![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lt4addmuld | Structured version Visualization version GIF version |
Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lt4addmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lt4addmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lt4addmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt4addmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lt4addmuld.e | ⊢ (𝜑 → 𝐸 ∈ ℝ) |
lt4addmuld.alte | ⊢ (𝜑 → 𝐴 < 𝐸) |
lt4addmuld.blte | ⊢ (𝜑 → 𝐵 < 𝐸) |
lt4addmuld.clte | ⊢ (𝜑 → 𝐶 < 𝐸) |
lt4addmuld.dlte | ⊢ (𝜑 → 𝐷 < 𝐸) |
Ref | Expression |
---|---|
lt4addmuld | ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt4addmuld.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lt4addmuld.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 10358 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
4 | lt4addmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 3, 4 | readdcld 10358 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ) |
6 | lt4addmuld.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | 3re 11393 | . . . . 5 ⊢ 3 ∈ ℝ | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
9 | lt4addmuld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) | |
10 | 8, 9 | remulcld 10359 | . . 3 ⊢ (𝜑 → (3 · 𝐸) ∈ ℝ) |
11 | lt4addmuld.alte | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐸) | |
12 | lt4addmuld.blte | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐸) | |
13 | lt4addmuld.clte | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐸) | |
14 | 1, 2, 4, 9, 11, 12, 13 | lt3addmuld 40260 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸)) |
15 | lt4addmuld.dlte | . . 3 ⊢ (𝜑 → 𝐷 < 𝐸) | |
16 | 5, 6, 10, 9, 14, 15 | lt2addd 10942 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸)) |
17 | df-4 11378 | . . . . 5 ⊢ 4 = (3 + 1) | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 4 = (3 + 1)) |
19 | 18 | oveq1d 6893 | . . 3 ⊢ (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸)) |
20 | 8 | recnd 10357 | . . . 4 ⊢ (𝜑 → 3 ∈ ℂ) |
21 | 9 | recnd 10357 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
22 | 20, 21 | adddirp1d 10355 | . . 3 ⊢ (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸)) |
23 | 19, 22 | eqtr2d 2834 | . 2 ⊢ (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸)) |
24 | 16, 23 | breqtrd 4869 | 1 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 class class class wbr 4843 (class class class)co 6878 ℝcr 10223 1c1 10225 + caddc 10227 · cmul 10229 < clt 10363 3c3 11369 4c4 11370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-2 11376 df-3 11377 df-4 11378 |
This theorem is referenced by: limclner 40627 |
Copyright terms: Public domain | W3C validator |