MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Visualization version   GIF version

Theorem abelthlem2 26370
Description: Lemma for abelth 26379. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
Assertion
Ref Expression
abelthlem2 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Distinct variable groups:   𝑧,𝑀   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2 (𝜑𝑀 ∈ ℝ)
2 abelth.4 . 2 (𝜑 → 0 ≤ 𝑀)
3 1cnd 11114 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ ℂ)
4 0le0 12233 . . . . 5 0 ≤ 0
5 simpl 482 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
65recnd 11147 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
76mul01d 11319 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑀 · 0) = 0)
84, 7breqtrrid 5131 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 0 ≤ (𝑀 · 0))
9 oveq2 7360 . . . . . . . 8 (𝑧 = 1 → (1 − 𝑧) = (1 − 1))
10 1m1e0 12204 . . . . . . . 8 (1 − 1) = 0
119, 10eqtrdi 2784 . . . . . . 7 (𝑧 = 1 → (1 − 𝑧) = 0)
1211abs00bd 15200 . . . . . 6 (𝑧 = 1 → (abs‘(1 − 𝑧)) = 0)
13 fveq2 6828 . . . . . . . . . 10 (𝑧 = 1 → (abs‘𝑧) = (abs‘1))
14 abs1 15206 . . . . . . . . . 10 (abs‘1) = 1
1513, 14eqtrdi 2784 . . . . . . . . 9 (𝑧 = 1 → (abs‘𝑧) = 1)
1615oveq2d 7368 . . . . . . . 8 (𝑧 = 1 → (1 − (abs‘𝑧)) = (1 − 1))
1716, 10eqtrdi 2784 . . . . . . 7 (𝑧 = 1 → (1 − (abs‘𝑧)) = 0)
1817oveq2d 7368 . . . . . 6 (𝑧 = 1 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · 0))
1912, 18breq12d 5106 . . . . 5 (𝑧 = 1 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ 0 ≤ (𝑀 · 0)))
20 abelth.5 . . . . 5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2119, 20elrab2 3646 . . . 4 (1 ∈ 𝑆 ↔ (1 ∈ ℂ ∧ 0 ≤ (𝑀 · 0)))
223, 8, 21sylanbrc 583 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ 𝑆)
23 velsn 4591 . . . . . . . . . 10 (𝑧 ∈ {1} ↔ 𝑧 = 1)
2423necon3bbii 2976 . . . . . . . . 9 𝑧 ∈ {1} ↔ 𝑧 ≠ 1)
25 simprll 778 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ ℂ)
26 0cn 11111 . . . . . . . . . . . . . . 15 0 ∈ ℂ
27 eqid 2733 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2827cnmetdval 24686 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
2925, 26, 28sylancl 586 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
3025subid1d 11468 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 − 0) = 𝑧)
3130fveq2d 6832 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
3229, 31eqtrd 2768 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
3325abscld 15348 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℝ)
34 1red 11120 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℝ)
35 1re 11119 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
36 resubcl 11432 . . . . . . . . . . . . . . . . . . . . 21 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑧) − 1) ∈ ℝ)
3733, 35, 36sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ∈ ℝ)
38 ax-1cn 11071 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
39 subcl 11366 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − 𝑧) ∈ ℂ)
4038, 25, 39sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ∈ ℂ)
4140abscld 15348 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ∈ ℝ)
42 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℝ)
43 resubcl 11432 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ (abs‘𝑧) ∈ ℝ) → (1 − (abs‘𝑧)) ∈ ℝ)
4435, 33, 43sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − (abs‘𝑧)) ∈ ℝ)
4542, 44remulcld 11149 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) ∈ ℝ)
4614oveq2i 7363 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑧) − (abs‘1)) = ((abs‘𝑧) − 1)
47 abs2dif 15242 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4825, 38, 47sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4946, 48eqbrtrrid 5129 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(𝑧 − 1)))
50 abssub 15236 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5125, 38, 50sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5249, 51breqtrd 5119 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(1 − 𝑧)))
53 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))
5437, 41, 45, 52, 53letrd 11277 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))))
5533, 34, 45lesubaddd 11721 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1)))
5654, 55mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1))
576adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℂ)
58 1cnd 11114 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℂ)
5942, 33remulcld 11149 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℝ)
6059recnd 11147 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℂ)
6157, 58, 60addsubd 11500 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6233recnd 11147 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℂ)
6357, 58, 62subdid 11580 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = ((𝑀 · 1) − (𝑀 · (abs‘𝑧))))
6457mulridd 11136 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 1) = 𝑀)
6564oveq1d 7367 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · 1) − (𝑀 · (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6663, 65eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6766oveq1d 7367 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (1 − (abs‘𝑧))) + 1) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6861, 67eqtr4d 2771 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 · (1 − (abs‘𝑧))) + 1))
6956, 68breqtrrd 5121 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧))))
70 peano2re 11293 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7142, 70syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℝ)
7259, 33, 71leaddsub2d 11726 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1) ↔ (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧)))))
7369, 72mpbird 257 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1))
7457, 62adddirp1d 11145 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) = ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)))
7571recnd 11147 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℂ)
7675mulridd 11136 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · 1) = (𝑀 + 1))
7773, 74, 763brtr4d 5125 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1))
78 0red 11122 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ∈ ℝ)
79 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ≤ 𝑀)
8042ltp1d 12059 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 < (𝑀 + 1))
8178, 42, 71, 79, 80lelttrd 11278 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (𝑀 + 1))
82 lemul2 11981 . . . . . . . . . . . . . . . 16 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑀 + 1) ∈ ℝ ∧ 0 < (𝑀 + 1))) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8333, 34, 71, 81, 82syl112anc 1376 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8477, 83mpbird 257 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ 1)
8541, 45, 53lensymd 11271 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)))
867adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) = 0)
87 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ≠ 1)
8887necomd 2984 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ 𝑧)
89 subeq0 11394 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
9089necon3bid 2973 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9138, 25, 90sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9288, 91mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ≠ 0)
93 absgt0 15234 . . . . . . . . . . . . . . . . . . . 20 ((1 − 𝑧) ∈ ℂ → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9440, 93syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9592, 94mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (abs‘(1 − 𝑧)))
9686, 95eqbrtrd 5115 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) < (abs‘(1 − 𝑧)))
97 oveq2 7360 . . . . . . . . . . . . . . . . . . . 20 (1 = (abs‘𝑧) → (1 − 1) = (1 − (abs‘𝑧)))
9810, 97eqtr3id 2782 . . . . . . . . . . . . . . . . . . 19 (1 = (abs‘𝑧) → 0 = (1 − (abs‘𝑧)))
9998oveq2d 7368 . . . . . . . . . . . . . . . . . 18 (1 = (abs‘𝑧) → (𝑀 · 0) = (𝑀 · (1 − (abs‘𝑧))))
10099breq1d 5103 . . . . . . . . . . . . . . . . 17 (1 = (abs‘𝑧) → ((𝑀 · 0) < (abs‘(1 − 𝑧)) ↔ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
10196, 100syl5ibcom 245 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 = (abs‘𝑧) → (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
102101necon3bd 2943 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)) → 1 ≠ (abs‘𝑧)))
10385, 102mpd 15 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ (abs‘𝑧))
10433, 34, 84, 103leneltd 11274 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) < 1)
10532, 104eqbrtrd 5115 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) < 1)
106 cnxmet 24688 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
107 1xr 11178 . . . . . . . . . . . . . 14 1 ∈ ℝ*
108 elbl3 24308 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
109106, 107, 108mpanl12 702 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
11026, 25, 109sylancr 587 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
111105, 110mpbird 257 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ (0(ball‘(abs ∘ − ))1))
112111expr 456 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ (𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
1131123impb 1114 . . . . . . . . 9 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
11424, 113biimtrid 242 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (¬ 𝑧 ∈ {1} → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
115114orrd 863 . . . . . . 7 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
116 elun 4102 . . . . . . 7 (𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
117115, 116sylibr 234 . . . . . 6 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → 𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
118117rabssdv 4023 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
11920, 118eqsstrid 3969 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
120 ssundif 4437 . . . 4 (𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
121119, 120sylib 218 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
12222, 121jca 511 . 2 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
1231, 2, 122syl2anc 584 1 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {crab 3396  cdif 3895  cun 3896  wss 3898  {csn 4575   class class class wbr 5093  dom cdm 5619  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  *cxr 11152   < clt 11153  cle 11154  cmin 11351  0cn0 12388  seqcseq 13910  abscabs 15143  cli 15393  ∞Metcxmet 21278  ballcbl 21280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-xadd 13014  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288
This theorem is referenced by:  abelthlem3  26371  abelthlem6  26374  abelthlem7  26376  abelthlem8  26377  abelthlem9  26378  abelth  26379
  Copyright terms: Public domain W3C validator