . . . 7 (1 · 𝐴) = 𝐴
1110oveq2i 7361 . . . . . 6 ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴)
124, 9, 113eqtri 2770 . . . . 5 (10 · 𝐴) = ((9 · 𝐴) + 𝐴)
1312oveq1i 7360 . . . 4 ((10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵)
145, 8mulcli 11096 . . . . 5 (9 · 𝐴) ∈ ℂ
15 3dvdsdec.b . . . . . 6 𝐵 ∈ ℕ0
1615nn0cni 12359 . . . . 5 𝐵 ∈ ℂ
1714, 8, 16addassi 11099 . . . 4 (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵))
181, 13, 173eqtri 2770 . . 3 𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵))
1918breq2i 5112 . 2 (3 ∥ 𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
20 3z 12467 . . 3 3 ∈ ℤ
217nn0zi 12459 . . . 4 𝐴 ∈ ℤ
2215nn0zi 12459 . . . 4 𝐵 ∈ ℤ
23 zaddcl 12474 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
2421, 22, 23mp2an 691 . . 3 (𝐴 + 𝐵) ∈ ℤ
25 9nn 12185 . . . . . 6 9 ∈ ℕ
2625nnzi 12458 . . . . 5 9 ∈ ℤ
27 zmulcl 12483 . . . . 5 ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ)
2826, 21, 27mp2an 691 . . . 4 (9 · 𝐴) ∈ ℤ
29 zmulcl 12483 . . . . . . 7 ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ)
3020, 21, 29mp2an 691 . . . . . 6 (3 · 𝐴) ∈ ℤ
31 dvdsmul1 16095 . . . . . 6 ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴)))
3220, 30, 31mp2an 691 . . . . 5 3 ∥ (3 · (3 · 𝐴))
33 3t3e9 12254 . . . . . . . 8 (3 · 3) = 9
3433eqcomi 2747 . . . . . . 7 9 = (3 · 3)
3534oveq1i 7360 . . . . . 6 (9 · 𝐴) = ((3 · 3) · 𝐴)
36 3cn 12168 . . . . . . 7 3 ∈ ℂ
3736, 36, 8mulassi 11100 . . . . . 6 ((3 · 3) · 𝐴) = (3 · (3 · 𝐴))
3835, 37eqtri 2766 . . . . 5 (9 · 𝐴) = (3 · (3 · 𝐴))
3932, 38breqtrri 5131 . . . 4 3 ∥ (9 · 𝐴)
4028, 39pm3.2i 472 . . 3 ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))
41 dvdsadd2b 16123 . . 3 ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))))
4220, 24, 40, 41mp3an 1462 . 2 (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
4319, 42bitr4i 278 1 (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2107   class class class wbr 5104  (class class class)co 7350  0cc0 10985  1c1 10986   + caddc 10988   · cmul 10990  3c3 12143  9c9 12149  0cn0 12347  cz 12433  cdc 12551  cdvds 16071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12552  df-dvds 16072
This theorem is referenced by:  257prm  45453  139prmALT  45488  31prm  45489
  Copyright terms: Public domain W3C validator