Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Visualization version   GIF version

Theorem abelthlem2 25126
 Description: Lemma for abelth 25135. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
Assertion
Ref Expression
abelthlem2 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Distinct variable groups:   𝑧,𝑀   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2 (𝜑𝑀 ∈ ℝ)
2 abelth.4 . 2 (𝜑 → 0 ≤ 𝑀)
3 1cnd 10674 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ ℂ)
4 0le0 11775 . . . . 5 0 ≤ 0
5 simpl 486 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
65recnd 10707 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
76mul01d 10877 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑀 · 0) = 0)
84, 7breqtrrid 5070 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 0 ≤ (𝑀 · 0))
9 oveq2 7158 . . . . . . . 8 (𝑧 = 1 → (1 − 𝑧) = (1 − 1))
10 1m1e0 11746 . . . . . . . 8 (1 − 1) = 0
119, 10eqtrdi 2809 . . . . . . 7 (𝑧 = 1 → (1 − 𝑧) = 0)
1211abs00bd 14699 . . . . . 6 (𝑧 = 1 → (abs‘(1 − 𝑧)) = 0)
13 fveq2 6658 . . . . . . . . . 10 (𝑧 = 1 → (abs‘𝑧) = (abs‘1))
14 abs1 14705 . . . . . . . . . 10 (abs‘1) = 1
1513, 14eqtrdi 2809 . . . . . . . . 9 (𝑧 = 1 → (abs‘𝑧) = 1)
1615oveq2d 7166 . . . . . . . 8 (𝑧 = 1 → (1 − (abs‘𝑧)) = (1 − 1))
1716, 10eqtrdi 2809 . . . . . . 7 (𝑧 = 1 → (1 − (abs‘𝑧)) = 0)
1817oveq2d 7166 . . . . . 6 (𝑧 = 1 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · 0))
1912, 18breq12d 5045 . . . . 5 (𝑧 = 1 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ 0 ≤ (𝑀 · 0)))
20 abelth.5 . . . . 5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2119, 20elrab2 3605 . . . 4 (1 ∈ 𝑆 ↔ (1 ∈ ℂ ∧ 0 ≤ (𝑀 · 0)))
223, 8, 21sylanbrc 586 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ 𝑆)
23 velsn 4538 . . . . . . . . . 10 (𝑧 ∈ {1} ↔ 𝑧 = 1)
2423necon3bbii 2998 . . . . . . . . 9 𝑧 ∈ {1} ↔ 𝑧 ≠ 1)
25 simprll 778 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ ℂ)
26 0cn 10671 . . . . . . . . . . . . . . 15 0 ∈ ℂ
27 eqid 2758 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2827cnmetdval 23472 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
2925, 26, 28sylancl 589 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
3025subid1d 11024 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 − 0) = 𝑧)
3130fveq2d 6662 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
3229, 31eqtrd 2793 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
3325abscld 14844 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℝ)
34 1red 10680 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℝ)
35 1re 10679 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
36 resubcl 10988 . . . . . . . . . . . . . . . . . . . . 21 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑧) − 1) ∈ ℝ)
3733, 35, 36sylancl 589 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ∈ ℝ)
38 ax-1cn 10633 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
39 subcl 10923 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − 𝑧) ∈ ℂ)
4038, 25, 39sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ∈ ℂ)
4140abscld 14844 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ∈ ℝ)
42 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℝ)
43 resubcl 10988 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ (abs‘𝑧) ∈ ℝ) → (1 − (abs‘𝑧)) ∈ ℝ)
4435, 33, 43sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − (abs‘𝑧)) ∈ ℝ)
4542, 44remulcld 10709 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) ∈ ℝ)
4614oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑧) − (abs‘1)) = ((abs‘𝑧) − 1)
47 abs2dif 14740 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4825, 38, 47sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4946, 48eqbrtrrid 5068 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(𝑧 − 1)))
50 abssub 14734 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5125, 38, 50sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5249, 51breqtrd 5058 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(1 − 𝑧)))
53 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))
5437, 41, 45, 52, 53letrd 10835 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))))
5533, 34, 45lesubaddd 11275 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1)))
5654, 55mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1))
576adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℂ)
58 1cnd 10674 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℂ)
5942, 33remulcld 10709 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℝ)
6059recnd 10707 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℂ)
6157, 58, 60addsubd 11056 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6233recnd 10707 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℂ)
6357, 58, 62subdid 11134 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = ((𝑀 · 1) − (𝑀 · (abs‘𝑧))))
6457mulid1d 10696 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 1) = 𝑀)
6564oveq1d 7165 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · 1) − (𝑀 · (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6663, 65eqtrd 2793 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6766oveq1d 7165 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (1 − (abs‘𝑧))) + 1) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6861, 67eqtr4d 2796 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 · (1 − (abs‘𝑧))) + 1))
6956, 68breqtrrd 5060 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧))))
70 peano2re 10851 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7142, 70syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℝ)
7259, 33, 71leaddsub2d 11280 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1) ↔ (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧)))))
7369, 72mpbird 260 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1))
7457, 62adddirp1d 10705 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) = ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)))
7571recnd 10707 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℂ)
7675mulid1d 10696 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · 1) = (𝑀 + 1))
7773, 74, 763brtr4d 5064 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1))
78 0red 10682 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ∈ ℝ)
79 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ≤ 𝑀)
8042ltp1d 11608 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 < (𝑀 + 1))
8178, 42, 71, 79, 80lelttrd 10836 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (𝑀 + 1))
82 lemul2 11531 . . . . . . . . . . . . . . . 16 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑀 + 1) ∈ ℝ ∧ 0 < (𝑀 + 1))) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8333, 34, 71, 81, 82syl112anc 1371 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8477, 83mpbird 260 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ 1)
8541, 45, 53lensymd 10829 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)))
867adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) = 0)
87 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ≠ 1)
8887necomd 3006 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ 𝑧)
89 subeq0 10950 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
9089necon3bid 2995 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9138, 25, 90sylancr 590 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9288, 91mpbird 260 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ≠ 0)
93 absgt0 14732 . . . . . . . . . . . . . . . . . . . 20 ((1 − 𝑧) ∈ ℂ → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9440, 93syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9592, 94mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (abs‘(1 − 𝑧)))
9686, 95eqbrtrd 5054 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) < (abs‘(1 − 𝑧)))
97 oveq2 7158 . . . . . . . . . . . . . . . . . . . 20 (1 = (abs‘𝑧) → (1 − 1) = (1 − (abs‘𝑧)))
9810, 97syl5eqr 2807 . . . . . . . . . . . . . . . . . . 19 (1 = (abs‘𝑧) → 0 = (1 − (abs‘𝑧)))
9998oveq2d 7166 . . . . . . . . . . . . . . . . . 18 (1 = (abs‘𝑧) → (𝑀 · 0) = (𝑀 · (1 − (abs‘𝑧))))
10099breq1d 5042 . . . . . . . . . . . . . . . . 17 (1 = (abs‘𝑧) → ((𝑀 · 0) < (abs‘(1 − 𝑧)) ↔ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
10196, 100syl5ibcom 248 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 = (abs‘𝑧) → (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
102101necon3bd 2965 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)) → 1 ≠ (abs‘𝑧)))
10385, 102mpd 15 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ (abs‘𝑧))
10433, 34, 84, 103leneltd 10832 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) < 1)
10532, 104eqbrtrd 5054 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) < 1)
106 cnxmet 23474 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
107 1xr 10738 . . . . . . . . . . . . . 14 1 ∈ ℝ*
108 elbl3 23094 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
109106, 107, 108mpanl12 701 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
11026, 25, 109sylancr 590 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
111105, 110mpbird 260 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ (0(ball‘(abs ∘ − ))1))
112111expr 460 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ (𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
1131123impb 1112 . . . . . . . . 9 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
11424, 113syl5bi 245 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (¬ 𝑧 ∈ {1} → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
115114orrd 860 . . . . . . 7 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
116 elun 4054 . . . . . . 7 (𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
117115, 116sylibr 237 . . . . . 6 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → 𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
118117rabssdv 3979 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
11920, 118eqsstrid 3940 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
120 ssundif 4381 . . . 4 (𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
121119, 120sylib 221 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
12222, 121jca 515 . 2 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
1231, 2, 122syl2anc 587 1 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  {crab 3074   ∖ cdif 3855   ∪ cun 3856   ⊆ wss 3858  {csn 4522   class class class wbr 5032  dom cdm 5524   ∘ ccom 5528  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580  ℝ*cxr 10712   < clt 10713   ≤ cle 10714   − cmin 10908  ℕ0cn0 11934  seqcseq 13418  abscabs 14641   ⇝ cli 14889  ∞Metcxmet 20151  ballcbl 20153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-xadd 12549  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161 This theorem is referenced by:  abelthlem3  25127  abelthlem6  25130  abelthlem7  25132  abelthlem8  25133  abelthlem9  25134  abelth  25135
 Copyright terms: Public domain W3C validator