MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Visualization version   GIF version

Theorem abelthlem2 26286
Description: Lemma for abelth 26295. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
Assertion
Ref Expression
abelthlem2 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Distinct variable groups:   𝑧,𝑀   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2 (𝜑𝑀 ∈ ℝ)
2 abelth.4 . 2 (𝜑 → 0 ≤ 𝑀)
3 1cnd 11206 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ ℂ)
4 0le0 12310 . . . . 5 0 ≤ 0
5 simpl 482 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
65recnd 11239 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
76mul01d 11410 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑀 · 0) = 0)
84, 7breqtrrid 5176 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 0 ≤ (𝑀 · 0))
9 oveq2 7409 . . . . . . . 8 (𝑧 = 1 → (1 − 𝑧) = (1 − 1))
10 1m1e0 12281 . . . . . . . 8 (1 − 1) = 0
119, 10eqtrdi 2780 . . . . . . 7 (𝑧 = 1 → (1 − 𝑧) = 0)
1211abs00bd 15235 . . . . . 6 (𝑧 = 1 → (abs‘(1 − 𝑧)) = 0)
13 fveq2 6881 . . . . . . . . . 10 (𝑧 = 1 → (abs‘𝑧) = (abs‘1))
14 abs1 15241 . . . . . . . . . 10 (abs‘1) = 1
1513, 14eqtrdi 2780 . . . . . . . . 9 (𝑧 = 1 → (abs‘𝑧) = 1)
1615oveq2d 7417 . . . . . . . 8 (𝑧 = 1 → (1 − (abs‘𝑧)) = (1 − 1))
1716, 10eqtrdi 2780 . . . . . . 7 (𝑧 = 1 → (1 − (abs‘𝑧)) = 0)
1817oveq2d 7417 . . . . . 6 (𝑧 = 1 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · 0))
1912, 18breq12d 5151 . . . . 5 (𝑧 = 1 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ 0 ≤ (𝑀 · 0)))
20 abelth.5 . . . . 5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2119, 20elrab2 3678 . . . 4 (1 ∈ 𝑆 ↔ (1 ∈ ℂ ∧ 0 ≤ (𝑀 · 0)))
223, 8, 21sylanbrc 582 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ 𝑆)
23 velsn 4636 . . . . . . . . . 10 (𝑧 ∈ {1} ↔ 𝑧 = 1)
2423necon3bbii 2980 . . . . . . . . 9 𝑧 ∈ {1} ↔ 𝑧 ≠ 1)
25 simprll 776 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ ℂ)
26 0cn 11203 . . . . . . . . . . . . . . 15 0 ∈ ℂ
27 eqid 2724 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2827cnmetdval 24609 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
2925, 26, 28sylancl 585 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
3025subid1d 11557 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 − 0) = 𝑧)
3130fveq2d 6885 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
3229, 31eqtrd 2764 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
3325abscld 15380 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℝ)
34 1red 11212 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℝ)
35 1re 11211 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
36 resubcl 11521 . . . . . . . . . . . . . . . . . . . . 21 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑧) − 1) ∈ ℝ)
3733, 35, 36sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ∈ ℝ)
38 ax-1cn 11164 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
39 subcl 11456 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − 𝑧) ∈ ℂ)
4038, 25, 39sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ∈ ℂ)
4140abscld 15380 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ∈ ℝ)
42 simpll 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℝ)
43 resubcl 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ (abs‘𝑧) ∈ ℝ) → (1 − (abs‘𝑧)) ∈ ℝ)
4435, 33, 43sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − (abs‘𝑧)) ∈ ℝ)
4542, 44remulcld 11241 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) ∈ ℝ)
4614oveq2i 7412 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑧) − (abs‘1)) = ((abs‘𝑧) − 1)
47 abs2dif 15276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4825, 38, 47sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
4946, 48eqbrtrrid 5174 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(𝑧 − 1)))
50 abssub 15270 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5125, 38, 50sylancl 585 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
5249, 51breqtrd 5164 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(1 − 𝑧)))
53 simprlr 777 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))
5437, 41, 45, 52, 53letrd 11368 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))))
5533, 34, 45lesubaddd 11808 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1)))
5654, 55mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1))
576adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℂ)
58 1cnd 11206 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℂ)
5942, 33remulcld 11241 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℝ)
6059recnd 11239 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℂ)
6157, 58, 60addsubd 11589 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6233recnd 11239 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℂ)
6357, 58, 62subdid 11667 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = ((𝑀 · 1) − (𝑀 · (abs‘𝑧))))
6457mulridd 11228 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 1) = 𝑀)
6564oveq1d 7416 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · 1) − (𝑀 · (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6663, 65eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
6766oveq1d 7416 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (1 − (abs‘𝑧))) + 1) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
6861, 67eqtr4d 2767 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 · (1 − (abs‘𝑧))) + 1))
6956, 68breqtrrd 5166 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧))))
70 peano2re 11384 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7142, 70syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℝ)
7259, 33, 71leaddsub2d 11813 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1) ↔ (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧)))))
7369, 72mpbird 257 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1))
7457, 62adddirp1d 11237 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) = ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)))
7571recnd 11239 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℂ)
7675mulridd 11228 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · 1) = (𝑀 + 1))
7773, 74, 763brtr4d 5170 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1))
78 0red 11214 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ∈ ℝ)
79 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ≤ 𝑀)
8042ltp1d 12141 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 < (𝑀 + 1))
8178, 42, 71, 79, 80lelttrd 11369 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (𝑀 + 1))
82 lemul2 12064 . . . . . . . . . . . . . . . 16 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑀 + 1) ∈ ℝ ∧ 0 < (𝑀 + 1))) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8333, 34, 71, 81, 82syl112anc 1371 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
8477, 83mpbird 257 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ 1)
8541, 45, 53lensymd 11362 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)))
867adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) = 0)
87 simprr 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ≠ 1)
8887necomd 2988 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ 𝑧)
89 subeq0 11483 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
9089necon3bid 2977 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9138, 25, 90sylancr 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
9288, 91mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ≠ 0)
93 absgt0 15268 . . . . . . . . . . . . . . . . . . . 20 ((1 − 𝑧) ∈ ℂ → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9440, 93syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
9592, 94mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (abs‘(1 − 𝑧)))
9686, 95eqbrtrd 5160 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) < (abs‘(1 − 𝑧)))
97 oveq2 7409 . . . . . . . . . . . . . . . . . . . 20 (1 = (abs‘𝑧) → (1 − 1) = (1 − (abs‘𝑧)))
9810, 97eqtr3id 2778 . . . . . . . . . . . . . . . . . . 19 (1 = (abs‘𝑧) → 0 = (1 − (abs‘𝑧)))
9998oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (1 = (abs‘𝑧) → (𝑀 · 0) = (𝑀 · (1 − (abs‘𝑧))))
10099breq1d 5148 . . . . . . . . . . . . . . . . 17 (1 = (abs‘𝑧) → ((𝑀 · 0) < (abs‘(1 − 𝑧)) ↔ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
10196, 100syl5ibcom 244 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 = (abs‘𝑧) → (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
102101necon3bd 2946 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)) → 1 ≠ (abs‘𝑧)))
10385, 102mpd 15 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ (abs‘𝑧))
10433, 34, 84, 103leneltd 11365 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) < 1)
10532, 104eqbrtrd 5160 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) < 1)
106 cnxmet 24611 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
107 1xr 11270 . . . . . . . . . . . . . 14 1 ∈ ℝ*
108 elbl3 24220 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
109106, 107, 108mpanl12 699 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
11026, 25, 109sylancr 586 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
111105, 110mpbird 257 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ (0(ball‘(abs ∘ − ))1))
112111expr 456 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ (𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
1131123impb 1112 . . . . . . . . 9 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
11424, 113biimtrid 241 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (¬ 𝑧 ∈ {1} → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
115114orrd 860 . . . . . . 7 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
116 elun 4140 . . . . . . 7 (𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
117115, 116sylibr 233 . . . . . 6 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → 𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
118117rabssdv 4064 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
11920, 118eqsstrid 4022 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
120 ssundif 4479 . . . 4 (𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
121119, 120sylib 217 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
12222, 121jca 511 . 2 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
1231, 2, 122syl2anc 583 1 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wne 2932  {crab 3424  cdif 3937  cun 3938  wss 3940  {csn 4620   class class class wbr 5138  dom cdm 5666  ccom 5670  wf 6529  cfv 6533  (class class class)co 7401  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  *cxr 11244   < clt 11245  cle 11246  cmin 11441  0cn0 12469  seqcseq 13963  abscabs 15178  cli 15425  ∞Metcxmet 21213  ballcbl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-xadd 13090  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223
This theorem is referenced by:  abelthlem3  26287  abelthlem6  26290  abelthlem7  26292  abelthlem8  26293  abelthlem9  26294  abelth  26295
  Copyright terms: Public domain W3C validator