Step | Hyp | Ref
| Expression |
1 | | chpdifbnd.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (𝑋[,](𝐴 · 𝑋))) |
2 | | ioossre 13140 |
. . . . . . . . . . 11
⊢
(1(,)+∞) ⊆ ℝ |
3 | | chpdifbnd.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (1(,)+∞)) |
4 | 2, 3 | sselid 3919 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℝ) |
5 | | chpdifbnd.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
6 | 5 | rpred 12772 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | 6, 4 | remulcld 11005 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 · 𝑋) ∈ ℝ) |
8 | | elicc2 13144 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℝ ∧ (𝐴 · 𝑋) ∈ ℝ) → (𝑌 ∈ (𝑋[,](𝐴 · 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐴 · 𝑋)))) |
9 | 4, 7, 8 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ (𝑋[,](𝐴 · 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐴 · 𝑋)))) |
10 | 1, 9 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐴 · 𝑋))) |
11 | 10 | simp1d 1141 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ℝ) |
12 | | chpcl 26273 |
. . . . . . 7
⊢ (𝑌 ∈ ℝ →
(ψ‘𝑌) ∈
ℝ) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ψ‘𝑌) ∈
ℝ) |
14 | | chpcl 26273 |
. . . . . . 7
⊢ (𝑋 ∈ ℝ →
(ψ‘𝑋) ∈
ℝ) |
15 | 4, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ψ‘𝑋) ∈
ℝ) |
16 | 13, 15 | resubcld 11403 |
. . . . 5
⊢ (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ∈
ℝ) |
17 | | 0red 10978 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
18 | | 1re 10975 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
20 | | 0lt1 11497 |
. . . . . . . . 9
⊢ 0 <
1 |
21 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 < 1) |
22 | | eliooord 13138 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (1(,)+∞) → (1
< 𝑋 ∧ 𝑋 <
+∞)) |
23 | 3, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1 < 𝑋 ∧ 𝑋 < +∞)) |
24 | 23 | simpld 495 |
. . . . . . . 8
⊢ (𝜑 → 1 < 𝑋) |
25 | 17, 19, 4, 21, 24 | lttrd 11136 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝑋) |
26 | 4, 25 | elrpd 12769 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
27 | 26 | relogcld 25778 |
. . . . 5
⊢ (𝜑 → (log‘𝑋) ∈
ℝ) |
28 | 16, 27 | remulcld 11005 |
. . . 4
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ∈
ℝ) |
29 | | 2re 12047 |
. . . . . . 7
⊢ 2 ∈
ℝ |
30 | 11, 4 | resubcld 11403 |
. . . . . . 7
⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℝ) |
31 | | remulcl 10956 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ (𝑌
− 𝑋) ∈ ℝ)
→ (2 · (𝑌
− 𝑋)) ∈
ℝ) |
32 | 29, 30, 31 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (2 · (𝑌 − 𝑋)) ∈ ℝ) |
33 | 32, 27 | remulcld 11005 |
. . . . 5
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) · (log‘𝑋)) ∈ ℝ) |
34 | | chpdifbnd.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
35 | 34 | rpred 12772 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
36 | 11, 4 | readdcld 11004 |
. . . . . . 7
⊢ (𝜑 → (𝑌 + 𝑋) ∈ ℝ) |
37 | 35, 36 | remulcld 11005 |
. . . . . 6
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) ∈ ℝ) |
38 | 5 | relogcld 25778 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) |
39 | | remulcl 10956 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 ·
(log‘𝐴)) ∈
ℝ) |
40 | 29, 38, 39 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (2 ·
(log‘𝐴)) ∈
ℝ) |
41 | 40, 11 | remulcld 11005 |
. . . . . 6
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ∈
ℝ) |
42 | 37, 41 | readdcld 11004 |
. . . . 5
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ∈ ℝ) |
43 | 33, 42 | readdcld 11004 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) ∈ ℝ) |
44 | | chpdifbnd.c |
. . . . . . 7
⊢ 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) |
45 | | peano2re 11148 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) |
46 | 6, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
47 | 35, 46 | remulcld 11005 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ) |
48 | | remulcl 10956 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ 𝐴
∈ ℝ) → (2 · 𝐴) ∈ ℝ) |
49 | 29, 6, 48 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (2 · 𝐴) ∈
ℝ) |
50 | 49, 38 | remulcld 11005 |
. . . . . . . 8
⊢ (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈
ℝ) |
51 | 47, 50 | readdcld 11004 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ) |
52 | 44, 51 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
53 | 52, 4 | remulcld 11005 |
. . . . 5
⊢ (𝜑 → (𝐶 · 𝑋) ∈ ℝ) |
54 | 33, 53 | readdcld 11004 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋)) ∈ ℝ) |
55 | 13, 27 | remulcld 11005 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ∈
ℝ) |
56 | | fzfid 13693 |
. . . . . . . 8
⊢ (𝜑 → (1...(⌊‘𝑋)) ∈ Fin) |
57 | 10 | simp2d 1142 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
58 | | flword2 13533 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌) → (⌊‘𝑌) ∈
(ℤ≥‘(⌊‘𝑋))) |
59 | 4, 11, 57, 58 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → (⌊‘𝑌) ∈
(ℤ≥‘(⌊‘𝑋))) |
60 | | fzss2 13296 |
. . . . . . . . . . 11
⊢
((⌊‘𝑌)
∈ (ℤ≥‘(⌊‘𝑋)) → (1...(⌊‘𝑋)) ⊆
(1...(⌊‘𝑌))) |
61 | 59, 60 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1...(⌊‘𝑋)) ⊆
(1...(⌊‘𝑌))) |
62 | 61 | sselda 3921 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → 𝑛 ∈ (1...(⌊‘𝑌))) |
63 | | elfznn 13285 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑌))
→ 𝑛 ∈
ℕ) |
64 | 63 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑛 ∈ ℕ) |
65 | | vmacl 26267 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
66 | 64, 65 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (Λ‘𝑛) ∈
ℝ) |
67 | | nndivre 12014 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑋 / 𝑛) ∈ ℝ) |
68 | 4, 63, 67 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (𝑋 / 𝑛) ∈ ℝ) |
69 | | chpcl 26273 |
. . . . . . . . . . 11
⊢ ((𝑋 / 𝑛) ∈ ℝ → (ψ‘(𝑋 / 𝑛)) ∈ ℝ) |
70 | 68, 69 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑋 / 𝑛)) ∈ ℝ) |
71 | 66, 70 | remulcld 11005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
72 | 62, 71 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
73 | 56, 72 | fsumrecl 15446 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
74 | 55, 73 | readdcld 11004 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ∈ ℝ) |
75 | | remulcl 10956 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ (log‘𝑋) ∈ ℝ) → (2 ·
(log‘𝑋)) ∈
ℝ) |
76 | 29, 27, 75 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (2 ·
(log‘𝑋)) ∈
ℝ) |
77 | 76, 35 | resubcld 11403 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) −
𝐵) ∈
ℝ) |
78 | 77, 4 | remulcld 11005 |
. . . . . 6
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) ∈
ℝ) |
79 | 5, 26 | rpmulcld 12788 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 · 𝑋) ∈
ℝ+) |
80 | 79 | relogcld 25778 |
. . . . . . . . 9
⊢ (𝜑 → (log‘(𝐴 · 𝑋)) ∈ ℝ) |
81 | | remulcl 10956 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ (log‘(𝐴 · 𝑋)) ∈ ℝ) → (2 ·
(log‘(𝐴 ·
𝑋))) ∈
ℝ) |
82 | 29, 80, 81 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (2 ·
(log‘(𝐴 ·
𝑋))) ∈
ℝ) |
83 | 35, 82 | readdcld 11004 |
. . . . . . 7
⊢ (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) ∈ ℝ) |
84 | 83, 11 | remulcld 11005 |
. . . . . 6
⊢ (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) ∈ ℝ) |
85 | 15, 27 | remulcld 11005 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑋) · (log‘𝑋)) ∈
ℝ) |
86 | 85, 73 | readdcld 11004 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ∈ ℝ) |
87 | 17, 4, 11, 25, 57 | ltletrd 11135 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < 𝑌) |
88 | 11, 87 | elrpd 12769 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
89 | 88 | relogcld 25778 |
. . . . . . . . 9
⊢ (𝜑 → (log‘𝑌) ∈
ℝ) |
90 | 13, 89 | remulcld 11005 |
. . . . . . . 8
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑌)) ∈
ℝ) |
91 | | fzfid 13693 |
. . . . . . . . 9
⊢ (𝜑 → (1...(⌊‘𝑌)) ∈ Fin) |
92 | | nndivre 12014 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑌 / 𝑛) ∈ ℝ) |
93 | 11, 63, 92 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (𝑌 / 𝑛) ∈ ℝ) |
94 | | chpcl 26273 |
. . . . . . . . . . 11
⊢ ((𝑌 / 𝑛) ∈ ℝ → (ψ‘(𝑌 / 𝑛)) ∈ ℝ) |
95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑌 / 𝑛)) ∈ ℝ) |
96 | 66, 95 | remulcld 11005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))) ∈ ℝ) |
97 | 91, 96 | fsumrecl 15446 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))) ∈ ℝ) |
98 | 90, 97 | readdcld 11004 |
. . . . . . 7
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ∈ ℝ) |
99 | | chpge0 26275 |
. . . . . . . . . 10
⊢ (𝑌 ∈ ℝ → 0 ≤
(ψ‘𝑌)) |
100 | 11, 99 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (ψ‘𝑌)) |
101 | 26, 88 | logled 25782 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (log‘𝑋) ≤ (log‘𝑌))) |
102 | 57, 101 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → (log‘𝑋) ≤ (log‘𝑌)) |
103 | 27, 89, 13, 100, 102 | lemul2ad 11915 |
. . . . . . . 8
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ≤ ((ψ‘𝑌) · (log‘𝑌))) |
104 | 91, 71 | fsumrecl 15446 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
105 | | vmage0 26270 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 0 ≤
(Λ‘𝑛)) |
106 | 64, 105 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ (Λ‘𝑛)) |
107 | | chpge0 26275 |
. . . . . . . . . . . 12
⊢ ((𝑋 / 𝑛) ∈ ℝ → 0 ≤
(ψ‘(𝑋 / 𝑛))) |
108 | 68, 107 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ (ψ‘(𝑋 / 𝑛))) |
109 | 66, 70, 106, 108 | mulge0d 11552 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
110 | 91, 71, 109, 61 | fsumless 15508 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
111 | 4 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑋 ∈ ℝ) |
112 | 11 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑌 ∈ ℝ) |
113 | 64 | nnrpd 12770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑛 ∈ ℝ+) |
114 | 57 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑋 ≤ 𝑌) |
115 | 111, 112,
113, 114 | lediv1dd 12830 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (𝑋 / 𝑛) ≤ (𝑌 / 𝑛)) |
116 | | chpwordi 26306 |
. . . . . . . . . . . 12
⊢ (((𝑋 / 𝑛) ∈ ℝ ∧ (𝑌 / 𝑛) ∈ ℝ ∧ (𝑋 / 𝑛) ≤ (𝑌 / 𝑛)) → (ψ‘(𝑋 / 𝑛)) ≤ (ψ‘(𝑌 / 𝑛))) |
117 | 68, 93, 115, 116 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑋 / 𝑛)) ≤ (ψ‘(𝑌 / 𝑛))) |
118 | 70, 95, 66, 106, 117 | lemul2ad 11915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
119 | 91, 71, 96, 118 | fsumle 15511 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
120 | 73, 104, 97, 110, 119 | letrd 11132 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
121 | 55, 73, 90, 97, 103, 120 | le2addd 11594 |
. . . . . . 7
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ≤ (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))) |
122 | 98, 88 | rerpdivcld 12803 |
. . . . . . . . 9
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ∈ ℝ) |
123 | | remulcl 10956 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 ·
(log‘𝑌)) ∈
ℝ) |
124 | 29, 89, 123 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (2 ·
(log‘𝑌)) ∈
ℝ) |
125 | 35, 124 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝑌))) ∈ ℝ) |
126 | 122, 124 | resubcld 11403 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ∈
ℝ) |
127 | 126 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ∈
ℂ) |
128 | 127 | abscld 15148 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ∈
ℝ) |
129 | 126 | leabsd 15126 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))))) |
130 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑌 → (ψ‘𝑧) = (ψ‘𝑌)) |
131 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑌 → (log‘𝑧) = (log‘𝑌)) |
132 | 130, 131 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑌 → ((ψ‘𝑧) · (log‘𝑧)) = ((ψ‘𝑌) · (log‘𝑌))) |
133 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (Λ‘𝑚) = (Λ‘𝑛)) |
134 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛)) |
135 | 134 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (ψ‘(𝑧 / 𝑚)) = (ψ‘(𝑧 / 𝑛))) |
136 | 133, 135 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → ((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) |
137 | 136 | cbvsumv 15408 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑚 ∈
(1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) |
138 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑌 → (⌊‘𝑧) = (⌊‘𝑌)) |
139 | 138 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑌 → (1...(⌊‘𝑧)) = (1...(⌊‘𝑌))) |
140 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 = 𝑌 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑧 = 𝑌) |
141 | 140 | fvoveq1d 7297 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 = 𝑌 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑧 / 𝑛)) = (ψ‘(𝑌 / 𝑛))) |
142 | 141 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = 𝑌 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
143 | 139, 142 | sumeq12rdv 15419 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑌 → Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
144 | 137, 143 | eqtrid 2790 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑌 → Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
145 | 132, 144 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑌 → (((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) = (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))) |
146 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑌 → 𝑧 = 𝑌) |
147 | 145, 146 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑌 → ((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) = ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌)) |
148 | 131 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑌 → (2 · (log‘𝑧)) = (2 ·
(log‘𝑌))) |
149 | 147, 148 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑌 → (((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧))) = (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) |
150 | 149 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑌 → (abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) =
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))))) |
151 | 150 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑌 → ((abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵 ↔ (abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ≤ 𝐵)) |
152 | | chpdifbnd.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈
(1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵) |
153 | 19, 4, 24 | ltled 11123 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≤ 𝑋) |
154 | 19, 4, 11, 153, 57 | letrd 11132 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≤ 𝑌) |
155 | | elicopnf 13177 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ → (𝑌 ∈
(1[,)+∞) ↔ (𝑌
∈ ℝ ∧ 1 ≤ 𝑌))) |
156 | 18, 155 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (1[,)+∞) ↔
(𝑌 ∈ ℝ ∧ 1
≤ 𝑌)) |
157 | 11, 154, 156 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (1[,)+∞)) |
158 | 151, 152,
157 | rspcdva 3562 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ≤ 𝐵) |
159 | 126, 128,
35, 129, 158 | letrd 11132 |
. . . . . . . . . 10
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤ 𝐵) |
160 | 122, 124,
35 | lesubaddd 11572 |
. . . . . . . . . 10
⊢ (𝜑 → ((((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤ 𝐵 ↔ ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘𝑌))))) |
161 | 159, 160 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘𝑌)))) |
162 | 10 | simp3d 1143 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ≤ (𝐴 · 𝑋)) |
163 | 88, 79 | logled 25782 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌 ≤ (𝐴 · 𝑋) ↔ (log‘𝑌) ≤ (log‘(𝐴 · 𝑋)))) |
164 | 162, 163 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (log‘𝑌) ≤ (log‘(𝐴 · 𝑋))) |
165 | | 2pos 12076 |
. . . . . . . . . . . . . 14
⊢ 0 <
2 |
166 | 29, 165 | pm3.2i 471 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℝ ∧ 0 < 2) |
167 | 166 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ∈ ℝ ∧ 0
< 2)) |
168 | | lemul2 11828 |
. . . . . . . . . . . 12
⊢
(((log‘𝑌)
∈ ℝ ∧ (log‘(𝐴 · 𝑋)) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((log‘𝑌) ≤ (log‘(𝐴 · 𝑋)) ↔ (2 · (log‘𝑌)) ≤ (2 ·
(log‘(𝐴 ·
𝑋))))) |
169 | 89, 80, 167, 168 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝑌) ≤ (log‘(𝐴 · 𝑋)) ↔ (2 · (log‘𝑌)) ≤ (2 ·
(log‘(𝐴 ·
𝑋))))) |
170 | 164, 169 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (2 ·
(log‘𝑌)) ≤ (2
· (log‘(𝐴
· 𝑋)))) |
171 | 124, 82, 35, 170 | leadd2dd 11590 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝑌))) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋))))) |
172 | 122, 125,
83, 161, 171 | letrd 11132 |
. . . . . . . 8
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋))))) |
173 | 98, 83, 88 | ledivmul2d 12826 |
. . . . . . . 8
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) ↔ (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌))) |
174 | 172, 173 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌)) |
175 | 74, 98, 84, 121, 174 | letrd 11132 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌)) |
176 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑋 → (ψ‘𝑧) = (ψ‘𝑋)) |
177 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑋 → (log‘𝑧) = (log‘𝑋)) |
178 | 176, 177 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑋 → ((ψ‘𝑧) · (log‘𝑧)) = ((ψ‘𝑋) · (log‘𝑋))) |
179 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑋 → (⌊‘𝑧) = (⌊‘𝑋)) |
180 | 179 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑋 → (1...(⌊‘𝑧)) = (1...(⌊‘𝑋))) |
181 | | simpl 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = 𝑋 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → 𝑧 = 𝑋) |
182 | 181 | fvoveq1d 7297 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = 𝑋 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → (ψ‘(𝑧 / 𝑛)) = (ψ‘(𝑋 / 𝑛))) |
183 | 182 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = 𝑋 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
184 | 180, 183 | sumeq12rdv 15419 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑋 → Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
185 | 137, 184 | eqtrid 2790 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑋 → Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
186 | 178, 185 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑋 → (((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) = (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) |
187 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑋 → 𝑧 = 𝑋) |
188 | 186, 187 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑋 → ((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) = ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋)) |
189 | 177 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑋 → (2 · (log‘𝑧)) = (2 ·
(log‘𝑋))) |
190 | 188, 189 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑋 → (((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧))) = (((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) |
191 | 190 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑋 → (abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) =
(abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋))))) |
192 | 191 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑋 → ((abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵 ↔ (abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵)) |
193 | | elicopnf 13177 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℝ → (𝑋 ∈
(1[,)+∞) ↔ (𝑋
∈ ℝ ∧ 1 ≤ 𝑋))) |
194 | 18, 193 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (1[,)+∞) ↔
(𝑋 ∈ ℝ ∧ 1
≤ 𝑋)) |
195 | 4, 153, 194 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (1[,)+∞)) |
196 | 192, 152,
195 | rspcdva 3562 |
. . . . . . . . 9
⊢ (𝜑 →
(abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵) |
197 | 86, 26 | rerpdivcld 12803 |
. . . . . . . . . 10
⊢ (𝜑 → ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∈ ℝ) |
198 | 197, 76, 35 | absdifled 15146 |
. . . . . . . . 9
⊢ (𝜑 →
((abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵 ↔ (((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∧ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ≤ ((2 · (log‘𝑋)) + 𝐵)))) |
199 | 196, 198 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) ≤
((((ψ‘𝑋) ·
(log‘𝑋)) +
Σ𝑛 ∈
(1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∧ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ≤ ((2 · (log‘𝑋)) + 𝐵))) |
200 | 199 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) −
𝐵) ≤
((((ψ‘𝑋) ·
(log‘𝑋)) +
Σ𝑛 ∈
(1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋)) |
201 | 77, 86, 26 | lemuldivd 12821 |
. . . . . . 7
⊢ (𝜑 → ((((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) ≤ (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ↔ ((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋))) |
202 | 200, 201 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) ≤ (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) |
203 | 74, 78, 84, 86, 175, 202 | le2subd 11595 |
. . . . 5
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) ≤ (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋))) |
204 | 55 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ∈
ℂ) |
205 | 85 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑋) · (log‘𝑋)) ∈
ℂ) |
206 | 73 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℂ) |
207 | 204, 205,
206 | pnpcan2d 11370 |
. . . . . 6
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) = (((ψ‘𝑌) · (log‘𝑋)) − ((ψ‘𝑋) · (log‘𝑋)))) |
208 | 13 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → (ψ‘𝑌) ∈
ℂ) |
209 | 15 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → (ψ‘𝑋) ∈
ℂ) |
210 | 27 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → (log‘𝑋) ∈
ℂ) |
211 | 208, 209,
210 | subdird 11432 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) = (((ψ‘𝑌) · (log‘𝑋)) − ((ψ‘𝑋) · (log‘𝑋)))) |
212 | 207, 211 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) = (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋))) |
213 | 76, 11 | remulcld 11005 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑌) ∈
ℝ) |
214 | 213 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑌) ∈
ℂ) |
215 | 35, 40 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝐴))) ∈ ℝ) |
216 | 215, 11 | remulcld 11005 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) ∈ ℝ) |
217 | 216 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) ∈ ℂ) |
218 | 76, 4 | remulcld 11005 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑋) ∈
ℝ) |
219 | 218 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑋) ∈
ℂ) |
220 | 35, 4 | remulcld 11005 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 · 𝑋) ∈ ℝ) |
221 | 220 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · 𝑋) ∈ ℂ) |
222 | 221 | negcld 11319 |
. . . . . . 7
⊢ (𝜑 → -(𝐵 · 𝑋) ∈ ℂ) |
223 | 214, 217,
219, 222 | addsub4d 11379 |
. . . . . 6
⊢ (𝜑 → ((((2 ·
(log‘𝑋)) ·
𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)) − (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋))) = ((((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)) + (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)))) |
224 | 38 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (log‘𝐴) ∈
ℂ) |
225 | 5, 26 | relogmuld 25780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (log‘(𝐴 · 𝑋)) = ((log‘𝐴) + (log‘𝑋))) |
226 | 224, 210,
225 | comraddd 11189 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (log‘(𝐴 · 𝑋)) = ((log‘𝑋) + (log‘𝐴))) |
227 | 226 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ·
(log‘(𝐴 ·
𝑋))) = (2 ·
((log‘𝑋) +
(log‘𝐴)))) |
228 | | 2cnd 12051 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℂ) |
229 | 228, 210,
224 | adddid 10999 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ·
((log‘𝑋) +
(log‘𝐴))) = ((2
· (log‘𝑋)) +
(2 · (log‘𝐴)))) |
230 | 227, 229 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(log‘(𝐴 ·
𝑋))) = ((2 ·
(log‘𝑋)) + (2
· (log‘𝐴)))) |
231 | 230 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) = (𝐵 + ((2 · (log‘𝑋)) + (2 · (log‘𝐴))))) |
232 | 35 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
233 | 76 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(log‘𝑋)) ∈
ℂ) |
234 | 40 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(log‘𝐴)) ∈
ℂ) |
235 | 232, 233,
234 | add12d 11201 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 + ((2 · (log‘𝑋)) + (2 · (log‘𝐴)))) = ((2 ·
(log‘𝑋)) + (𝐵 + (2 · (log‘𝐴))))) |
236 | 231, 235 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) = ((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴))))) |
237 | 236 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) = (((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))) · 𝑌)) |
238 | 215 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝐴))) ∈ ℂ) |
239 | 11 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ ℂ) |
240 | 233, 238,
239 | adddird 11000 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))) · 𝑌) = (((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌))) |
241 | 237, 240 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) = (((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌))) |
242 | 4 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ℂ) |
243 | 233, 232,
242 | subdird 11432 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) = (((2 ·
(log‘𝑋)) ·
𝑋) − (𝐵 · 𝑋))) |
244 | 219, 221 | negsubd 11338 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) ·
𝑋) + -(𝐵 · 𝑋)) = (((2 · (log‘𝑋)) · 𝑋) − (𝐵 · 𝑋))) |
245 | 243, 244 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) = (((2 ·
(log‘𝑋)) ·
𝑋) + -(𝐵 · 𝑋))) |
246 | 241, 245 | oveq12d 7293 |
. . . . . 6
⊢ (𝜑 → (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋)) = ((((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)) − (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋)))) |
247 | 30 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℂ) |
248 | 228, 247,
210 | mul32d 11185 |
. . . . . . . 8
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) · (log‘𝑋)) = ((2 · (log‘𝑋)) · (𝑌 − 𝑋))) |
249 | 233, 239,
242 | subdid 11431 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
(𝑌 − 𝑋)) = (((2 ·
(log‘𝑋)) ·
𝑌) − ((2 ·
(log‘𝑋)) ·
𝑋))) |
250 | 248, 249 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) · (log‘𝑋)) = (((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋))) |
251 | 35, 11 | remulcld 11005 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 · 𝑌) ∈ ℝ) |
252 | 251 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 · 𝑌) ∈ ℂ) |
253 | 41 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ∈
ℂ) |
254 | 252, 221,
253 | add32d 11202 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐵 · 𝑌) + (𝐵 · 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌)) + (𝐵 · 𝑋))) |
255 | 232, 239,
242 | adddid 10999 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) = ((𝐵 · 𝑌) + (𝐵 · 𝑋))) |
256 | 255 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 · 𝑌) + (𝐵 · 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) |
257 | 232, 234,
239 | adddird 11000 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) = ((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌))) |
258 | 257 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋)) = (((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌)) + (𝐵 · 𝑋))) |
259 | 254, 256,
258 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋))) |
260 | 217, 221 | subnegd 11339 |
. . . . . . . 8
⊢ (𝜑 → (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋))) |
261 | 259, 260 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋))) |
262 | 250, 261 | oveq12d 7293 |
. . . . . 6
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) = ((((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)) + (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)))) |
263 | 223, 246,
262 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋)) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)))) |
264 | 203, 212,
263 | 3brtr3d 5105 |
. . . 4
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)))) |
265 | 47, 4 | remulcld 11005 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) · 𝑋) ∈ ℝ) |
266 | 50, 4 | remulcld 11005 |
. . . . . . 7
⊢ (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) ∈ ℝ) |
267 | 11, 7, 4, 162 | leadd1dd 11589 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 + 𝑋) ≤ ((𝐴 · 𝑋) + 𝑋)) |
268 | 6 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
269 | 268, 242 | adddirp1d 11001 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 1) · 𝑋) = ((𝐴 · 𝑋) + 𝑋)) |
270 | 267, 269 | breqtrrd 5102 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 + 𝑋) ≤ ((𝐴 + 1) · 𝑋)) |
271 | 46, 4 | remulcld 11005 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 1) · 𝑋) ∈ ℝ) |
272 | 36, 271, 34 | lemul2d 12816 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑌 + 𝑋) ≤ ((𝐴 + 1) · 𝑋) ↔ (𝐵 · (𝑌 + 𝑋)) ≤ (𝐵 · ((𝐴 + 1) · 𝑋)))) |
273 | 270, 272 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) ≤ (𝐵 · ((𝐴 + 1) · 𝑋))) |
274 | 46 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
275 | 232, 274,
242 | mulassd 10998 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) · 𝑋) = (𝐵 · ((𝐴 + 1) · 𝑋))) |
276 | 273, 275 | breqtrrd 5102 |
. . . . . . 7
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) ≤ ((𝐵 · (𝐴 + 1)) · 𝑋)) |
277 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℝ) |
278 | | 0le2 12075 |
. . . . . . . . . . 11
⊢ 0 ≤
2 |
279 | 278 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 2) |
280 | | log1 25741 |
. . . . . . . . . . 11
⊢
(log‘1) = 0 |
281 | | chpdifbnd.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝐴) |
282 | | 1rp 12734 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
283 | | logleb 25758 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (1 ≤
𝐴 ↔ (log‘1) ≤
(log‘𝐴))) |
284 | 282, 5, 283 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴))) |
285 | 281, 284 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (log‘1) ≤
(log‘𝐴)) |
286 | 280, 285 | eqbrtrrid 5110 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (log‘𝐴)) |
287 | 277, 38, 279, 286 | mulge0d 11552 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (2 ·
(log‘𝐴))) |
288 | 11, 7, 40, 287, 162 | lemul2ad 11915 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ≤ ((2 ·
(log‘𝐴)) ·
(𝐴 · 𝑋))) |
289 | 49 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝐴) ∈
ℂ) |
290 | 289, 224,
242 | mulassd 10998 |
. . . . . . . . 9
⊢ (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) = ((2 · 𝐴) · ((log‘𝐴) · 𝑋))) |
291 | 228, 268,
224, 242 | mul4d 11187 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝐴) · ((log‘𝐴) · 𝑋)) = ((2 · (log‘𝐴)) · (𝐴 · 𝑋))) |
292 | 290, 291 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) = ((2 · (log‘𝐴)) · (𝐴 · 𝑋))) |
293 | 288, 292 | breqtrrd 5102 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ≤ (((2 · 𝐴) · (log‘𝐴)) · 𝑋)) |
294 | 37, 41, 265, 266, 276, 293 | le2addd 11594 |
. . . . . 6
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ≤ (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋))) |
295 | 44 | oveq1i 7285 |
. . . . . . 7
⊢ (𝐶 · 𝑋) = (((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) · 𝑋) |
296 | 47 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℂ) |
297 | 50 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈
ℂ) |
298 | 296, 297,
242 | adddird 11000 |
. . . . . . 7
⊢ (𝜑 → (((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) · 𝑋) = (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋))) |
299 | 295, 298 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → (𝐶 · 𝑋) = (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋))) |
300 | 294, 299 | breqtrrd 5102 |
. . . . 5
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ≤ (𝐶 · 𝑋)) |
301 | 42, 53, 33, 300 | leadd2dd 11590 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) ≤ (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
302 | 28, 43, 54, 264, 301 | letrd 11132 |
. . 3
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
303 | 32 | recnd 11003 |
. . . . 5
⊢ (𝜑 → (2 · (𝑌 − 𝑋)) ∈ ℂ) |
304 | 4, 24 | rplogcld 25784 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑋) ∈
ℝ+) |
305 | 4, 304 | rerpdivcld 12803 |
. . . . . . 7
⊢ (𝜑 → (𝑋 / (log‘𝑋)) ∈ ℝ) |
306 | 52, 305 | remulcld 11005 |
. . . . . 6
⊢ (𝜑 → (𝐶 · (𝑋 / (log‘𝑋))) ∈ ℝ) |
307 | 306 | recnd 11003 |
. . . . 5
⊢ (𝜑 → (𝐶 · (𝑋 / (log‘𝑋))) ∈ ℂ) |
308 | 303, 307,
210 | adddird 11000 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)))) |
309 | 52 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
310 | 305 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → (𝑋 / (log‘𝑋)) ∈ ℂ) |
311 | 309, 310,
210 | mulassd 10998 |
. . . . . 6
⊢ (𝜑 → ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)) = (𝐶 · ((𝑋 / (log‘𝑋)) · (log‘𝑋)))) |
312 | 304 | rpne0d 12777 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑋) ≠ 0) |
313 | 242, 210,
312 | divcan1d 11752 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 / (log‘𝑋)) · (log‘𝑋)) = 𝑋) |
314 | 313 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (𝐶 · ((𝑋 / (log‘𝑋)) · (log‘𝑋))) = (𝐶 · 𝑋)) |
315 | 311, 314 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)) = (𝐶 · 𝑋)) |
316 | 315 | oveq2d 7291 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋))) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
317 | 308, 316 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
318 | 302, 317 | breqtrrd 5102 |
. 2
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋))) |
319 | 32, 306 | readdcld 11004 |
. . 3
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) ∈ ℝ) |
320 | 16, 319, 304 | lemul1d 12815 |
. 2
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) ↔ (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)))) |
321 | 318, 320 | mpbird 256 |
1
⊢ (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋))))) |