Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt4addmuld Structured version   Visualization version   GIF version

Theorem lt4addmuld 44679
Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt4addmuld.a (𝜑𝐴 ∈ ℝ)
lt4addmuld.b (𝜑𝐵 ∈ ℝ)
lt4addmuld.c (𝜑𝐶 ∈ ℝ)
lt4addmuld.d (𝜑𝐷 ∈ ℝ)
lt4addmuld.e (𝜑𝐸 ∈ ℝ)
lt4addmuld.alte (𝜑𝐴 < 𝐸)
lt4addmuld.blte (𝜑𝐵 < 𝐸)
lt4addmuld.clte (𝜑𝐶 < 𝐸)
lt4addmuld.dlte (𝜑𝐷 < 𝐸)
Assertion
Ref Expression
lt4addmuld (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))

Proof of Theorem lt4addmuld
StepHypRef Expression
1 lt4addmuld.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 lt4addmuld.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 11268 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 lt4addmuld.c . . . 4 (𝜑𝐶 ∈ ℝ)
53, 4readdcld 11268 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
6 lt4addmuld.d . . 3 (𝜑𝐷 ∈ ℝ)
7 3re 12317 . . . . 5 3 ∈ ℝ
87a1i 11 . . . 4 (𝜑 → 3 ∈ ℝ)
9 lt4addmuld.e . . . 4 (𝜑𝐸 ∈ ℝ)
108, 9remulcld 11269 . . 3 (𝜑 → (3 · 𝐸) ∈ ℝ)
11 lt4addmuld.alte . . . 4 (𝜑𝐴 < 𝐸)
12 lt4addmuld.blte . . . 4 (𝜑𝐵 < 𝐸)
13 lt4addmuld.clte . . . 4 (𝜑𝐶 < 𝐸)
141, 2, 4, 9, 11, 12, 13lt3addmuld 44674 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸))
15 lt4addmuld.dlte . . 3 (𝜑𝐷 < 𝐸)
165, 6, 10, 9, 14, 15lt2addd 11862 . 2 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸))
17 df-4 12302 . . . . 5 4 = (3 + 1)
1817a1i 11 . . . 4 (𝜑 → 4 = (3 + 1))
1918oveq1d 7430 . . 3 (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸))
208recnd 11267 . . . 4 (𝜑 → 3 ∈ ℂ)
219recnd 11267 . . . 4 (𝜑𝐸 ∈ ℂ)
2220, 21adddirp1d 11265 . . 3 (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸))
2319, 22eqtr2d 2769 . 2 (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸))
2416, 23breqtrd 5169 1 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   class class class wbr 5143  (class class class)co 7415  cr 11132  1c1 11134   + caddc 11136   · cmul 11138   < clt 11273  3c3 12293  4c4 12294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-2 12300  df-3 12301  df-4 12302
This theorem is referenced by:  limclner  45030
  Copyright terms: Public domain W3C validator