Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt4addmuld Structured version   Visualization version   GIF version

Theorem lt4addmuld 40265
Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt4addmuld.a (𝜑𝐴 ∈ ℝ)
lt4addmuld.b (𝜑𝐵 ∈ ℝ)
lt4addmuld.c (𝜑𝐶 ∈ ℝ)
lt4addmuld.d (𝜑𝐷 ∈ ℝ)
lt4addmuld.e (𝜑𝐸 ∈ ℝ)
lt4addmuld.alte (𝜑𝐴 < 𝐸)
lt4addmuld.blte (𝜑𝐵 < 𝐸)
lt4addmuld.clte (𝜑𝐶 < 𝐸)
lt4addmuld.dlte (𝜑𝐷 < 𝐸)
Assertion
Ref Expression
lt4addmuld (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))

Proof of Theorem lt4addmuld
StepHypRef Expression
1 lt4addmuld.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 lt4addmuld.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10358 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 lt4addmuld.c . . . 4 (𝜑𝐶 ∈ ℝ)
53, 4readdcld 10358 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) ∈ ℝ)
6 lt4addmuld.d . . 3 (𝜑𝐷 ∈ ℝ)
7 3re 11393 . . . . 5 3 ∈ ℝ
87a1i 11 . . . 4 (𝜑 → 3 ∈ ℝ)
9 lt4addmuld.e . . . 4 (𝜑𝐸 ∈ ℝ)
108, 9remulcld 10359 . . 3 (𝜑 → (3 · 𝐸) ∈ ℝ)
11 lt4addmuld.alte . . . 4 (𝜑𝐴 < 𝐸)
12 lt4addmuld.blte . . . 4 (𝜑𝐵 < 𝐸)
13 lt4addmuld.clte . . . 4 (𝜑𝐶 < 𝐸)
141, 2, 4, 9, 11, 12, 13lt3addmuld 40260 . . 3 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐸))
15 lt4addmuld.dlte . . 3 (𝜑𝐷 < 𝐸)
165, 6, 10, 9, 14, 15lt2addd 10942 . 2 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < ((3 · 𝐸) + 𝐸))
17 df-4 11378 . . . . 5 4 = (3 + 1)
1817a1i 11 . . . 4 (𝜑 → 4 = (3 + 1))
1918oveq1d 6893 . . 3 (𝜑 → (4 · 𝐸) = ((3 + 1) · 𝐸))
208recnd 10357 . . . 4 (𝜑 → 3 ∈ ℂ)
219recnd 10357 . . . 4 (𝜑𝐸 ∈ ℂ)
2220, 21adddirp1d 10355 . . 3 (𝜑 → ((3 + 1) · 𝐸) = ((3 · 𝐸) + 𝐸))
2319, 22eqtr2d 2834 . 2 (𝜑 → ((3 · 𝐸) + 𝐸) = (4 · 𝐸))
2416, 23breqtrd 4869 1 (𝜑 → (((𝐴 + 𝐵) + 𝐶) + 𝐷) < (4 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157   class class class wbr 4843  (class class class)co 6878  cr 10223  1c1 10225   + caddc 10227   · cmul 10229   < clt 10363  3c3 11369  4c4 11370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-2 11376  df-3 11377  df-4 11378
This theorem is referenced by:  limclner  40627
  Copyright terms: Public domain W3C validator