MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldmulg Structured version   Visualization version   GIF version

Theorem cnfldmulg 19992
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))

Proof of Theorem cnfldmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6799 . . . 4 (𝑥 = 0 → (𝑥(.g‘ℂfld)𝐵) = (0(.g‘ℂfld)𝐵))
2 oveq1 6799 . . . 4 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2785 . . 3 (𝑥 = 0 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (0(.g‘ℂfld)𝐵) = (0 · 𝐵)))
4 oveq1 6799 . . . 4 (𝑥 = 𝑦 → (𝑥(.g‘ℂfld)𝐵) = (𝑦(.g‘ℂfld)𝐵))
5 oveq1 6799 . . . 4 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2785 . . 3 (𝑥 = 𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵)))
7 oveq1 6799 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥(.g‘ℂfld)𝐵) = ((𝑦 + 1)(.g‘ℂfld)𝐵))
8 oveq1 6799 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2785 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 6799 . . . 4 (𝑥 = -𝑦 → (𝑥(.g‘ℂfld)𝐵) = (-𝑦(.g‘ℂfld)𝐵))
11 oveq1 6799 . . . 4 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2785 . . 3 (𝑥 = -𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
13 oveq1 6799 . . . 4 (𝑥 = 𝐴 → (𝑥(.g‘ℂfld)𝐵) = (𝐴(.g‘ℂfld)𝐵))
14 oveq1 6799 . . . 4 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2785 . . 3 (𝑥 = 𝐴 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
16 cnfldbas 19964 . . . . 5 ℂ = (Base‘ℂfld)
17 cnfld0 19984 . . . . 5 0 = (0g‘ℂfld)
18 eqid 2770 . . . . 5 (.g‘ℂfld) = (.g‘ℂfld)
1916, 17, 18mulg0 17753 . . . 4 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = 0)
20 mul02 10415 . . . 4 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2119, 20eqtr4d 2807 . . 3 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = (0 · 𝐵))
22 oveq1 6799 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵))
23 cnring 19982 . . . . . . . 8 fld ∈ Ring
24 ringmnd 18763 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2523, 24ax-mp 5 . . . . . . 7 fld ∈ Mnd
26 cnfldadd 19965 . . . . . . . 8 + = (+g‘ℂfld)
2716, 18, 26mulgnn0p1 17759 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
2825, 27mp3an1 1558 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
29 nn0cn 11503 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
3029adantr 466 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝑦 ∈ ℂ)
31 1cnd 10257 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 1 ∈ ℂ)
32 simpr 471 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3330, 31, 32adddird 10266 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
34 mulid2 10239 . . . . . . . . 9 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
3534adantl 467 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → (1 · 𝐵) = 𝐵)
3635oveq2d 6808 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 · 𝐵) + (1 · 𝐵)) = ((𝑦 · 𝐵) + 𝐵))
3733, 36eqtrd 2804 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + 𝐵))
3828, 37eqeq12d 2785 . . . . 5 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → (((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵)))
3922, 38syl5ibr 236 . . . 4 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
4039expcom 398 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ0 → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵))))
41 fveq2 6332 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
42 eqid 2770 . . . . . . 7 (invg‘ℂfld) = (invg‘ℂfld)
4316, 18, 42mulgnegnn 17758 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦(.g‘ℂfld)𝐵) = ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)))
44 nncn 11229 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
45 mulneg1 10667 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
4644, 45sylan 561 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
47 mulcl 10221 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4844, 47sylan 561 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
49 cnfldneg 19986 . . . . . . . 8 ((𝑦 · 𝐵) ∈ ℂ → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
5048, 49syl 17 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
5146, 50eqtr4d 2807 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
5243, 51eqeq12d 2785 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵) ↔ ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵))))
5341, 52syl5ibr 236 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
5453expcom 398 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵))))
553, 6, 9, 12, 15, 21, 40, 54zindd 11679 . 2 (𝐵 ∈ ℂ → (𝐴 ∈ ℤ → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
5655impcom 394 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  cfv 6031  (class class class)co 6792  cc 10135  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  -cneg 10468  cn 11221  0cn0 11493  cz 11578  Mndcmnd 17501  invgcminusg 17630  .gcmg 17747  Ringcrg 18754  fldccnfld 19960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-seq 13008  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-plusg 16161  df-mulr 16162  df-starv 16163  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-mulg 17748  df-cmn 18401  df-mgp 18697  df-ring 18756  df-cring 18757  df-cnfld 19961
This theorem is referenced by:  zsssubrg  20018  zringmulg  20040  zringcyg  20053  mulgrhm2  20061  remulg  20169  amgmlem  24936  cnzh  30348  rezh  30349
  Copyright terms: Public domain W3C validator