MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldmulg Structured version   Visualization version   GIF version

Theorem cnfldmulg 20542
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))

Proof of Theorem cnfldmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑥 = 0 → (𝑥(.g‘ℂfld)𝐵) = (0(.g‘ℂfld)𝐵))
2 oveq1 7262 . . . 4 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2754 . . 3 (𝑥 = 0 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (0(.g‘ℂfld)𝐵) = (0 · 𝐵)))
4 oveq1 7262 . . . 4 (𝑥 = 𝑦 → (𝑥(.g‘ℂfld)𝐵) = (𝑦(.g‘ℂfld)𝐵))
5 oveq1 7262 . . . 4 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2754 . . 3 (𝑥 = 𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵)))
7 oveq1 7262 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥(.g‘ℂfld)𝐵) = ((𝑦 + 1)(.g‘ℂfld)𝐵))
8 oveq1 7262 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2754 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 7262 . . . 4 (𝑥 = -𝑦 → (𝑥(.g‘ℂfld)𝐵) = (-𝑦(.g‘ℂfld)𝐵))
11 oveq1 7262 . . . 4 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2754 . . 3 (𝑥 = -𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
13 oveq1 7262 . . . 4 (𝑥 = 𝐴 → (𝑥(.g‘ℂfld)𝐵) = (𝐴(.g‘ℂfld)𝐵))
14 oveq1 7262 . . . 4 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2754 . . 3 (𝑥 = 𝐴 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
16 cnfldbas 20514 . . . . 5 ℂ = (Base‘ℂfld)
17 cnfld0 20534 . . . . 5 0 = (0g‘ℂfld)
18 eqid 2738 . . . . 5 (.g‘ℂfld) = (.g‘ℂfld)
1916, 17, 18mulg0 18622 . . . 4 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = 0)
20 mul02 11083 . . . 4 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2119, 20eqtr4d 2781 . . 3 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = (0 · 𝐵))
22 oveq1 7262 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵))
23 cnring 20532 . . . . . . . 8 fld ∈ Ring
24 ringmnd 19708 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2523, 24ax-mp 5 . . . . . . 7 fld ∈ Mnd
26 cnfldadd 20515 . . . . . . . 8 + = (+g‘ℂfld)
2716, 18, 26mulgnn0p1 18630 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
2825, 27mp3an1 1446 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
29 nn0cn 12173 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
3029adantr 480 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝑦 ∈ ℂ)
31 simpr 484 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3230, 31adddirp1d 10932 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + 𝐵))
3328, 32eqeq12d 2754 . . . . 5 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → (((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵)))
3422, 33syl5ibr 245 . . . 4 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
3534expcom 413 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ0 → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵))))
36 fveq2 6756 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
37 eqid 2738 . . . . . . 7 (invg‘ℂfld) = (invg‘ℂfld)
3816, 18, 37mulgnegnn 18629 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦(.g‘ℂfld)𝐵) = ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)))
39 nncn 11911 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
40 mulneg1 11341 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
4139, 40sylan 579 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
42 mulcl 10886 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4339, 42sylan 579 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
44 cnfldneg 20536 . . . . . . . 8 ((𝑦 · 𝐵) ∈ ℂ → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4543, 44syl 17 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4641, 45eqtr4d 2781 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
4738, 46eqeq12d 2754 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵) ↔ ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵))))
4836, 47syl5ibr 245 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
4948expcom 413 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵))))
503, 6, 9, 12, 15, 21, 35, 49zindd 12351 . 2 (𝐵 ∈ ℂ → (𝐴 ∈ ℤ → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
5150impcom 407 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  -cneg 11136  cn 11903  0cn0 12163  cz 12249  Mndcmnd 18300  invgcminusg 18493  .gcmg 18615  Ringcrg 19698  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616  df-cmn 19303  df-mgp 19636  df-ring 19700  df-cring 19701  df-cnfld 20511
This theorem is referenced by:  zsssubrg  20568  zringmulg  20590  zringcyg  20603  mulgrhm2  20612  remulg  20724  amgmlem  26044  cnzh  31820  rezh  31821
  Copyright terms: Public domain W3C validator