Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lt4addmuld | Structured version Visualization version GIF version |
Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lt4addmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lt4addmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lt4addmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt4addmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lt4addmuld.e | ⊢ (𝜑 → 𝐸 ∈ ℝ) |
lt4addmuld.alte | ⊢ (𝜑 → 𝐴 < 𝐸) |
lt4addmuld.blte | ⊢ (𝜑 → 𝐵 < 𝐸) |
lt4addmuld.clte | ⊢ (𝜑 → 𝐶 < 𝐸) |
lt4addmuld.dlte | ⊢ (𝜑 → 𝐷 < 𝐸) |
Ref | Expression |
---|---|
lt4addmuld | ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt4addmuld.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lt4addmuld.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 10935 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
4 | lt4addmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 3, 4 | readdcld 10935 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ) |
6 | lt4addmuld.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | 3re 11983 | . . . . 5 ⊢ 3 ∈ ℝ | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℝ) |
9 | lt4addmuld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ) | |
10 | 8, 9 | remulcld 10936 | . . 3 ⊢ (𝜑 → (3 · 𝐸) ∈ ℝ) |
11 | lt4addmuld.alte | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐸) | |
12 | lt4addmuld.blte | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐸) | |
13 | lt4addmuld.clte | . . . 4 ⊢ (𝜑 → 𝐶 < 𝐸) | |
14 | 1, 2, 4, 9, 11, 12, 13 | lt3addmuld 42730 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸)) |
15 | lt4addmuld.dlte | . . 3 ⊢ (𝜑 → 𝐷 < 𝐸) | |
16 | 5, 6, 10, 9, 14, 15 | lt2addd 11528 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸)) |
17 | df-4 11968 | . . . . 5 ⊢ 4 = (3 + 1) | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 4 = (3 + 1)) |
19 | 18 | oveq1d 7270 | . . 3 ⊢ (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸)) |
20 | 8 | recnd 10934 | . . . 4 ⊢ (𝜑 → 3 ∈ ℂ) |
21 | 9 | recnd 10934 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
22 | 20, 21 | adddirp1d 10932 | . . 3 ⊢ (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸)) |
23 | 19, 22 | eqtr2d 2779 | . 2 ⊢ (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸)) |
24 | 16, 23 | breqtrd 5096 | 1 ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 3c3 11959 4c4 11960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-2 11966 df-3 11967 df-4 11968 |
This theorem is referenced by: limclner 43082 |
Copyright terms: Public domain | W3C validator |