![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lt4addmuld | Structured version Visualization version GIF version |
Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lt4addmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lt4addmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lt4addmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt4addmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lt4addmuld.e | ⊢ (𝜑 → 𝐸 ∈ ℝ) |
lt4addmuld.alte | ⊢ (𝜑 → 𝐴 < 𝐸) |
lt4addmuld.blte | ⊢ (𝜑 → 𝐵 < 𝐸) |
lt4addmuld.clte | ⊢ (𝜑 → 𝐶 < 𝐸) |
lt4addmuld.dlte | ⊢ (𝜑 → 𝐷 < 𝐸) |
Ref | Expression |
---|---|
lt4addmuld | ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt4addmuld.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lt4addmuld.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 11268 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
4 | lt4addmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 3, 4 | readdcld 11268 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ) |
6 | lt4addmuld.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | 3re 12317 | . . . . 5 ⊢ 3 ∈ ℝ | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
9 | lt4addmuld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) | |
10 | 8, 9 | remulcld 11269 | . . 3 ⊢ (𝜑 → (3 · 𝐸) ∈ ℝ) |
11 | lt4addmuld.alte | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐸) | |
12 | lt4addmuld.blte | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐸) | |
13 | lt4addmuld.clte | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐸) | |
14 | 1, 2, 4, 9, 11, 12, 13 | lt3addmuld 44674 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸)) |
15 | lt4addmuld.dlte | . . 3 ⊢ (𝜑 → 𝐷 < 𝐸) | |
16 | 5, 6, 10, 9, 14, 15 | lt2addd 11862 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸)) |
17 | df-4 12302 | . . . . 5 ⊢ 4 = (3 + 1) | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 4 = (3 + 1)) |
19 | 18 | oveq1d 7430 | . . 3 ⊢ (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸)) |
20 | 8 | recnd 11267 | . . . 4 ⊢ (𝜑 → 3 ∈ ℂ) |
21 | 9 | recnd 11267 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
22 | 20, 21 | adddirp1d 11265 | . . 3 ⊢ (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸)) |
23 | 19, 22 | eqtr2d 2769 | . 2 ⊢ (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸)) |
24 | 16, 23 | breqtrd 5169 | 1 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 class class class wbr 5143 (class class class)co 7415 ℝcr 11132 1c1 11134 + caddc 11136 · cmul 11138 < clt 11273 3c3 12293 4c4 12294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-2 12300 df-3 12301 df-4 12302 |
This theorem is referenced by: limclner 45030 |
Copyright terms: Public domain | W3C validator |