Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt4addmuld Structured version   Visualization version   GIF version

Theorem lt4addmuld 42423
Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt4addmuld.a (𝜑𝐴 ∈ ℝ)
lt4addmuld.b (𝜑𝐵 ∈ ℝ)
lt4addmuld.c (𝜑𝐶 ∈ ℝ)
lt4addmuld.d (𝜑𝐷 ∈ ℝ)
lt4addmuld.e (𝜑𝐸 ∈ ℝ)
lt4addmuld.alte (𝜑𝐴 < 𝐸)
lt4addmuld.blte (𝜑𝐵 < 𝐸)
lt4addmuld.clte (𝜑𝐶 < 𝐸)
lt4addmuld.dlte (𝜑𝐷 < 𝐸)
Assertion
Ref Expression
lt4addmuld (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))

Proof of Theorem lt4addmuld
StepHypRef Expression
1 lt4addmuld.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 lt4addmuld.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10760 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 lt4addmuld.c . . . 4 (𝜑𝐶 ∈ ℝ)
53, 4readdcld 10760 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
6 lt4addmuld.d . . 3 (𝜑𝐷 ∈ ℝ)
7 3re 11808 . . . . 5 3 ∈ ℝ
87a1i 11 . . . 4 (𝜑 → 3 ∈ ℝ)
9 lt4addmuld.e . . . 4 (𝜑𝐸 ∈ ℝ)
108, 9remulcld 10761 . . 3 (𝜑 → (3 · 𝐸) ∈ ℝ)
11 lt4addmuld.alte . . . 4 (𝜑𝐴 < 𝐸)
12 lt4addmuld.blte . . . 4 (𝜑𝐵 < 𝐸)
13 lt4addmuld.clte . . . 4 (𝜑𝐶 < 𝐸)
141, 2, 4, 9, 11, 12, 13lt3addmuld 42418 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸))
15 lt4addmuld.dlte . . 3 (𝜑𝐷 < 𝐸)
165, 6, 10, 9, 14, 15lt2addd 11353 . 2 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸))
17 df-4 11793 . . . . 5 4 = (3 + 1)
1817a1i 11 . . . 4 (𝜑 → 4 = (3 + 1))
1918oveq1d 7197 . . 3 (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸))
208recnd 10759 . . . 4 (𝜑 → 3 ∈ ℂ)
219recnd 10759 . . . 4 (𝜑𝐸 ∈ ℂ)
2220, 21adddirp1d 10757 . . 3 (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸))
2319, 22eqtr2d 2775 . 2 (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸))
2416, 23breqtrd 5066 1 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114   class class class wbr 5040  (class class class)co 7182  cr 10626  1c1 10628   + caddc 10630   · cmul 10632   < clt 10765  3c3 11784  4c4 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7185  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-2 11791  df-3 11792  df-4 11793
This theorem is referenced by:  limclner  42774
  Copyright terms: Public domain W3C validator