| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lt4addmuld | Structured version Visualization version GIF version | ||
| Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| lt4addmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lt4addmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lt4addmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lt4addmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| lt4addmuld.e | ⊢ (𝜑 → 𝐸 ∈ ℝ) |
| lt4addmuld.alte | ⊢ (𝜑 → 𝐴 < 𝐸) |
| lt4addmuld.blte | ⊢ (𝜑 → 𝐵 < 𝐸) |
| lt4addmuld.clte | ⊢ (𝜑 → 𝐶 < 𝐸) |
| lt4addmuld.dlte | ⊢ (𝜑 → 𝐷 < 𝐸) |
| Ref | Expression |
|---|---|
| lt4addmuld | ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt4addmuld.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | lt4addmuld.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | readdcld 11179 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
| 4 | lt4addmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 3, 4 | readdcld 11179 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ) |
| 6 | lt4addmuld.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 7 | 3re 12242 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
| 9 | lt4addmuld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) | |
| 10 | 8, 9 | remulcld 11180 | . . 3 ⊢ (𝜑 → (3 · 𝐸) ∈ ℝ) |
| 11 | lt4addmuld.alte | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐸) | |
| 12 | lt4addmuld.blte | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐸) | |
| 13 | lt4addmuld.clte | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐸) | |
| 14 | 1, 2, 4, 9, 11, 12, 13 | lt3addmuld 45292 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸)) |
| 15 | lt4addmuld.dlte | . . 3 ⊢ (𝜑 → 𝐷 < 𝐸) | |
| 16 | 5, 6, 10, 9, 14, 15 | lt2addd 11777 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸)) |
| 17 | df-4 12227 | . . . . 5 ⊢ 4 = (3 + 1) | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 4 = (3 + 1)) |
| 19 | 18 | oveq1d 7384 | . . 3 ⊢ (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸)) |
| 20 | 8 | recnd 11178 | . . . 4 ⊢ (𝜑 → 3 ∈ ℂ) |
| 21 | 9 | recnd 11178 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 22 | 20, 21 | adddirp1d 11176 | . . 3 ⊢ (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸)) |
| 23 | 19, 22 | eqtr2d 2765 | . 2 ⊢ (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸)) |
| 24 | 16, 23 | breqtrd 5128 | 1 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 3c3 12218 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: limclner 45642 |
| Copyright terms: Public domain | W3C validator |