MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvdsdec Structured version   Visualization version   GIF version

Theorem 3dvdsdec 16380
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = 𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dvdsdec (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 12761 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
2 9p1e10 12760 . . . . . . . 8 (9 + 1) = 10
32eqcomi 2749 . . . . . . 7 10 = (9 + 1)
43oveq1i 7458 . . . . . 6 (10 · 𝐴) = ((9 + 1) · 𝐴)
5 9cn 12393 . . . . . . 7 9 ∈ ℂ
6 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
7 3dvdsdec.a . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 12565 . . . . . . 7 𝐴 ∈ ℂ
95, 6, 8adddiri 11303 . . . . . 6 ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴))
108mullidi 11295 . . . . . . 7 (1 · 𝐴) = 𝐴
1110oveq2i 7459 . . . . . 6 ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴)
124, 9, 113eqtri 2772 . . . . 5 (10 · 𝐴) = ((9 · 𝐴) + 𝐴)
1312oveq1i 7458 . . . 4 ((10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵)
145, 8mulcli 11297 . . . . 5 (9 · 𝐴) ∈ ℂ
15 3dvdsdec.b . . . . . 6 𝐵 ∈ ℕ0
1615nn0cni 12565 . . . . 5 𝐵 ∈ ℂ
1714, 8, 16addassi 11300 . . . 4 (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵))
181, 13, 173eqtri 2772 . . 3 𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵))
1918breq2i 5174 . 2 (3 ∥ 𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
20 3z 12676 . . 3 3 ∈ ℤ
217nn0zi 12668 . . . 4 𝐴 ∈ ℤ
2215nn0zi 12668 . . . 4 𝐵 ∈ ℤ
23 zaddcl 12683 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
2421, 22, 23mp2an 691 . . 3 (𝐴 + 𝐵) ∈ ℤ
25 9nn 12391 . . . . . 6 9 ∈ ℕ
2625nnzi 12667 . . . . 5 9 ∈ ℤ
27 zmulcl 12692 . . . . 5 ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ)
2826, 21, 27mp2an 691 . . . 4 (9 · 𝐴) ∈ ℤ
29 zmulcl 12692 . . . . . . 7 ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ)
3020, 21, 29mp2an 691 . . . . . 6 (3 · 𝐴) ∈ ℤ
31 dvdsmul1 16326 . . . . . 6 ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴)))
3220, 30, 31mp2an 691 . . . . 5 3 ∥ (3 · (3 · 𝐴))
33 3t3e9 12460 . . . . . . . 8 (3 · 3) = 9
3433eqcomi 2749 . . . . . . 7 9 = (3 · 3)
3534oveq1i 7458 . . . . . 6 (9 · 𝐴) = ((3 · 3) · 𝐴)
36 3cn 12374 . . . . . . 7 3 ∈ ℂ
3736, 36, 8mulassi 11301 . . . . . 6 ((3 · 3) · 𝐴) = (3 · (3 · 𝐴))
3835, 37eqtri 2768 . . . . 5 (9 · 𝐴) = (3 · (3 · 𝐴))
3932, 38breqtrri 5193 . . . 4 3 ∥ (9 · 𝐴)
4028, 39pm3.2i 470 . . 3 ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))
41 dvdsadd2b 16354 . . 3 ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))))
4220, 24, 40, 41mp3an 1461 . 2 (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
4319, 42bitr4i 278 1 (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  3c3 12349  9c9 12355  0cn0 12553  cz 12639  cdc 12758  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-dvds 16303
This theorem is referenced by:  257prm  47435  139prmALT  47470  31prm  47471
  Copyright terms: Public domain W3C validator