Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt4addmuld Structured version   Visualization version   GIF version

Theorem lt4addmuld 45304
Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt4addmuld.a (𝜑𝐴 ∈ ℝ)
lt4addmuld.b (𝜑𝐵 ∈ ℝ)
lt4addmuld.c (𝜑𝐶 ∈ ℝ)
lt4addmuld.d (𝜑𝐷 ∈ ℝ)
lt4addmuld.e (𝜑𝐸 ∈ ℝ)
lt4addmuld.alte (𝜑𝐴 < 𝐸)
lt4addmuld.blte (𝜑𝐵 < 𝐸)
lt4addmuld.clte (𝜑𝐶 < 𝐸)
lt4addmuld.dlte (𝜑𝐷 < 𝐸)
Assertion
Ref Expression
lt4addmuld (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))

Proof of Theorem lt4addmuld
StepHypRef Expression
1 lt4addmuld.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 lt4addmuld.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 11203 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 lt4addmuld.c . . . 4 (𝜑𝐶 ∈ ℝ)
53, 4readdcld 11203 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
6 lt4addmuld.d . . 3 (𝜑𝐷 ∈ ℝ)
7 3re 12266 . . . . 5 3 ∈ ℝ
87a1i 11 . . . 4 (𝜑 → 3 ∈ ℝ)
9 lt4addmuld.e . . . 4 (𝜑𝐸 ∈ ℝ)
108, 9remulcld 11204 . . 3 (𝜑 → (3 · 𝐸) ∈ ℝ)
11 lt4addmuld.alte . . . 4 (𝜑𝐴 < 𝐸)
12 lt4addmuld.blte . . . 4 (𝜑𝐵 < 𝐸)
13 lt4addmuld.clte . . . 4 (𝜑𝐶 < 𝐸)
141, 2, 4, 9, 11, 12, 13lt3addmuld 45299 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸))
15 lt4addmuld.dlte . . 3 (𝜑𝐷 < 𝐸)
165, 6, 10, 9, 14, 15lt2addd 11801 . 2 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸))
17 df-4 12251 . . . . 5 4 = (3 + 1)
1817a1i 11 . . . 4 (𝜑 → 4 = (3 + 1))
1918oveq1d 7402 . . 3 (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸))
208recnd 11202 . . . 4 (𝜑 → 3 ∈ ℂ)
219recnd 11202 . . . 4 (𝜑𝐸 ∈ ℂ)
2220, 21adddirp1d 11200 . . 3 (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸))
2319, 22eqtr2d 2765 . 2 (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸))
2416, 23breqtrd 5133 1 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  3c3 12242  4c4 12243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-2 12249  df-3 12250  df-4 12251
This theorem is referenced by:  limclner  45649
  Copyright terms: Public domain W3C validator