MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvdsdec Structured version   Visualization version   GIF version

Theorem 3dvdsdec 16245
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = 𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dvdsdec (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 12597 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
2 9p1e10 12596 . . . . . . . 8 (9 + 1) = 10
32eqcomi 2742 . . . . . . 7 10 = (9 + 1)
43oveq1i 7362 . . . . . 6 (10 · 𝐴) = ((9 + 1) · 𝐴)
5 9cn 12232 . . . . . . 7 9 ∈ ℂ
6 ax-1cn 11071 . . . . . . 7 1 ∈ ℂ
7 3dvdsdec.a . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 12400 . . . . . . 7 𝐴 ∈ ℂ
95, 6, 8adddiri 11132 . . . . . 6 ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴))
108mullidi 11124 . . . . . . 7 (1 · 𝐴) = 𝐴
1110oveq2i 7363 . . . . . 6 ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴)
124, 9, 113eqtri 2760 . . . . 5 (10 · 𝐴) = ((9 · 𝐴) + 𝐴)
1312oveq1i 7362 . . . 4 ((10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵)
145, 8mulcli 11126 . . . . 5 (9 · 𝐴) ∈ ℂ
15 3dvdsdec.b . . . . . 6 𝐵 ∈ ℕ0
1615nn0cni 12400 . . . . 5 𝐵 ∈ ℂ
1714, 8, 16addassi 11129 . . . 4 (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵))
181, 13, 173eqtri 2760 . . 3 𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵))
1918breq2i 5101 . 2 (3 ∥ 𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
20 3z 12511 . . 3 3 ∈ ℤ
217nn0zi 12503 . . . 4 𝐴 ∈ ℤ
2215nn0zi 12503 . . . 4 𝐵 ∈ ℤ
23 zaddcl 12518 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
2421, 22, 23mp2an 692 . . 3 (𝐴 + 𝐵) ∈ ℤ
25 9nn 12230 . . . . . 6 9 ∈ ℕ
2625nnzi 12502 . . . . 5 9 ∈ ℤ
27 zmulcl 12527 . . . . 5 ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ)
2826, 21, 27mp2an 692 . . . 4 (9 · 𝐴) ∈ ℤ
29 zmulcl 12527 . . . . . . 7 ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ)
3020, 21, 29mp2an 692 . . . . . 6 (3 · 𝐴) ∈ ℤ
31 dvdsmul1 16190 . . . . . 6 ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴)))
3220, 30, 31mp2an 692 . . . . 5 3 ∥ (3 · (3 · 𝐴))
33 3t3e9 12294 . . . . . . . 8 (3 · 3) = 9
3433eqcomi 2742 . . . . . . 7 9 = (3 · 3)
3534oveq1i 7362 . . . . . 6 (9 · 𝐴) = ((3 · 3) · 𝐴)
36 3cn 12213 . . . . . . 7 3 ∈ ℂ
3736, 36, 8mulassi 11130 . . . . . 6 ((3 · 3) · 𝐴) = (3 · (3 · 𝐴))
3835, 37eqtri 2756 . . . . 5 (9 · 𝐴) = (3 · (3 · 𝐴))
3932, 38breqtrri 5120 . . . 4 3 ∥ (9 · 𝐴)
4028, 39pm3.2i 470 . . 3 ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))
41 dvdsadd2b 16219 . . 3 ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))))
4220, 24, 40, 41mp3an 1463 . 2 (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
4319, 42bitr4i 278 1 (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113   class class class wbr 5093  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  3c3 12188  9c9 12194  0cn0 12388  cz 12475  cdc 12594  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-dvds 16166
This theorem is referenced by:  257prm  47685  139prmALT  47720  31prm  47721
  Copyright terms: Public domain W3C validator