| Step | Hyp | Ref
| Expression |
| 1 | | chpdifbnd.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (𝑋[,](𝐴 · 𝑋))) |
| 2 | | ioossre 13429 |
. . . . . . . . . . 11
⊢
(1(,)+∞) ⊆ ℝ |
| 3 | | chpdifbnd.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (1(,)+∞)) |
| 4 | 2, 3 | sselid 3961 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 5 | | chpdifbnd.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 6 | 5 | rpred 13056 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 7 | 6, 4 | remulcld 11270 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 · 𝑋) ∈ ℝ) |
| 8 | | elicc2 13433 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℝ ∧ (𝐴 · 𝑋) ∈ ℝ) → (𝑌 ∈ (𝑋[,](𝐴 · 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐴 · 𝑋)))) |
| 9 | 4, 7, 8 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ (𝑋[,](𝐴 · 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐴 · 𝑋)))) |
| 10 | 1, 9 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐴 · 𝑋))) |
| 11 | 10 | simp1d 1142 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 12 | | chpcl 27091 |
. . . . . . 7
⊢ (𝑌 ∈ ℝ →
(ψ‘𝑌) ∈
ℝ) |
| 13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ψ‘𝑌) ∈
ℝ) |
| 14 | | chpcl 27091 |
. . . . . . 7
⊢ (𝑋 ∈ ℝ →
(ψ‘𝑋) ∈
ℝ) |
| 15 | 4, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ψ‘𝑋) ∈
ℝ) |
| 16 | 13, 15 | resubcld 11670 |
. . . . 5
⊢ (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ∈
ℝ) |
| 17 | | 0red 11243 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
| 18 | | 1re 11240 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 20 | | 0lt1 11764 |
. . . . . . . . 9
⊢ 0 <
1 |
| 21 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 < 1) |
| 22 | | eliooord 13427 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (1(,)+∞) → (1
< 𝑋 ∧ 𝑋 <
+∞)) |
| 23 | 3, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1 < 𝑋 ∧ 𝑋 < +∞)) |
| 24 | 23 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 1 < 𝑋) |
| 25 | 17, 19, 4, 21, 24 | lttrd 11401 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝑋) |
| 26 | 4, 25 | elrpd 13053 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
| 27 | 26 | relogcld 26589 |
. . . . 5
⊢ (𝜑 → (log‘𝑋) ∈
ℝ) |
| 28 | 16, 27 | remulcld 11270 |
. . . 4
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ∈
ℝ) |
| 29 | | 2re 12319 |
. . . . . . 7
⊢ 2 ∈
ℝ |
| 30 | 11, 4 | resubcld 11670 |
. . . . . . 7
⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℝ) |
| 31 | | remulcl 11219 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ (𝑌
− 𝑋) ∈ ℝ)
→ (2 · (𝑌
− 𝑋)) ∈
ℝ) |
| 32 | 29, 30, 31 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (2 · (𝑌 − 𝑋)) ∈ ℝ) |
| 33 | 32, 27 | remulcld 11270 |
. . . . 5
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) · (log‘𝑋)) ∈ ℝ) |
| 34 | | chpdifbnd.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
| 35 | 34 | rpred 13056 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 36 | 11, 4 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → (𝑌 + 𝑋) ∈ ℝ) |
| 37 | 35, 36 | remulcld 11270 |
. . . . . 6
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) ∈ ℝ) |
| 38 | 5 | relogcld 26589 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) |
| 39 | | remulcl 11219 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 ·
(log‘𝐴)) ∈
ℝ) |
| 40 | 29, 38, 39 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (2 ·
(log‘𝐴)) ∈
ℝ) |
| 41 | 40, 11 | remulcld 11270 |
. . . . . 6
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ∈
ℝ) |
| 42 | 37, 41 | readdcld 11269 |
. . . . 5
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ∈ ℝ) |
| 43 | 33, 42 | readdcld 11269 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) ∈ ℝ) |
| 44 | | chpdifbnd.c |
. . . . . . 7
⊢ 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) |
| 45 | | peano2re 11413 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) |
| 46 | 6, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
| 47 | 35, 46 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ) |
| 48 | | remulcl 11219 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ 𝐴
∈ ℝ) → (2 · 𝐴) ∈ ℝ) |
| 49 | 29, 6, 48 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (2 · 𝐴) ∈
ℝ) |
| 50 | 49, 38 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈
ℝ) |
| 51 | 47, 50 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ) |
| 52 | 44, 51 | eqeltrid 2839 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 53 | 52, 4 | remulcld 11270 |
. . . . 5
⊢ (𝜑 → (𝐶 · 𝑋) ∈ ℝ) |
| 54 | 33, 53 | readdcld 11269 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋)) ∈ ℝ) |
| 55 | 13, 27 | remulcld 11270 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ∈
ℝ) |
| 56 | | fzfid 13996 |
. . . . . . . 8
⊢ (𝜑 → (1...(⌊‘𝑋)) ∈ Fin) |
| 57 | 10 | simp2d 1143 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| 58 | | flword2 13835 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌) → (⌊‘𝑌) ∈
(ℤ≥‘(⌊‘𝑋))) |
| 59 | 4, 11, 57, 58 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → (⌊‘𝑌) ∈
(ℤ≥‘(⌊‘𝑋))) |
| 60 | | fzss2 13586 |
. . . . . . . . . . 11
⊢
((⌊‘𝑌)
∈ (ℤ≥‘(⌊‘𝑋)) → (1...(⌊‘𝑋)) ⊆
(1...(⌊‘𝑌))) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1...(⌊‘𝑋)) ⊆
(1...(⌊‘𝑌))) |
| 62 | 61 | sselda 3963 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → 𝑛 ∈ (1...(⌊‘𝑌))) |
| 63 | | elfznn 13575 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑌))
→ 𝑛 ∈
ℕ) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑛 ∈ ℕ) |
| 65 | | vmacl 27085 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
| 66 | 64, 65 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (Λ‘𝑛) ∈
ℝ) |
| 67 | | nndivre 12286 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑋 / 𝑛) ∈ ℝ) |
| 68 | 4, 63, 67 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (𝑋 / 𝑛) ∈ ℝ) |
| 69 | | chpcl 27091 |
. . . . . . . . . . 11
⊢ ((𝑋 / 𝑛) ∈ ℝ → (ψ‘(𝑋 / 𝑛)) ∈ ℝ) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑋 / 𝑛)) ∈ ℝ) |
| 71 | 66, 70 | remulcld 11270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
| 72 | 62, 71 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
| 73 | 56, 72 | fsumrecl 15755 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
| 74 | 55, 73 | readdcld 11269 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ∈ ℝ) |
| 75 | | remulcl 11219 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ (log‘𝑋) ∈ ℝ) → (2 ·
(log‘𝑋)) ∈
ℝ) |
| 76 | 29, 27, 75 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (2 ·
(log‘𝑋)) ∈
ℝ) |
| 77 | 76, 35 | resubcld 11670 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) −
𝐵) ∈
ℝ) |
| 78 | 77, 4 | remulcld 11270 |
. . . . . 6
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) ∈
ℝ) |
| 79 | 5, 26 | rpmulcld 13072 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 · 𝑋) ∈
ℝ+) |
| 80 | 79 | relogcld 26589 |
. . . . . . . . 9
⊢ (𝜑 → (log‘(𝐴 · 𝑋)) ∈ ℝ) |
| 81 | | remulcl 11219 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ (log‘(𝐴 · 𝑋)) ∈ ℝ) → (2 ·
(log‘(𝐴 ·
𝑋))) ∈
ℝ) |
| 82 | 29, 80, 81 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (2 ·
(log‘(𝐴 ·
𝑋))) ∈
ℝ) |
| 83 | 35, 82 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) ∈ ℝ) |
| 84 | 83, 11 | remulcld 11270 |
. . . . . 6
⊢ (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) ∈ ℝ) |
| 85 | 15, 27 | remulcld 11270 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑋) · (log‘𝑋)) ∈
ℝ) |
| 86 | 85, 73 | readdcld 11269 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ∈ ℝ) |
| 87 | 17, 4, 11, 25, 57 | ltletrd 11400 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < 𝑌) |
| 88 | 11, 87 | elrpd 13053 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
| 89 | 88 | relogcld 26589 |
. . . . . . . . 9
⊢ (𝜑 → (log‘𝑌) ∈
ℝ) |
| 90 | 13, 89 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑌)) ∈
ℝ) |
| 91 | | fzfid 13996 |
. . . . . . . . 9
⊢ (𝜑 → (1...(⌊‘𝑌)) ∈ Fin) |
| 92 | | nndivre 12286 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑌 / 𝑛) ∈ ℝ) |
| 93 | 11, 63, 92 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (𝑌 / 𝑛) ∈ ℝ) |
| 94 | | chpcl 27091 |
. . . . . . . . . . 11
⊢ ((𝑌 / 𝑛) ∈ ℝ → (ψ‘(𝑌 / 𝑛)) ∈ ℝ) |
| 95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑌 / 𝑛)) ∈ ℝ) |
| 96 | 66, 95 | remulcld 11270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))) ∈ ℝ) |
| 97 | 91, 96 | fsumrecl 15755 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))) ∈ ℝ) |
| 98 | 90, 97 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ∈ ℝ) |
| 99 | | chpge0 27093 |
. . . . . . . . . 10
⊢ (𝑌 ∈ ℝ → 0 ≤
(ψ‘𝑌)) |
| 100 | 11, 99 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (ψ‘𝑌)) |
| 101 | 26, 88 | logled 26593 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (log‘𝑋) ≤ (log‘𝑌))) |
| 102 | 57, 101 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (log‘𝑋) ≤ (log‘𝑌)) |
| 103 | 27, 89, 13, 100, 102 | lemul2ad 12187 |
. . . . . . . 8
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ≤ ((ψ‘𝑌) · (log‘𝑌))) |
| 104 | 91, 71 | fsumrecl 15755 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℝ) |
| 105 | | vmage0 27088 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 0 ≤
(Λ‘𝑛)) |
| 106 | 64, 105 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ (Λ‘𝑛)) |
| 107 | | chpge0 27093 |
. . . . . . . . . . . 12
⊢ ((𝑋 / 𝑛) ∈ ℝ → 0 ≤
(ψ‘(𝑋 / 𝑛))) |
| 108 | 68, 107 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ (ψ‘(𝑋 / 𝑛))) |
| 109 | 66, 70, 106, 108 | mulge0d 11819 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 0 ≤ ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
| 110 | 91, 71, 109, 61 | fsumless 15817 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
| 111 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑋 ∈ ℝ) |
| 112 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑌 ∈ ℝ) |
| 113 | 64 | nnrpd 13054 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑛 ∈ ℝ+) |
| 114 | 57 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑋 ≤ 𝑌) |
| 115 | 111, 112,
113, 114 | lediv1dd 13114 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (𝑋 / 𝑛) ≤ (𝑌 / 𝑛)) |
| 116 | | chpwordi 27124 |
. . . . . . . . . . . 12
⊢ (((𝑋 / 𝑛) ∈ ℝ ∧ (𝑌 / 𝑛) ∈ ℝ ∧ (𝑋 / 𝑛) ≤ (𝑌 / 𝑛)) → (ψ‘(𝑋 / 𝑛)) ≤ (ψ‘(𝑌 / 𝑛))) |
| 117 | 68, 93, 115, 116 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑋 / 𝑛)) ≤ (ψ‘(𝑌 / 𝑛))) |
| 118 | 70, 95, 66, 106, 117 | lemul2ad 12187 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
| 119 | 91, 71, 96, 118 | fsumle 15820 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
| 120 | 73, 104, 97, 110, 119 | letrd 11397 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
| 121 | 55, 73, 90, 97, 103, 120 | le2addd 11861 |
. . . . . . 7
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ≤ (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))) |
| 122 | 98, 88 | rerpdivcld 13087 |
. . . . . . . . 9
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ∈ ℝ) |
| 123 | | remulcl 11219 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 ·
(log‘𝑌)) ∈
ℝ) |
| 124 | 29, 89, 123 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (2 ·
(log‘𝑌)) ∈
ℝ) |
| 125 | 35, 124 | readdcld 11269 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝑌))) ∈ ℝ) |
| 126 | 122, 124 | resubcld 11670 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ∈
ℝ) |
| 127 | 126 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ∈
ℂ) |
| 128 | 127 | abscld 15460 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ∈
ℝ) |
| 129 | 126 | leabsd 15438 |
. . . . . . . . . . 11
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))))) |
| 130 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑌 → (ψ‘𝑧) = (ψ‘𝑌)) |
| 131 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑌 → (log‘𝑧) = (log‘𝑌)) |
| 132 | 130, 131 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑌 → ((ψ‘𝑧) · (log‘𝑧)) = ((ψ‘𝑌) · (log‘𝑌))) |
| 133 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (Λ‘𝑚) = (Λ‘𝑛)) |
| 134 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛)) |
| 135 | 134 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (ψ‘(𝑧 / 𝑚)) = (ψ‘(𝑧 / 𝑛))) |
| 136 | 133, 135 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → ((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛)))) |
| 137 | 136 | cbvsumv 15717 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑚 ∈
(1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) |
| 138 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑌 → (⌊‘𝑧) = (⌊‘𝑌)) |
| 139 | 138 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑌 → (1...(⌊‘𝑧)) = (1...(⌊‘𝑌))) |
| 140 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 = 𝑌 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → 𝑧 = 𝑌) |
| 141 | 140 | fvoveq1d 7432 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 = 𝑌 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → (ψ‘(𝑧 / 𝑛)) = (ψ‘(𝑌 / 𝑛))) |
| 142 | 141 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = 𝑌 ∧ 𝑛 ∈ (1...(⌊‘𝑌))) → ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = ((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
| 143 | 139, 142 | sumeq12rdv 15728 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑌 → Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
| 144 | 137, 143 | eqtrid 2783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑌 → Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) |
| 145 | 132, 144 | oveq12d 7428 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑌 → (((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) = (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛))))) |
| 146 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑌 → 𝑧 = 𝑌) |
| 147 | 145, 146 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑌 → ((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) = ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌)) |
| 148 | 131 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑌 → (2 · (log‘𝑧)) = (2 ·
(log‘𝑌))) |
| 149 | 147, 148 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑌 → (((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧))) = (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) |
| 150 | 149 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑌 → (abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) =
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))))) |
| 151 | 150 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑌 → ((abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵 ↔ (abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ≤ 𝐵)) |
| 152 | | chpdifbnd.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈
(1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵) |
| 153 | 19, 4, 24 | ltled 11388 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≤ 𝑋) |
| 154 | 19, 4, 11, 153, 57 | letrd 11397 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≤ 𝑌) |
| 155 | | elicopnf 13467 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ → (𝑌 ∈
(1[,)+∞) ↔ (𝑌
∈ ℝ ∧ 1 ≤ 𝑌))) |
| 156 | 18, 155 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (1[,)+∞) ↔
(𝑌 ∈ ℝ ∧ 1
≤ 𝑌)) |
| 157 | 11, 154, 156 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (1[,)+∞)) |
| 158 | 151, 152,
157 | rspcdva 3607 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌)))) ≤ 𝐵) |
| 159 | 126, 128,
35, 129, 158 | letrd 11397 |
. . . . . . . . . 10
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤ 𝐵) |
| 160 | 122, 124,
35 | lesubaddd 11839 |
. . . . . . . . . 10
⊢ (𝜑 → ((((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) − (2 · (log‘𝑌))) ≤ 𝐵 ↔ ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘𝑌))))) |
| 161 | 159, 160 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘𝑌)))) |
| 162 | 10 | simp3d 1144 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ≤ (𝐴 · 𝑋)) |
| 163 | 88, 79 | logled 26593 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌 ≤ (𝐴 · 𝑋) ↔ (log‘𝑌) ≤ (log‘(𝐴 · 𝑋)))) |
| 164 | 162, 163 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝜑 → (log‘𝑌) ≤ (log‘(𝐴 · 𝑋))) |
| 165 | | 2pos 12348 |
. . . . . . . . . . . . . 14
⊢ 0 <
2 |
| 166 | 29, 165 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 167 | 166 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ∈ ℝ ∧ 0
< 2)) |
| 168 | | lemul2 12099 |
. . . . . . . . . . . 12
⊢
(((log‘𝑌)
∈ ℝ ∧ (log‘(𝐴 · 𝑋)) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((log‘𝑌) ≤ (log‘(𝐴 · 𝑋)) ↔ (2 · (log‘𝑌)) ≤ (2 ·
(log‘(𝐴 ·
𝑋))))) |
| 169 | 89, 80, 167, 168 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝑌) ≤ (log‘(𝐴 · 𝑋)) ↔ (2 · (log‘𝑌)) ≤ (2 ·
(log‘(𝐴 ·
𝑋))))) |
| 170 | 164, 169 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (2 ·
(log‘𝑌)) ≤ (2
· (log‘(𝐴
· 𝑋)))) |
| 171 | 124, 82, 35, 170 | leadd2dd 11857 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝑌))) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋))))) |
| 172 | 122, 125,
83, 161, 171 | letrd 11397 |
. . . . . . . 8
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋))))) |
| 173 | 98, 83, 88 | ledivmul2d 13110 |
. . . . . . . 8
⊢ (𝜑 → (((((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) / 𝑌) ≤ (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) ↔ (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌))) |
| 174 | 172, 173 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑌)) + Σ𝑛 ∈ (1...(⌊‘𝑌))((Λ‘𝑛) · (ψ‘(𝑌 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌)) |
| 175 | 74, 98, 84, 121, 174 | letrd 11397 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ≤ ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌)) |
| 176 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑋 → (ψ‘𝑧) = (ψ‘𝑋)) |
| 177 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑋 → (log‘𝑧) = (log‘𝑋)) |
| 178 | 176, 177 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑋 → ((ψ‘𝑧) · (log‘𝑧)) = ((ψ‘𝑋) · (log‘𝑋))) |
| 179 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑋 → (⌊‘𝑧) = (⌊‘𝑋)) |
| 180 | 179 | oveq2d 7426 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑋 → (1...(⌊‘𝑧)) = (1...(⌊‘𝑋))) |
| 181 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = 𝑋 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → 𝑧 = 𝑋) |
| 182 | 181 | fvoveq1d 7432 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = 𝑋 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → (ψ‘(𝑧 / 𝑛)) = (ψ‘(𝑋 / 𝑛))) |
| 183 | 182 | oveq2d 7426 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = 𝑋 ∧ 𝑛 ∈ (1...(⌊‘𝑋))) → ((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = ((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
| 184 | 180, 183 | sumeq12rdv 15728 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑋 → Σ𝑛 ∈ (1...(⌊‘𝑧))((Λ‘𝑛) · (ψ‘(𝑧 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
| 185 | 137, 184 | eqtrid 2783 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑋 → Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) |
| 186 | 178, 185 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑋 → (((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) = (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) |
| 187 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑋 → 𝑧 = 𝑋) |
| 188 | 186, 187 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑋 → ((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) = ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋)) |
| 189 | 177 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑋 → (2 · (log‘𝑧)) = (2 ·
(log‘𝑋))) |
| 190 | 188, 189 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑋 → (((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧))) = (((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) |
| 191 | 190 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑋 → (abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) =
(abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋))))) |
| 192 | 191 | breq1d 5134 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑋 → ((abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵 ↔ (abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵)) |
| 193 | | elicopnf 13467 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℝ → (𝑋 ∈
(1[,)+∞) ↔ (𝑋
∈ ℝ ∧ 1 ≤ 𝑋))) |
| 194 | 18, 193 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (1[,)+∞) ↔
(𝑋 ∈ ℝ ∧ 1
≤ 𝑋)) |
| 195 | 4, 153, 194 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (1[,)+∞)) |
| 196 | 192, 152,
195 | rspcdva 3607 |
. . . . . . . . 9
⊢ (𝜑 →
(abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵) |
| 197 | 86, 26 | rerpdivcld 13087 |
. . . . . . . . . 10
⊢ (𝜑 → ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∈ ℝ) |
| 198 | 197, 76, 35 | absdifled 15458 |
. . . . . . . . 9
⊢ (𝜑 →
((abs‘(((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) − (2 · (log‘𝑋)))) ≤ 𝐵 ↔ (((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∧ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ≤ ((2 · (log‘𝑋)) + 𝐵)))) |
| 199 | 196, 198 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) ≤
((((ψ‘𝑋) ·
(log‘𝑋)) +
Σ𝑛 ∈
(1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ∧ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋) ≤ ((2 · (log‘𝑋)) + 𝐵))) |
| 200 | 199 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) −
𝐵) ≤
((((ψ‘𝑋) ·
(log‘𝑋)) +
Σ𝑛 ∈
(1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋)) |
| 201 | 77, 86, 26 | lemuldivd 13105 |
. . . . . . 7
⊢ (𝜑 → ((((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) ≤ (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) ↔ ((2 · (log‘𝑋)) − 𝐵) ≤ ((((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) / 𝑋))) |
| 202 | 200, 201 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) ≤ (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) |
| 203 | 74, 78, 84, 86, 175, 202 | le2subd 11862 |
. . . . 5
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) ≤ (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋))) |
| 204 | 55 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑌) · (log‘𝑋)) ∈
ℂ) |
| 205 | 85 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → ((ψ‘𝑋) · (log‘𝑋)) ∈
ℂ) |
| 206 | 73 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))) ∈ ℂ) |
| 207 | 204, 205,
206 | pnpcan2d 11637 |
. . . . . 6
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) = (((ψ‘𝑌) · (log‘𝑋)) − ((ψ‘𝑋) · (log‘𝑋)))) |
| 208 | 13 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → (ψ‘𝑌) ∈
ℂ) |
| 209 | 15 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → (ψ‘𝑋) ∈
ℂ) |
| 210 | 27 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → (log‘𝑋) ∈
ℂ) |
| 211 | 208, 209,
210 | subdird 11699 |
. . . . . 6
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) = (((ψ‘𝑌) · (log‘𝑋)) − ((ψ‘𝑋) · (log‘𝑋)))) |
| 212 | 207, 211 | eqtr4d 2774 |
. . . . 5
⊢ (𝜑 → ((((ψ‘𝑌) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛)))) − (((ψ‘𝑋) · (log‘𝑋)) + Σ𝑛 ∈ (1...(⌊‘𝑋))((Λ‘𝑛) · (ψ‘(𝑋 / 𝑛))))) = (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋))) |
| 213 | 76, 11 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑌) ∈
ℝ) |
| 214 | 213 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑌) ∈
ℂ) |
| 215 | 35, 40 | readdcld 11269 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝐴))) ∈ ℝ) |
| 216 | 215, 11 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) ∈ ℝ) |
| 217 | 216 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) ∈ ℂ) |
| 218 | 76, 4 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑋) ∈
ℝ) |
| 219 | 218 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
𝑋) ∈
ℂ) |
| 220 | 35, 4 | remulcld 11270 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 · 𝑋) ∈ ℝ) |
| 221 | 220 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · 𝑋) ∈ ℂ) |
| 222 | 221 | negcld 11586 |
. . . . . . 7
⊢ (𝜑 → -(𝐵 · 𝑋) ∈ ℂ) |
| 223 | 214, 217,
219, 222 | addsub4d 11646 |
. . . . . 6
⊢ (𝜑 → ((((2 ·
(log‘𝑋)) ·
𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)) − (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋))) = ((((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)) + (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)))) |
| 224 | 38 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (log‘𝐴) ∈
ℂ) |
| 225 | 5, 26 | relogmuld 26591 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (log‘(𝐴 · 𝑋)) = ((log‘𝐴) + (log‘𝑋))) |
| 226 | 224, 210,
225 | comraddd 11454 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (log‘(𝐴 · 𝑋)) = ((log‘𝑋) + (log‘𝐴))) |
| 227 | 226 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ·
(log‘(𝐴 ·
𝑋))) = (2 ·
((log‘𝑋) +
(log‘𝐴)))) |
| 228 | | 2cnd 12323 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℂ) |
| 229 | 228, 210,
224 | adddid 11264 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 ·
((log‘𝑋) +
(log‘𝐴))) = ((2
· (log‘𝑋)) +
(2 · (log‘𝐴)))) |
| 230 | 227, 229 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(log‘(𝐴 ·
𝑋))) = ((2 ·
(log‘𝑋)) + (2
· (log‘𝐴)))) |
| 231 | 230 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) = (𝐵 + ((2 · (log‘𝑋)) + (2 · (log‘𝐴))))) |
| 232 | 35 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 233 | 76 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(log‘𝑋)) ∈
ℂ) |
| 234 | 40 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(log‘𝐴)) ∈
ℂ) |
| 235 | 232, 233,
234 | add12d 11467 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 + ((2 · (log‘𝑋)) + (2 · (log‘𝐴)))) = ((2 ·
(log‘𝑋)) + (𝐵 + (2 · (log‘𝐴))))) |
| 236 | 231, 235 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘(𝐴 · 𝑋)))) = ((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴))))) |
| 237 | 236 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) = (((2 · (log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))) · 𝑌)) |
| 238 | 215 | recnd 11268 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (2 · (log‘𝐴))) ∈ ℂ) |
| 239 | 11 | recnd 11268 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 240 | 233, 238,
239 | adddird 11265 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) + (𝐵 + (2 · (log‘𝐴)))) · 𝑌) = (((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌))) |
| 241 | 237, 240 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) = (((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌))) |
| 242 | 4 | recnd 11268 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 243 | 233, 232,
242 | subdird 11699 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) = (((2 ·
(log‘𝑋)) ·
𝑋) − (𝐵 · 𝑋))) |
| 244 | 219, 221 | negsubd 11605 |
. . . . . . . 8
⊢ (𝜑 → (((2 ·
(log‘𝑋)) ·
𝑋) + -(𝐵 · 𝑋)) = (((2 · (log‘𝑋)) · 𝑋) − (𝐵 · 𝑋))) |
| 245 | 243, 244 | eqtr4d 2774 |
. . . . . . 7
⊢ (𝜑 → (((2 ·
(log‘𝑋)) −
𝐵) · 𝑋) = (((2 ·
(log‘𝑋)) ·
𝑋) + -(𝐵 · 𝑋))) |
| 246 | 241, 245 | oveq12d 7428 |
. . . . . 6
⊢ (𝜑 → (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋)) = ((((2 · (log‘𝑋)) · 𝑌) + ((𝐵 + (2 · (log‘𝐴))) · 𝑌)) − (((2 · (log‘𝑋)) · 𝑋) + -(𝐵 · 𝑋)))) |
| 247 | 30 | recnd 11268 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℂ) |
| 248 | 228, 247,
210 | mul32d 11450 |
. . . . . . . 8
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) · (log‘𝑋)) = ((2 · (log‘𝑋)) · (𝑌 − 𝑋))) |
| 249 | 233, 239,
242 | subdid 11698 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝑋)) ·
(𝑌 − 𝑋)) = (((2 ·
(log‘𝑋)) ·
𝑌) − ((2 ·
(log‘𝑋)) ·
𝑋))) |
| 250 | 248, 249 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) · (log‘𝑋)) = (((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋))) |
| 251 | 35, 11 | remulcld 11270 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 · 𝑌) ∈ ℝ) |
| 252 | 251 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 · 𝑌) ∈ ℂ) |
| 253 | 41 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ∈
ℂ) |
| 254 | 252, 221,
253 | add32d 11468 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐵 · 𝑌) + (𝐵 · 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌)) + (𝐵 · 𝑋))) |
| 255 | 232, 239,
242 | adddid 11264 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) = ((𝐵 · 𝑌) + (𝐵 · 𝑋))) |
| 256 | 255 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 · 𝑌) + (𝐵 · 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) |
| 257 | 232, 234,
239 | adddird 11265 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 + (2 · (log‘𝐴))) · 𝑌) = ((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌))) |
| 258 | 257 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋)) = (((𝐵 · 𝑌) + ((2 · (log‘𝐴)) · 𝑌)) + (𝐵 · 𝑋))) |
| 259 | 254, 256,
258 | 3eqtr4d 2781 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋))) |
| 260 | 217, 221 | subnegd 11606 |
. . . . . . . 8
⊢ (𝜑 → (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) + (𝐵 · 𝑋))) |
| 261 | 259, 260 | eqtr4d 2774 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) = (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋))) |
| 262 | 250, 261 | oveq12d 7428 |
. . . . . 6
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) = ((((2 · (log‘𝑋)) · 𝑌) − ((2 · (log‘𝑋)) · 𝑋)) + (((𝐵 + (2 · (log‘𝐴))) · 𝑌) − -(𝐵 · 𝑋)))) |
| 263 | 223, 246,
262 | 3eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (((𝐵 + (2 · (log‘(𝐴 · 𝑋)))) · 𝑌) − (((2 · (log‘𝑋)) − 𝐵) · 𝑋)) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)))) |
| 264 | 203, 212,
263 | 3brtr3d 5155 |
. . . 4
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)))) |
| 265 | 47, 4 | remulcld 11270 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) · 𝑋) ∈ ℝ) |
| 266 | 50, 4 | remulcld 11270 |
. . . . . . 7
⊢ (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) ∈ ℝ) |
| 267 | 11, 7, 4, 162 | leadd1dd 11856 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 + 𝑋) ≤ ((𝐴 · 𝑋) + 𝑋)) |
| 268 | 6 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 269 | 268, 242 | adddirp1d 11266 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 1) · 𝑋) = ((𝐴 · 𝑋) + 𝑋)) |
| 270 | 267, 269 | breqtrrd 5152 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 + 𝑋) ≤ ((𝐴 + 1) · 𝑋)) |
| 271 | 46, 4 | remulcld 11270 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 1) · 𝑋) ∈ ℝ) |
| 272 | 36, 271, 34 | lemul2d 13100 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑌 + 𝑋) ≤ ((𝐴 + 1) · 𝑋) ↔ (𝐵 · (𝑌 + 𝑋)) ≤ (𝐵 · ((𝐴 + 1) · 𝑋)))) |
| 273 | 270, 272 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) ≤ (𝐵 · ((𝐴 + 1) · 𝑋))) |
| 274 | 46 | recnd 11268 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
| 275 | 232, 274,
242 | mulassd 11263 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) · 𝑋) = (𝐵 · ((𝐴 + 1) · 𝑋))) |
| 276 | 273, 275 | breqtrrd 5152 |
. . . . . . 7
⊢ (𝜑 → (𝐵 · (𝑌 + 𝑋)) ≤ ((𝐵 · (𝐴 + 1)) · 𝑋)) |
| 277 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℝ) |
| 278 | | 0le2 12347 |
. . . . . . . . . . 11
⊢ 0 ≤
2 |
| 279 | 278 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 2) |
| 280 | | log1 26551 |
. . . . . . . . . . 11
⊢
(log‘1) = 0 |
| 281 | | chpdifbnd.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 𝐴) |
| 282 | | 1rp 13017 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
| 283 | | logleb 26569 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (1 ≤
𝐴 ↔ (log‘1) ≤
(log‘𝐴))) |
| 284 | 282, 5, 283 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴))) |
| 285 | 281, 284 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝜑 → (log‘1) ≤
(log‘𝐴)) |
| 286 | 280, 285 | eqbrtrrid 5160 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (log‘𝐴)) |
| 287 | 277, 38, 279, 286 | mulge0d 11819 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (2 ·
(log‘𝐴))) |
| 288 | 11, 7, 40, 287, 162 | lemul2ad 12187 |
. . . . . . . 8
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ≤ ((2 ·
(log‘𝐴)) ·
(𝐴 · 𝑋))) |
| 289 | 49 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝐴) ∈
ℂ) |
| 290 | 289, 224,
242 | mulassd 11263 |
. . . . . . . . 9
⊢ (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) = ((2 · 𝐴) · ((log‘𝐴) · 𝑋))) |
| 291 | 228, 268,
224, 242 | mul4d 11452 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝐴) · ((log‘𝐴) · 𝑋)) = ((2 · (log‘𝐴)) · (𝐴 · 𝑋))) |
| 292 | 290, 291 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → (((2 · 𝐴) · (log‘𝐴)) · 𝑋) = ((2 · (log‘𝐴)) · (𝐴 · 𝑋))) |
| 293 | 288, 292 | breqtrrd 5152 |
. . . . . . 7
⊢ (𝜑 → ((2 ·
(log‘𝐴)) ·
𝑌) ≤ (((2 · 𝐴) · (log‘𝐴)) · 𝑋)) |
| 294 | 37, 41, 265, 266, 276, 293 | le2addd 11861 |
. . . . . 6
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ≤ (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋))) |
| 295 | 44 | oveq1i 7420 |
. . . . . . 7
⊢ (𝐶 · 𝑋) = (((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) · 𝑋) |
| 296 | 47 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℂ) |
| 297 | 50 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈
ℂ) |
| 298 | 296, 297,
242 | adddird 11265 |
. . . . . . 7
⊢ (𝜑 → (((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) · 𝑋) = (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋))) |
| 299 | 295, 298 | eqtrid 2783 |
. . . . . 6
⊢ (𝜑 → (𝐶 · 𝑋) = (((𝐵 · (𝐴 + 1)) · 𝑋) + (((2 · 𝐴) · (log‘𝐴)) · 𝑋))) |
| 300 | 294, 299 | breqtrrd 5152 |
. . . . 5
⊢ (𝜑 → ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌)) ≤ (𝐶 · 𝑋)) |
| 301 | 42, 53, 33, 300 | leadd2dd 11857 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐵 · (𝑌 + 𝑋)) + ((2 · (log‘𝐴)) · 𝑌))) ≤ (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
| 302 | 28, 43, 54, 264, 301 | letrd 11397 |
. . 3
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
| 303 | 32 | recnd 11268 |
. . . . 5
⊢ (𝜑 → (2 · (𝑌 − 𝑋)) ∈ ℂ) |
| 304 | 4, 24 | rplogcld 26595 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑋) ∈
ℝ+) |
| 305 | 4, 304 | rerpdivcld 13087 |
. . . . . . 7
⊢ (𝜑 → (𝑋 / (log‘𝑋)) ∈ ℝ) |
| 306 | 52, 305 | remulcld 11270 |
. . . . . 6
⊢ (𝜑 → (𝐶 · (𝑋 / (log‘𝑋))) ∈ ℝ) |
| 307 | 306 | recnd 11268 |
. . . . 5
⊢ (𝜑 → (𝐶 · (𝑋 / (log‘𝑋))) ∈ ℂ) |
| 308 | 303, 307,
210 | adddird 11265 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)))) |
| 309 | 52 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 310 | 305 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → (𝑋 / (log‘𝑋)) ∈ ℂ) |
| 311 | 309, 310,
210 | mulassd 11263 |
. . . . . 6
⊢ (𝜑 → ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)) = (𝐶 · ((𝑋 / (log‘𝑋)) · (log‘𝑋)))) |
| 312 | 304 | rpne0d 13061 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑋) ≠ 0) |
| 313 | 242, 210,
312 | divcan1d 12023 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 / (log‘𝑋)) · (log‘𝑋)) = 𝑋) |
| 314 | 313 | oveq2d 7426 |
. . . . . 6
⊢ (𝜑 → (𝐶 · ((𝑋 / (log‘𝑋)) · (log‘𝑋))) = (𝐶 · 𝑋)) |
| 315 | 311, 314 | eqtrd 2771 |
. . . . 5
⊢ (𝜑 → ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋)) = (𝐶 · 𝑋)) |
| 316 | 315 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + ((𝐶 · (𝑋 / (log‘𝑋))) · (log‘𝑋))) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
| 317 | 308, 316 | eqtrd 2771 |
. . 3
⊢ (𝜑 → (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)) = (((2 · (𝑌 − 𝑋)) · (log‘𝑋)) + (𝐶 · 𝑋))) |
| 318 | 302, 317 | breqtrrd 5152 |
. 2
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋))) |
| 319 | 32, 306 | readdcld 11269 |
. . 3
⊢ (𝜑 → ((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) ∈ ℝ) |
| 320 | 16, 319, 304 | lemul1d 13099 |
. 2
⊢ (𝜑 → (((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) ↔ (((ψ‘𝑌) − (ψ‘𝑋)) · (log‘𝑋)) ≤ (((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋)))) · (log‘𝑋)))) |
| 321 | 318, 320 | mpbird 257 |
1
⊢ (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋))))) |