MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Visualization version   GIF version

Theorem abelthlem2 26342
Description: Lemma for abelth 26351. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
Assertion
Ref Expression
abelthlem2 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Distinct variable groups:   𝑧,𝑀   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2 (𝜑𝑀 ∈ ℝ)
2 abelth.4 . 2 (𝜑 → 0 ≤ 𝑀)
3 1cnd 11169 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ ℂ)
4 0le0 12287 . . . . 5 0 ≤ 0
5 simpl 482 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
65recnd 11202 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
76mul01d 11373 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑀 · 0) = 0)
84, 7breqtrrid 5145 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 0 ≤ (𝑀 · 0))
9 oveq2 7395 . . . . . . . 8 (𝑧 = 1 → (1 − 𝑧) = (1 − 1))
10 1m1e0 12258 . . . . . . . 8 (1 − 1) = 0
119, 10eqtrdi 2780 . . . . . . 7 (𝑧 = 1 → (1 − 𝑧) = 0)
1211abs00bd 15257 . . . . . 6 (𝑧 = 1 → (abs‘(1 − 𝑧)) = 0)
13 fveq2 6858 . . . . . . . . . 10 (𝑧 = 1 → (abs‘𝑧) = (abs‘1))
14 abs1 15263 . . . . . . . . . 10 (abs‘1) = 1
1513, 14eqtrdi 2780 . . . . . . . . 9 (𝑧 = 1 → (abs‘𝑧) = 1)
1615oveq2d 7403 . . . . . . . 8 (𝑧 = 1 → (1 − (abs‘𝑧)) = (1 − 1))
1716, 10eqtrdi 2780 . . . . . . 7 (𝑧 = 1 → (1 − (abs‘𝑧)) = 0)
1817oveq2d 7403 . . . . . 6 (𝑧 = 1 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · 0))
1912, 18breq12d 5120 . . . . 5 (𝑧 = 1 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ 0 ≤ (𝑀 · 0)))
20 abelth.5 . . . . 5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2119, 20elrab2 3662 . . . 4 (1 ∈ 𝑆 ↔ (1 ∈ ℂ ∧ 0 ≤ (𝑀 · 0)))
223, 8, 21sylanbrc 583 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ 𝑆)
23 velsn 4605 . . . . . . . . . 10 (𝑧 ∈ {1} ↔ 𝑧 = 1)
2423necon3bbii 2972 . . . . . . . . 9 𝑧 ∈ {1} ↔ 𝑧 ≠ 1)
25 simprll 778 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ ℂ)
26 0cn 11166 . . . . . . . . . . . . . . 15 0 ∈ ℂ
27 eqid 2729 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2827cnmetdval 24658 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
2925, 26, 28sylancl 586 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
3025subid1d 11522 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 − 0) = 𝑧)
3130fveq2d 6862 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
3229, 31eqtrd 2764 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
3325abscld 15405 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℝ)
34 1red 11175 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℝ)
35 1re 11174 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
36 resubcl 11486 . . . . . . . . . . . . . . . . . . . . 21 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑧) − 1) ∈ ℝ)
3733, 35, 36sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ∈ ℝ)
38 ax-1cn 11126 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
39 subcl 11420 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − 𝑧) ∈ ℂ)
4038, 25, 39sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ∈ ℂ)
4140abscld 15405 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ∈ ℝ)
42 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℝ)
43 resubcl 11486 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ (abs‘𝑧) ∈ ℝ) → (1 − (abs‘𝑧)) ∈ ℝ)
4435, 33, 43sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − (abs‘𝑧)) ∈ ℝ)
4542, 44remulcld 11204 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) ∈ ℝ)
4614oveq2i 7398 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑧) − (abs‘1)) = ((abs‘𝑧) − 1)
47 abs2dif 15299 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4825, 38, 47sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4946, 48eqbrtrrid 5143 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(𝑧 − 1)))
50 abssub 15293 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5125, 38, 50sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5249, 51breqtrd 5133 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(1 − 𝑧)))
53 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))
5437, 41, 45, 52, 53letrd 11331 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))))
5533, 34, 45lesubaddd 11775 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1)))
5654, 55mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1))
576adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℂ)
58 1cnd 11169 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℂ)
5942, 33remulcld 11204 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℝ)
6059recnd 11202 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℂ)
6157, 58, 60addsubd 11554 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6233recnd 11202 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℂ)
6357, 58, 62subdid 11634 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = ((𝑀 · 1) − (𝑀 · (abs‘𝑧))))
6457mulridd 11191 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 1) = 𝑀)
6564oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · 1) − (𝑀 · (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6663, 65eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6766oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (1 − (abs‘𝑧))) + 1) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6861, 67eqtr4d 2767 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 · (1 − (abs‘𝑧))) + 1))
6956, 68breqtrrd 5135 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧))))
70 peano2re 11347 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7142, 70syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℝ)
7259, 33, 71leaddsub2d 11780 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1) ↔ (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧)))))
7369, 72mpbird 257 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1))
7457, 62adddirp1d 11200 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) = ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)))
7571recnd 11202 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℂ)
7675mulridd 11191 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · 1) = (𝑀 + 1))
7773, 74, 763brtr4d 5139 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1))
78 0red 11177 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ∈ ℝ)
79 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ≤ 𝑀)
8042ltp1d 12113 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 < (𝑀 + 1))
8178, 42, 71, 79, 80lelttrd 11332 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (𝑀 + 1))
82 lemul2 12035 . . . . . . . . . . . . . . . 16 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑀 + 1) ∈ ℝ ∧ 0 < (𝑀 + 1))) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8333, 34, 71, 81, 82syl112anc 1376 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8477, 83mpbird 257 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ 1)
8541, 45, 53lensymd 11325 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)))
867adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) = 0)
87 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ≠ 1)
8887necomd 2980 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ 𝑧)
89 subeq0 11448 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
9089necon3bid 2969 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9138, 25, 90sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9288, 91mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ≠ 0)
93 absgt0 15291 . . . . . . . . . . . . . . . . . . . 20 ((1 − 𝑧) ∈ ℂ → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9440, 93syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9592, 94mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (abs‘(1 − 𝑧)))
9686, 95eqbrtrd 5129 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) < (abs‘(1 − 𝑧)))
97 oveq2 7395 . . . . . . . . . . . . . . . . . . . 20 (1 = (abs‘𝑧) → (1 − 1) = (1 − (abs‘𝑧)))
9810, 97eqtr3id 2778 . . . . . . . . . . . . . . . . . . 19 (1 = (abs‘𝑧) → 0 = (1 − (abs‘𝑧)))
9998oveq2d 7403 . . . . . . . . . . . . . . . . . 18 (1 = (abs‘𝑧) → (𝑀 · 0) = (𝑀 · (1 − (abs‘𝑧))))
10099breq1d 5117 . . . . . . . . . . . . . . . . 17 (1 = (abs‘𝑧) → ((𝑀 · 0) < (abs‘(1 − 𝑧)) ↔ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
10196, 100syl5ibcom 245 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 = (abs‘𝑧) → (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
102101necon3bd 2939 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)) → 1 ≠ (abs‘𝑧)))
10385, 102mpd 15 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ (abs‘𝑧))
10433, 34, 84, 103leneltd 11328 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) < 1)
10532, 104eqbrtrd 5129 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) < 1)
106 cnxmet 24660 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
107 1xr 11233 . . . . . . . . . . . . . 14 1 ∈ ℝ*
108 elbl3 24280 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
109106, 107, 108mpanl12 702 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
11026, 25, 109sylancr 587 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
111105, 110mpbird 257 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ (0(ball‘(abs ∘ − ))1))
112111expr 456 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ (𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
1131123impb 1114 . . . . . . . . 9 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
11424, 113biimtrid 242 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (¬ 𝑧 ∈ {1} → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
115114orrd 863 . . . . . . 7 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
116 elun 4116 . . . . . . 7 (𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
117115, 116sylibr 234 . . . . . 6 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → 𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
118117rabssdv 4038 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
11920, 118eqsstrid 3985 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
120 ssundif 4451 . . . 4 (𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
121119, 120sylib 218 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
12222, 121jca 511 . 2 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
1231, 2, 122syl2anc 584 1 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  cdif 3911  cun 3912  wss 3914  {csn 4589   class class class wbr 5107  dom cdm 5638  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  0cn0 12442  seqcseq 13966  abscabs 15200  cli 15450  ∞Metcxmet 21249  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259
This theorem is referenced by:  abelthlem3  26343  abelthlem6  26346  abelthlem7  26348  abelthlem8  26349  abelthlem9  26350  abelth  26351
  Copyright terms: Public domain W3C validator