MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdifbndlem1 Structured version   Visualization version   GIF version

Theorem chpdifbndlem1 26701
Description: Lemma for chpdifbnd 26703. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
chpdifbnd.a (𝜑𝐴 ∈ ℝ+)
chpdifbnd.1 (𝜑 → 1 ≤ 𝐴)
chpdifbnd.b (𝜑𝐵 ∈ ℝ+)
chpdifbnd.2 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
chpdifbnd.c 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))
chpdifbnd.x (𝜑𝑋 ∈ (1(,)+∞))
chpdifbnd.y (𝜑𝑌 ∈ (𝑋[,](𝐴 · 𝑋)))
Assertion
Ref Expression
chpdifbndlem1 (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))))
Distinct variable groups:   𝑧,𝑚,𝐶   𝑧,𝑋   𝑧,𝑌   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑧,𝑚)   𝐴(𝑧,𝑚)   𝐵(𝑚)   𝑋(𝑚)   𝑌(𝑚)

Proof of Theorem chpdifbndlem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 chpdifbnd.y . . . . . . . . 9 (𝜑𝑌 ∈ (𝑋[,](𝐴 · 𝑋)))
2 ioossre 13140 . . . . . . . . . . 11 (1(,)+∞) ⊆ ℝ
3 chpdifbnd.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (1(,)+∞))
42, 3sselid 3919 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
5 chpdifbnd.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
65rpred 12772 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
76, 4remulcld 11005 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝑋) ∈ ℝ)
8 elicc2 13144 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ (𝐴 · 𝑋) ∈ ℝ) → (𝑌 ∈ (𝑋[,](𝐴 · 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋𝑌𝑌 ≤ (𝐴 · 𝑋))))
94, 7, 8syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑌 ∈ (𝑋[,](𝐴 · 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋𝑌𝑌 ≤ (𝐴 · 𝑋))))
101, 9mpbid 231 . . . . . . . 8 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋𝑌𝑌 ≤ (𝐴 · 𝑋)))
1110simp1d 1141 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
12 chpcl 26273 . . . . . . 7 (𝑌 ∈ ℝ → (ψ‘𝑌) ∈ ℝ)
1311, 12syl 17 . . . . . 6 (𝜑 → (ψ‘𝑌) ∈ ℝ)
14 chpcl 26273 . . . . . . 7 (𝑋 ∈ ℝ → (ψ‘𝑋) ∈ ℝ)
154, 14syl 17 . . . . . 6 (𝜑 → (ψ‘𝑋) ∈ ℝ)
1613, 15resubcld 11403 . . . . 5 (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ∈ ℝ)
17 0red 10978 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
18 1re 10975 . . . . . . . . 9 1 ∈ ℝ
1918a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
20 0lt1 11497 . . . . . . . . 9 0 < 1
2120a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
22 eliooord 13138 . . . . . . . . . 10 (𝑋 ∈ (1(,)+∞) → (1 < 𝑋𝑋 < +∞))
233, 22syl 17 . . . . . . . . 9 (𝜑 → (1 < 𝑋𝑋 < +∞))
2423simpld 495 . . . . . . . 8 (𝜑 → 1 < 𝑋)
2517, 19, 4, 21, 24lttrd 11136 . . . . . . 7 (𝜑 → 0 < 𝑋)
264, 25elrpd 12769 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
2726relogcld 25778 . . . . 5 (𝜑 → (log‘𝑋) ∈ ℝ)
2816, 27remulcld 11005 . . . 4 (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ∈ ℝ)
29 2re 12047 . . . . . . 7 2 ∈ ℝ
3011, 4resubcld 11403 . . . . . . 7 (𝜑 → (𝑌𝑋) ∈ ℝ)
31 remulcl 10956 . . . . . . 7 ((2 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (2 · (𝑌𝑋)) ∈ ℝ)
3229, 30, 31sylancr 587 . . . . . 6 (𝜑 → (2 · (𝑌𝑋)) ∈ ℝ)
3332, 27remulcld 11005 . . . . 5 (𝜑 → ((2 · (𝑌𝑋)) · (log‘𝑋)) ∈ ℝ)
34 chpdifbnd.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
3534rpred 12772 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
3611, 4readdcld 11004 . . . . . . 7 (𝜑 → (𝑌 + 𝑋) ∈ ℝ)
3735, 36remulcld 11005 . . . . . 6 (𝜑 → (𝐵 · (𝑌 + 𝑋)) ∈ ℝ)
385relogcld 25778 . . . . . . . 8 (𝜑 → (log‘𝐴) ∈ ℝ)
39 remulcl 10956 . . . . . . . 8 ((2 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 · (log‘𝐴)) ∈ ℝ)
4029, 38, 39sylancr 587 . . . . . . 7 (𝜑 → (2 · (log‘𝐴)) ∈ ℝ)
4140, 11remulcld 11005 . . . . . 6 (𝜑 → ((2 · (log‘𝐴)) · 𝑌) ∈ ℝ)
4237, 41readdcld 11004 . . . . 5 (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ∈ ℝ)
4333, 42readdcld 11004 . . . 4 (𝜑 → (((2 · (𝑌𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) ∈ ℝ)
44 chpdifbnd.c . . . . . . 7 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))
45 peano2re 11148 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
466, 45syl 17 . . . . . . . . 9 (𝜑 → (𝐴 + 1) ∈ ℝ)
4735, 46remulcld 11005 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ)
48 remulcl 10956 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
4929, 6, 48sylancr 587 . . . . . . . . 9 (𝜑 → (2 · 𝐴) ∈ ℝ)
5049, 38remulcld 11005 . . . . . . . 8 (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈ ℝ)
5147, 50readdcld 11004 . . . . . . 7 (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ)
5244, 51eqeltrid 2843 . . . . . 6 (𝜑𝐶 ∈ ℝ)
5352, 4remulcld 11005 . . . . 5 (𝜑 → (𝐶 · 𝑋) ∈ ℝ)
5433, 53readdcld 11004 . . . 4 (𝜑 → (((2 · (𝑌𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋)) ∈ ℝ)
5513, 27remulcld 11005 . . . . . . 7 (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ∈ ℝ)
56 fzfid 13693 . . . . . . . 8 (𝜑 → (1...(⌊‘𝑋)) ∈ Fin)
5710simp2d 1142 . . . . . . . . . . . 12 (𝜑𝑋𝑌)
58 flword2 13533 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (⌊‘𝑌) ∈ (ℤ‘(⌊‘𝑋)))
594, 11, 57, 58syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (⌊‘𝑌) ∈ (ℤ‘(⌊‘𝑋)))
60 fzss2 13296 . . . . . . . . . . 11 ((⌊‘𝑌) ∈ (ℤ‘(⌊‘𝑋)) → (1...(⌊‘𝑋)) ⊆ (1...(⌊‘𝑌)))
6159, 60syl 17 . . . . . . . . . 10 (𝜑 → (1...(⌊‘𝑋)) ⊆ (1...(⌊‘𝑌)))
6261sselda 3921 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑋))) → 𝑛 ∈ (1...(⌊‘𝑌)))
63 elfznn 13285 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑌)) → 𝑛 ∈ ℕ)
6463adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 𝑛 ∈ ℕ)
65 vmacl 26267 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
6664, 65syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → (Λ‘𝑛) ∈ ℝ)
67 nndivre 12014 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑋 / 𝑛) ∈ ℝ)
684, 63, 67syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → (𝑋 / 𝑛) ∈ ℝ)
69 chpcl 26273 . . . . . . . . . . 11 ((𝑋 / 𝑛) ∈ ℝ → (ψ‘(𝑋 / 𝑛)) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑋 / 𝑛)) ∈ ℝ)
7166, 70remulcld 11005 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ)
7262, 71syldan 591 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑋))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ)
7356, 72fsumrecl 15446 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ)
7455, 73readdcld 11004 . . . . . 6 (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ∈ ℝ)
75 remulcl 10956 . . . . . . . . 9 ((2 ∈ ℝ ∧ (log‘𝑋) ∈ ℝ) → (2 · (log‘𝑋)) ∈ ℝ)
7629, 27, 75sylancr 587 . . . . . . . 8 (𝜑 → (2 · (log‘𝑋)) ∈ ℝ)
7776, 35resubcld 11403 . . . . . . 7 (𝜑 → ((2 · (log‘𝑋)) − 𝐵) ∈ ℝ)
7877, 4remulcld 11005 . . . . . 6 (𝜑 → (((2 · (log‘𝑋)) − 𝐵) · 𝑋) ∈ ℝ)
795, 26rpmulcld 12788 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝑋) ∈ ℝ+)
8079relogcld 25778 . . . . . . . . 9 (𝜑 → (log‘(𝐴 · 𝑋)) ∈ ℝ)
81 remulcl 10956 . . . . . . . . 9 ((2 ∈ ℝ ∧ (log‘(𝐴 · 𝑋)) ∈ ℝ) → (2 · (log‘(𝐴 · 𝑋))) ∈ ℝ)
8229, 80, 81sylancr 587 . . . . . . . 8 (𝜑 → (2 · (log‘(𝐴 · 𝑋))) ∈ ℝ)
8335, 82readdcld 11004 . . . . . . 7 (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) ∈ ℝ)
8483, 11remulcld 11005 . . . . . 6 (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) ∈ ℝ)
8515, 27remulcld 11005 . . . . . . 7 (𝜑 → ((ψ‘𝑋) · (log‘𝑋)) ∈ ℝ)
8685, 73readdcld 11004 . . . . . 6 (𝜑 → (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ∈ ℝ)
8717, 4, 11, 25, 57ltletrd 11135 . . . . . . . . . . 11 (𝜑 → 0 < 𝑌)
8811, 87elrpd 12769 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ+)
8988relogcld 25778 . . . . . . . . 9 (𝜑 → (log‘𝑌) ∈ ℝ)
9013, 89remulcld 11005 . . . . . . . 8 (𝜑 → ((ψ‘𝑌) · (log‘𝑌)) ∈ ℝ)
91 fzfid 13693 . . . . . . . . 9 (𝜑 → (1...(⌊‘𝑌)) ∈ Fin)
92 nndivre 12014 . . . . . . . . . . . 12 ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑌 / 𝑛) ∈ ℝ)
9311, 63, 92syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → (𝑌 / 𝑛) ∈ ℝ)
94 chpcl 26273 . . . . . . . . . . 11 ((𝑌 / 𝑛) ∈ ℝ → (ψ‘(𝑌 / 𝑛)) ∈ ℝ)
9593, 94syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑌 / 𝑛)) ∈ ℝ)
9666, 95remulcld 11005 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))) ∈ ℝ)
9791, 96fsumrecl 15446 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))) ∈ ℝ)
9890, 97readdcld 11004 . . . . . . 7 (𝜑 → (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ∈ ℝ)
99 chpge0 26275 . . . . . . . . . 10 (𝑌 ∈ ℝ → 0 ≤ (ψ‘𝑌))
10011, 99syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (ψ‘𝑌))
10126, 88logled 25782 . . . . . . . . . 10 (𝜑 → (𝑋𝑌 ↔ (log‘𝑋) ≤ (log‘𝑌)))
10257, 101mpbid 231 . . . . . . . . 9 (𝜑 → (log‘𝑋) ≤ (log‘𝑌))
10327, 89, 13, 100, 102lemul2ad 11915 . . . . . . . 8 (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ≤ ((ψ‘𝑌) · (log‘𝑌)))
10491, 71fsumrecl 15446 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ)
105 vmage0 26270 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
10664, 105syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ (Λ‘𝑛))
107 chpge0 26275 . . . . . . . . . . . 12 ((𝑋 / 𝑛) ∈ ℝ → 0 ≤ (ψ‘(𝑋 / 𝑛)))
10868, 107syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ (ψ‘(𝑋 / 𝑛)))
10966, 70, 106, 108mulge0d 11552 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))
11091, 71, 109, 61fsumless 15508 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))
1114adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 𝑋 ∈ ℝ)
11211adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 𝑌 ∈ ℝ)
11364nnrpd 12770 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 𝑛 ∈ ℝ+)
11457adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → 𝑋𝑌)
115111, 112, 113, 114lediv1dd 12830 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → (𝑋 / 𝑛) ≤ (𝑌 / 𝑛))
116 chpwordi 26306 . . . . . . . . . . . 12 (((𝑋 / 𝑛) ∈ ℝ ∧ (𝑌 / 𝑛) ∈ ℝ ∧ (𝑋 / 𝑛) ≤ (𝑌 / 𝑛)) → (ψ‘(𝑋 / 𝑛)) ≤ (ψ‘(𝑌 / 𝑛)))
11768, 93, 115, 116syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑋 / 𝑛)) ≤ (ψ‘(𝑌 / 𝑛)))
11870, 95, 66, 106, 117lemul2ad 11915 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))
11991, 71, 96, 118fsumle 15511 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))
12073, 104, 97, 110, 119letrd 11132 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))
12155, 73, 90, 97, 103, 120le2addd 11594 . . . . . . 7 (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ≤ (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))))
12298, 88rerpdivcld 12803 . . . . . . . . 9 (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ∈ ℝ)
123 remulcl 10956 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 · (log‘𝑌)) ∈ ℝ)
12429, 89, 123sylancr 587 . . . . . . . . . 10 (𝜑 → (2 · (log‘𝑌)) ∈ ℝ)
12535, 124readdcld 11004 . . . . . . . . 9 (𝜑 → (𝐵 + (2 · (log‘𝑌))) ∈ ℝ)
126122, 124resubcld 11403 . . . . . . . . . . 11 (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ∈ ℝ)
127126recnd 11003 . . . . . . . . . . . 12 (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ∈ ℂ)
128127abscld 15148 . . . . . . . . . . 11 (𝜑 → (abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ∈ ℝ)
129126leabsd 15126 . . . . . . . . . . 11 (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤ (abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))))
130 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑌 → (ψ‘𝑧) = (ψ‘𝑌))
131 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑌 → (log‘𝑧) = (log‘𝑌))
132130, 131oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑌 → ((ψ‘𝑧) · (log‘𝑧)) = ((ψ‘𝑌) · (log‘𝑌)))
133 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (Λ‘𝑚) = (Λ‘𝑛))
134 oveq2 7283 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
135134fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (ψ‘(𝑧 / 𝑚)) = (ψ‘(𝑧 / 𝑛)))
136133, 135oveq12d 7293 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → ((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))))
137136cbvsumv 15408 . . . . . . . . . . . . . . . . . 18 Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))
138 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑌 → (⌊‘𝑧) = (⌊‘𝑌))
139138oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑌 → (1...(⌊‘𝑧)) = (1...(⌊‘𝑌)))
140 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 = 𝑌𝑛 ∈ (1...(⌊‘𝑌))) → 𝑧 = 𝑌)
141140fvoveq1d 7297 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = 𝑌𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑧 / 𝑛)) = (ψ‘(𝑌 / 𝑛)))
142141oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = 𝑌𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))
143139, 142sumeq12rdv 15419 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑌 → Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))
144137, 143eqtrid 2790 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑌 → Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))
145132, 144oveq12d 7293 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑌 → (((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) = (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))))
146 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑌𝑧 = 𝑌)
147145, 146oveq12d 7293 . . . . . . . . . . . . . . 15 (𝑧 = 𝑌 → ((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) = ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌))
148131oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑧 = 𝑌 → (2 · (log‘𝑧)) = (2 · (log‘𝑌)))
149147, 148oveq12d 7293 . . . . . . . . . . . . . 14 (𝑧 = 𝑌 → (((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧))) = (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))))
150149fveq2d 6778 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) = (abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))))
151150breq1d 5084 . . . . . . . . . . . 12 (𝑧 = 𝑌 → ((abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵 ↔ (abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ≤ 𝐵))
152 chpdifbnd.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
15319, 4, 24ltled 11123 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑋)
15419, 4, 11, 153, 57letrd 11132 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑌)
155 elicopnf 13177 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (𝑌 ∈ (1[,)+∞) ↔ (𝑌 ∈ ℝ ∧ 1 ≤ 𝑌)))
15618, 155ax-mp 5 . . . . . . . . . . . . 13 (𝑌 ∈ (1[,)+∞) ↔ (𝑌 ∈ ℝ ∧ 1 ≤ 𝑌))
15711, 154, 156sylanbrc 583 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (1[,)+∞))
158151, 152, 157rspcdva 3562 . . . . . . . . . . 11 (𝜑 → (abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ≤ 𝐵)
159126, 128, 35, 129, 158letrd 11132 . . . . . . . . . 10 (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤ 𝐵)
160122, 124, 35lesubaddd 11572 . . . . . . . . . 10 (𝜑 → ((((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤ 𝐵 ↔ ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘𝑌)))))
161159, 160mpbid 231 . . . . . . . . 9 (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘𝑌))))
16210simp3d 1143 . . . . . . . . . . . 12 (𝜑𝑌 ≤ (𝐴 · 𝑋))
16388, 79logled 25782 . . . . . . . . . . . 12 (𝜑 → (𝑌 ≤ (𝐴 · 𝑋) ↔ (log‘𝑌) ≤ (log‘(𝐴 · 𝑋))))
164162, 163mpbid 231 . . . . . . . . . . 11 (𝜑 → (log‘𝑌) ≤ (log‘(𝐴 · 𝑋)))
165 2pos 12076 . . . . . . . . . . . . . 14 0 < 2
16629, 165pm3.2i 471 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
167166a1i 11 . . . . . . . . . . . 12 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
168 lemul2 11828 . . . . . . . . . . . 12 (((log‘𝑌) ∈ ℝ ∧ (log‘(𝐴 · 𝑋)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((log‘𝑌) ≤ (log‘(𝐴 · 𝑋)) ↔ (2 · (log‘𝑌)) ≤ (2 · (log‘(𝐴 · 𝑋)))))
16989, 80, 167, 168syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((log‘𝑌) ≤ (log‘(𝐴 · 𝑋)) ↔ (2 · (log‘𝑌)) ≤ (2 · (log‘(𝐴 · 𝑋)))))
170164, 169mpbid 231 . . . . . . . . . 10 (𝜑 → (2 · (log‘𝑌)) ≤ (2 · (log‘(𝐴 · 𝑋))))
171124, 82, 35, 170leadd2dd 11590 . . . . . . . . 9 (𝜑 → (𝐵 + (2 · (log‘𝑌))) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋)))))
172122, 125, 83, 161, 171letrd 11132 . . . . . . . 8 (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋)))))
17398, 83, 88ledivmul2d 12826 . . . . . . . 8 (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) ↔ (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌)))
174172, 173mpbid 231 . . . . . . 7 (𝜑 → (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌))
17574, 98, 84, 121, 174letrd 11132 . . . . . 6 (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌))
176 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑋 → (ψ‘𝑧) = (ψ‘𝑋))
177 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑋 → (log‘𝑧) = (log‘𝑋))
178176, 177oveq12d 7293 . . . . . . . . . . . . . . 15 (𝑧 = 𝑋 → ((ψ‘𝑧) · (log‘𝑧)) = ((ψ‘𝑋) · (log‘𝑋)))
179 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑋 → (⌊‘𝑧) = (⌊‘𝑋))
180179oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑋 → (1...(⌊‘𝑧)) = (1...(⌊‘𝑋)))
181 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = 𝑋𝑛 ∈ (1...(⌊‘𝑋))) → 𝑧 = 𝑋)
182181fvoveq1d 7297 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑋𝑛 ∈ (1...(⌊‘𝑋))) → (ψ‘(𝑧 / 𝑛)) = (ψ‘(𝑋 / 𝑛)))
183182oveq2d 7291 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑋𝑛 ∈ (1...(⌊‘𝑋))) → ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))
184180, 183sumeq12rdv 15419 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑋 → Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))
185137, 184eqtrid 2790 . . . . . . . . . . . . . . 15 (𝑧 = 𝑋 → Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))
186178, 185oveq12d 7293 . . . . . . . . . . . . . 14 (𝑧 = 𝑋 → (((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) = (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))))
187 id 22 . . . . . . . . . . . . . 14 (𝑧 = 𝑋𝑧 = 𝑋)
188186, 187oveq12d 7293 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → ((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) = ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋))
189177oveq2d 7291 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (2 · (log‘𝑧)) = (2 · (log‘𝑋)))
190188, 189oveq12d 7293 . . . . . . . . . . . 12 (𝑧 = 𝑋 → (((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧))) = (((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋))))
191190fveq2d 6778 . . . . . . . . . . 11 (𝑧 = 𝑋 → (abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) = (abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))))
192191breq1d 5084 . . . . . . . . . 10 (𝑧 = 𝑋 → ((abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵 ↔ (abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵))
193 elicopnf 13177 . . . . . . . . . . . 12 (1 ∈ ℝ → (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋)))
19418, 193ax-mp 5 . . . . . . . . . . 11 (𝑋 ∈ (1[,)+∞) ↔ (𝑋 ∈ ℝ ∧ 1 ≤ 𝑋))
1954, 153, 194sylanbrc 583 . . . . . . . . . 10 (𝜑𝑋 ∈ (1[,)+∞))
196192, 152, 195rspcdva 3562 . . . . . . . . 9 (𝜑 → (abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵)
19786, 26rerpdivcld 12803 . . . . . . . . . 10 (𝜑 → ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∈ ℝ)
198197, 76, 35absdifled 15146 . . . . . . . . 9 (𝜑 → ((abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵 ↔ (((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∧ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ≤ ((2 · (log‘𝑋)) + 𝐵))))
199196, 198mpbid 231 . . . . . . . 8 (𝜑 → (((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∧ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ≤ ((2 · (log‘𝑋)) + 𝐵)))
200199simpld 495 . . . . . . 7 (𝜑 → ((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋))
20177, 86, 26lemuldivd 12821 . . . . . . 7 (𝜑 → ((((2 · (log‘𝑋)) − 𝐵) · 𝑋) ≤ (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ↔ ((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋)))
202200, 201mpbird 256 . . . . . 6 (𝜑 → (((2 · (log‘𝑋)) − 𝐵) · 𝑋) ≤ (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))))
20374, 78, 84, 86, 175, 202le2subd 11595 . . . . 5 (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) ≤ (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋)))
20455recnd 11003 . . . . . . 7 (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ∈ ℂ)
20585recnd 11003 . . . . . . 7 (𝜑 → ((ψ‘𝑋) · (log‘𝑋)) ∈ ℂ)
20673recnd 11003 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℂ)
207204, 205, 206pnpcan2d 11370 . . . . . 6 (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) = (((ψ‘𝑌) · (log‘𝑋)) − ((ψ‘𝑋) · (log‘𝑋))))
20813recnd 11003 . . . . . . 7 (𝜑 → (ψ‘𝑌) ∈ ℂ)
20915recnd 11003 . . . . . . 7 (𝜑 → (ψ‘𝑋) ∈ ℂ)
21027recnd 11003 . . . . . . 7 (𝜑 → (log‘𝑋) ∈ ℂ)
211208, 209, 210subdird 11432 . . . . . 6 (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) = (((ψ‘𝑌) · (log‘𝑋)) − ((ψ‘𝑋) · (log‘𝑋))))
212207, 211eqtr4d 2781 . . . . 5 (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) = (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)))
21376, 11remulcld 11005 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑋)) · 𝑌) ∈ ℝ)
214213recnd 11003 . . . . . . 7 (𝜑 → ((2 · (log‘𝑋)) · 𝑌) ∈ ℂ)
21535, 40readdcld 11004 . . . . . . . . 9 (𝜑 → (𝐵 + (2 · (log‘𝐴))) ∈ ℝ)
216215, 11remulcld 11005 . . . . . . . 8 (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) ∈ ℝ)
217216recnd 11003 . . . . . . 7 (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) ∈ ℂ)
21876, 4remulcld 11005 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑋)) · 𝑋) ∈ ℝ)
219218recnd 11003 . . . . . . 7 (𝜑 → ((2 · (log‘𝑋)) · 𝑋) ∈ ℂ)
22035, 4remulcld 11005 . . . . . . . . 9 (𝜑 → (𝐵 · 𝑋) ∈ ℝ)
221220recnd 11003 . . . . . . . 8 (𝜑 → (𝐵 · 𝑋) ∈ ℂ)
222221negcld 11319 . . . . . . 7 (𝜑 → -(𝐵 · 𝑋) ∈ ℂ)
223214, 217, 219, 222addsub4d 11379 . . . . . 6 (𝜑 → ((((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)) − (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋))) = ((((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)) + (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋))))
22438recnd 11003 . . . . . . . . . . . . . 14 (𝜑 → (log‘𝐴) ∈ ℂ)
2255, 26relogmuld 25780 . . . . . . . . . . . . . 14 (𝜑 → (log‘(𝐴 · 𝑋)) = ((log‘𝐴) + (log‘𝑋)))
226224, 210, 225comraddd 11189 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝐴 · 𝑋)) = ((log‘𝑋) + (log‘𝐴)))
227226oveq2d 7291 . . . . . . . . . . . 12 (𝜑 → (2 · (log‘(𝐴 · 𝑋))) = (2 · ((log‘𝑋) + (log‘𝐴))))
228 2cnd 12051 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
229228, 210, 224adddid 10999 . . . . . . . . . . . 12 (𝜑 → (2 · ((log‘𝑋) + (log‘𝐴))) = ((2 · (log‘𝑋)) + (2 · (log‘𝐴))))
230227, 229eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (2 · (log‘(𝐴 · 𝑋))) = ((2 · (log‘𝑋)) + (2 · (log‘𝐴))))
231230oveq2d 7291 . . . . . . . . . 10 (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) = (𝐵 + ((2 · (log‘𝑋)) + (2 · (log‘𝐴)))))
23235recnd 11003 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
23376recnd 11003 . . . . . . . . . . 11 (𝜑 → (2 · (log‘𝑋)) ∈ ℂ)
23440recnd 11003 . . . . . . . . . . 11 (𝜑 → (2 · (log‘𝐴)) ∈ ℂ)
235232, 233, 234add12d 11201 . . . . . . . . . 10 (𝜑 → (𝐵 + ((2 · (log‘𝑋)) + (2 · (log‘𝐴)))) = ((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))))
236231, 235eqtrd 2778 . . . . . . . . 9 (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) = ((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))))
237236oveq1d 7290 . . . . . . . 8 (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) = (((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))) · 𝑌))
238215recnd 11003 . . . . . . . . 9 (𝜑 → (𝐵 + (2 · (log‘𝐴))) ∈ ℂ)
23911recnd 11003 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
240233, 238, 239adddird 11000 . . . . . . . 8 (𝜑 → (((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))) · 𝑌) = (((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)))
241237, 240eqtrd 2778 . . . . . . 7 (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) = (((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)))
2424recnd 11003 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
243233, 232, 242subdird 11432 . . . . . . . 8 (𝜑 → (((2 · (log‘𝑋)) − 𝐵) · 𝑋) = (((2 · (log‘𝑋)) · 𝑋) − (𝐵 · 𝑋)))
244219, 221negsubd 11338 . . . . . . . 8 (𝜑 → (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋)) = (((2 · (log‘𝑋)) · 𝑋) − (𝐵 · 𝑋)))
245243, 244eqtr4d 2781 . . . . . . 7 (𝜑 → (((2 · (log‘𝑋)) − 𝐵) · 𝑋) = (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋)))
246241, 245oveq12d 7293 . . . . . 6 (𝜑 → (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋)) = ((((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)) − (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋))))
24730recnd 11003 . . . . . . . . 9 (𝜑 → (𝑌𝑋) ∈ ℂ)
248228, 247, 210mul32d 11185 . . . . . . . 8 (𝜑 → ((2 · (𝑌𝑋)) · (log‘𝑋)) = ((2 · (log‘𝑋)) · (𝑌𝑋)))
249233, 239, 242subdid 11431 . . . . . . . 8 (𝜑 → ((2 · (log‘𝑋)) · (𝑌𝑋)) = (((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)))
250248, 249eqtrd 2778 . . . . . . 7 (𝜑 → ((2 · (𝑌𝑋)) · (log‘𝑋)) = (((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)))
25135, 11remulcld 11005 . . . . . . . . . . 11 (𝜑 → (𝐵 · 𝑌) ∈ ℝ)
252251recnd 11003 . . . . . . . . . 10 (𝜑 → (𝐵 · 𝑌) ∈ ℂ)
25341recnd 11003 . . . . . . . . . 10 (𝜑 → ((2 · (log‘𝐴)) · 𝑌) ∈ ℂ)
254252, 221, 253add32d 11202 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝑌) + (𝐵 · 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌)) + (𝐵 · 𝑋)))
255232, 239, 242adddid 10999 . . . . . . . . . 10 (𝜑 → (𝐵 · (𝑌 + 𝑋)) = ((𝐵 · 𝑌) + (𝐵 · 𝑋)))
256255oveq1d 7290 . . . . . . . . 9 (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 · 𝑌) + (𝐵 · 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)))
257232, 234, 239adddird 11000 . . . . . . . . . 10 (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) = ((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌)))
258257oveq1d 7290 . . . . . . . . 9 (𝜑 → (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋)) = (((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌)) + (𝐵 · 𝑋)))
259254, 256, 2583eqtr4d 2788 . . . . . . . 8 (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋)))
260217, 221subnegd 11339 . . . . . . . 8 (𝜑 → (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋)))
261259, 260eqtr4d 2781 . . . . . . 7 (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)))
262250, 261oveq12d 7293 . . . . . 6 (𝜑 → (((2 · (𝑌𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) = ((((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)) + (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋))))
263223, 246, 2623eqtr4d 2788 . . . . 5 (𝜑 → (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋)) = (((2 · (𝑌𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))))
264203, 212, 2633brtr3d 5105 . . . 4 (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))))
26547, 4remulcld 11005 . . . . . . 7 (𝜑 → ((𝐵 · (𝐴 + 1)) · 𝑋) ∈ ℝ)
26650, 4remulcld 11005 . . . . . . 7 (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) ∈ ℝ)
26711, 7, 4, 162leadd1dd 11589 . . . . . . . . . 10 (𝜑 → (𝑌 + 𝑋) ≤ ((𝐴 · 𝑋) + 𝑋))
2686recnd 11003 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
269268, 242adddirp1d 11001 . . . . . . . . . 10 (𝜑 → ((𝐴 + 1) · 𝑋) = ((𝐴 · 𝑋) + 𝑋))
270267, 269breqtrrd 5102 . . . . . . . . 9 (𝜑 → (𝑌 + 𝑋) ≤ ((𝐴 + 1) · 𝑋))
27146, 4remulcld 11005 . . . . . . . . . 10 (𝜑 → ((𝐴 + 1) · 𝑋) ∈ ℝ)
27236, 271, 34lemul2d 12816 . . . . . . . . 9 (𝜑 → ((𝑌 + 𝑋) ≤ ((𝐴 + 1) · 𝑋) ↔ (𝐵 · (𝑌 + 𝑋)) ≤ (𝐵 · ((𝐴 + 1) · 𝑋))))
273270, 272mpbid 231 . . . . . . . 8 (𝜑 → (𝐵 · (𝑌 + 𝑋)) ≤ (𝐵 · ((𝐴 + 1) · 𝑋)))
27446recnd 11003 . . . . . . . . 9 (𝜑 → (𝐴 + 1) ∈ ℂ)
275232, 274, 242mulassd 10998 . . . . . . . 8 (𝜑 → ((𝐵 · (𝐴 + 1)) · 𝑋) = (𝐵 · ((𝐴 + 1) · 𝑋)))
276273, 275breqtrrd 5102 . . . . . . 7 (𝜑 → (𝐵 · (𝑌 + 𝑋)) ≤ ((𝐵 · (𝐴 + 1)) · 𝑋))
27729a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
278 0le2 12075 . . . . . . . . . . 11 0 ≤ 2
279278a1i 11 . . . . . . . . . 10 (𝜑 → 0 ≤ 2)
280 log1 25741 . . . . . . . . . . 11 (log‘1) = 0
281 chpdifbnd.1 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝐴)
282 1rp 12734 . . . . . . . . . . . . 13 1 ∈ ℝ+
283 logleb 25758 . . . . . . . . . . . . 13 ((1 ∈ ℝ+𝐴 ∈ ℝ+) → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴)))
284282, 5, 283sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴)))
285281, 284mpbid 231 . . . . . . . . . . 11 (𝜑 → (log‘1) ≤ (log‘𝐴))
286280, 285eqbrtrrid 5110 . . . . . . . . . 10 (𝜑 → 0 ≤ (log‘𝐴))
287277, 38, 279, 286mulge0d 11552 . . . . . . . . 9 (𝜑 → 0 ≤ (2 · (log‘𝐴)))
28811, 7, 40, 287, 162lemul2ad 11915 . . . . . . . 8 (𝜑 → ((2 · (log‘𝐴)) · 𝑌) ≤ ((2 · (log‘𝐴)) · (𝐴 · 𝑋)))
28949recnd 11003 . . . . . . . . . 10 (𝜑 → (2 · 𝐴) ∈ ℂ)
290289, 224, 242mulassd 10998 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) = ((2 · 𝐴) · ((log‘𝐴) · 𝑋)))
291228, 268, 224, 242mul4d 11187 . . . . . . . . 9 (𝜑 → ((2 · 𝐴) · ((log‘𝐴) · 𝑋)) = ((2 · (log‘𝐴)) · (𝐴 · 𝑋)))
292290, 291eqtrd 2778 . . . . . . . 8 (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) = ((2 · (log‘𝐴)) · (𝐴 · 𝑋)))
293288, 292breqtrrd 5102 . . . . . . 7 (𝜑 → ((2 · (log‘𝐴)) · 𝑌) ≤ (((2 · 𝐴) · (log‘𝐴)) · 𝑋))
29437, 41, 265, 266, 276, 293le2addd 11594 . . . . . 6 (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ≤ (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋)))
29544oveq1i 7285 . . . . . . 7 (𝐶 · 𝑋) = (((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) · 𝑋)
29647recnd 11003 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℂ)
29750recnd 11003 . . . . . . . 8 (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈ ℂ)
298296, 297, 242adddird 11000 . . . . . . 7 (𝜑 → (((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) · 𝑋) = (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋)))
299295, 298eqtrid 2790 . . . . . 6 (𝜑 → (𝐶 · 𝑋) = (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋)))
300294, 299breqtrrd 5102 . . . . 5 (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ≤ (𝐶 · 𝑋))
30142, 53, 33, 300leadd2dd 11590 . . . 4 (𝜑 → (((2 · (𝑌𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) ≤ (((2 · (𝑌𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋)))
30228, 43, 54, 264, 301letrd 11132 . . 3 (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋)))
30332recnd 11003 . . . . 5 (𝜑 → (2 · (𝑌𝑋)) ∈ ℂ)
3044, 24rplogcld 25784 . . . . . . . 8 (𝜑 → (log‘𝑋) ∈ ℝ+)
3054, 304rerpdivcld 12803 . . . . . . 7 (𝜑 → (𝑋 / (log‘𝑋)) ∈ ℝ)
30652, 305remulcld 11005 . . . . . 6 (𝜑 → (𝐶 · (𝑋 / (log‘𝑋))) ∈ ℝ)
307306recnd 11003 . . . . 5 (𝜑 → (𝐶 · (𝑋 / (log‘𝑋))) ∈ ℂ)
308303, 307, 210adddird 11000 . . . 4 (𝜑 → (((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)) = (((2 · (𝑌𝑋)) · (log‘𝑋)) + ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋))))
30952recnd 11003 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
310305recnd 11003 . . . . . . 7 (𝜑 → (𝑋 / (log‘𝑋)) ∈ ℂ)
311309, 310, 210mulassd 10998 . . . . . 6 (𝜑 → ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)) = (𝐶 · ((𝑋 / (log‘𝑋)) · (log‘𝑋))))
312304rpne0d 12777 . . . . . . . 8 (𝜑 → (log‘𝑋) ≠ 0)
313242, 210, 312divcan1d 11752 . . . . . . 7 (𝜑 → ((𝑋 / (log‘𝑋)) · (log‘𝑋)) = 𝑋)
314313oveq2d 7291 . . . . . 6 (𝜑 → (𝐶 · ((𝑋 / (log‘𝑋)) · (log‘𝑋))) = (𝐶 · 𝑋))
315311, 314eqtrd 2778 . . . . 5 (𝜑 → ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)) = (𝐶 · 𝑋))
316315oveq2d 7291 . . . 4 (𝜑 → (((2 · (𝑌𝑋)) · (log‘𝑋)) + ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋))) = (((2 · (𝑌𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋)))
317308, 316eqtrd 2778 . . 3 (𝜑 → (((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)) = (((2 · (𝑌𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋)))
318302, 317breqtrrd 5102 . 2 (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)))
31932, 306readdcld 11004 . . 3 (𝜑 → ((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) ∈ ℝ)
32016, 319, 304lemul1d 12815 . 2 (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) ↔ (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋))))
321318, 320mpbird 256 1 (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  cuz 12582  +crp 12730  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  ...cfz 13239  cfl 13510  abscabs 14945  Σcsu 15397  logclog 25710  Λcvma 26241  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-vma 26247  df-chp 26248
This theorem is referenced by:  chpdifbndlem2  26702
  Copyright terms: Public domain W3C validator