Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem19 Structured version   Visualization version   GIF version

Theorem fourierdlem19 43342
Description: If two elements of 𝐷 have the same periodic image in (𝐴(,]𝐵) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem19.a (𝜑𝐴 ∈ ℝ)
fourierdlem19.b (𝜑𝐵 ∈ ℝ)
fourierdlem19.altb (𝜑𝐴 < 𝐵)
fourierdlem19.x (𝜑𝑋 ∈ ℝ)
fourierdlem19.d 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
fourierdlem19.t 𝑇 = (𝐵𝐴)
fourierdlem19.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem19.w (𝜑𝑊𝐷)
fourierdlem19.z (𝜑𝑍𝐷)
fourierdlem19.ezew (𝜑 → (𝐸𝑍) = (𝐸𝑊))
Assertion
Ref Expression
fourierdlem19 (𝜑 → ¬ 𝑊 < 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝑥,𝑇   𝑥,𝑊   𝑦,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   𝑇(𝑦,𝑘)   𝐸(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)   𝑋(𝑥,𝑘)   𝑍(𝑦,𝑘)

Proof of Theorem fourierdlem19
StepHypRef Expression
1 fourierdlem19.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem19.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
31, 2readdcld 10862 . . . . 5 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
43rexrd 10883 . . . 4 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
5 fourierdlem19.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
65, 2readdcld 10862 . . . . 5 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
76rexrd 10883 . . . 4 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
8 fourierdlem19.d . . . . . 6 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
9 ssrab2 3993 . . . . . 6 {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
108, 9eqsstri 3935 . . . . 5 𝐷 ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
11 fourierdlem19.z . . . . 5 (𝜑𝑍𝐷)
1210, 11sseldi 3899 . . . 4 (𝜑𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
13 iocleub 42716 . . . 4 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → 𝑍 ≤ (𝐵 + 𝑋))
144, 7, 12, 13syl3anc 1373 . . 3 (𝜑𝑍 ≤ (𝐵 + 𝑋))
1514adantr 484 . 2 ((𝜑𝑊 < 𝑍) → 𝑍 ≤ (𝐵 + 𝑋))
166adantr 484 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) ∈ ℝ)
17 iocssre 13015 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ) → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
184, 6, 17syl2anc 587 . . . . . . 7 (𝜑 → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
19 fourierdlem19.w . . . . . . . 8 (𝜑𝑊𝐷)
2010, 19sseldi 3899 . . . . . . 7 (𝜑𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
2118, 20sseldd 3902 . . . . . 6 (𝜑𝑊 ∈ ℝ)
22 fourierdlem19.t . . . . . . 7 𝑇 = (𝐵𝐴)
235, 1resubcld 11260 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
2422, 23eqeltrid 2842 . . . . . 6 (𝜑𝑇 ∈ ℝ)
2521, 24readdcld 10862 . . . . 5 (𝜑 → (𝑊 + 𝑇) ∈ ℝ)
2625adantr 484 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ∈ ℝ)
2718, 12sseldd 3902 . . . . 5 (𝜑𝑍 ∈ ℝ)
2827adantr 484 . . . 4 ((𝜑𝑊 < 𝑍) → 𝑍 ∈ ℝ)
2922eqcomi 2746 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) = 𝑇)
315recnd 10861 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
321recnd 10861 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
3324recnd 10861 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
3431, 32, 33subaddd 11207 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
3530, 34mpbid 235 . . . . . . . . 9 (𝜑 → (𝐴 + 𝑇) = 𝐵)
3635eqcomd 2743 . . . . . . . 8 (𝜑𝐵 = (𝐴 + 𝑇))
3736oveq1d 7228 . . . . . . 7 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑇) + 𝑋))
382recnd 10861 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
3932, 33, 38add32d 11059 . . . . . . 7 (𝜑 → ((𝐴 + 𝑇) + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
4037, 39eqtrd 2777 . . . . . 6 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
41 iocgtlb 42715 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → (𝐴 + 𝑋) < 𝑊)
424, 7, 20, 41syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴 + 𝑋) < 𝑊)
433, 21, 24, 42ltadd1dd 11443 . . . . . 6 (𝜑 → ((𝐴 + 𝑋) + 𝑇) < (𝑊 + 𝑇))
4440, 43eqbrtrd 5075 . . . . 5 (𝜑 → (𝐵 + 𝑋) < (𝑊 + 𝑇))
4544adantr 484 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < (𝑊 + 𝑇))
46 fourierdlem19.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4746a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
48 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑊𝑥 = 𝑊)
49 oveq2 7221 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑊 → (𝐵𝑥) = (𝐵𝑊))
5049oveq1d 7228 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑊 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑊) / 𝑇))
5150fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑥 = 𝑊 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑊) / 𝑇)))
5251oveq1d 7228 . . . . . . . . . . . . . 14 (𝑥 = 𝑊 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
5348, 52oveq12d 7231 . . . . . . . . . . . . 13 (𝑥 = 𝑊 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
5453adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝑊) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
555, 21resubcld 11260 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊) ∈ ℝ)
56 fourierdlem19.altb . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
571, 5posdifd 11419 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5856, 57mpbid 235 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < (𝐵𝐴))
5958, 22breqtrrdi 5095 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑇)
6059gt0ne0d 11396 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ≠ 0)
6155, 24, 60redivcld 11660 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝑊) / 𝑇) ∈ ℝ)
6261flcld 13373 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
6362zred 12282 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
6463, 24remulcld 10863 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
6521, 64readdcld 10862 . . . . . . . . . . . 12 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) ∈ ℝ)
6647, 54, 21, 65fvmptd 6825 . . . . . . . . . . 11 (𝜑 → (𝐸𝑊) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
6766, 65eqeltrd 2838 . . . . . . . . . 10 (𝜑 → (𝐸𝑊) ∈ ℝ)
6867recnd 10861 . . . . . . . . 9 (𝜑 → (𝐸𝑊) ∈ ℂ)
6968adantr 484 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℂ)
7064recnd 10861 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7170adantr 484 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7233adantr 484 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℂ)
7369, 71, 72subsubd 11217 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
7473eqcomd 2743 . . . . . 6 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) = ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)))
755, 27resubcld 11260 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑍) ∈ ℝ)
7675, 24, 60redivcld 11660 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑍) / 𝑇) ∈ ℝ)
7776flcld 13373 . . . . . . . . . 10 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
7877zred 12282 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
7978adantr 484 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
8024adantr 484 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ)
8179, 80remulcld 10863 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8263adantr 484 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
8382, 80remulcld 10863 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
8483, 80resubcld 11260 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇) ∈ ℝ)
8567adantr 484 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℝ)
8678, 24remulcld 10863 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8786recnd 10861 . . . . . . . . . . 11 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℂ)
8887, 33pncand 11190 . . . . . . . . . 10 (𝜑 → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
8988eqcomd 2743 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9089adantr 484 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9181, 80readdcld 10862 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ∈ ℝ)
9278recnd 10861 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℂ)
9392, 33adddirp1d 10859 . . . . . . . . . . . 12 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇))
9493eqcomd 2743 . . . . . . . . . . 11 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
9594adantr 484 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
96 1red 10834 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → 1 ∈ ℝ)
9779, 96readdcld 10862 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ∈ ℝ)
98 0red 10836 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
9998, 24, 59ltled 10980 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑇)
10099adantr 484 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → 0 ≤ 𝑇)
10185, 28resubcld 11260 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) ∈ ℝ)
10221adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 ∈ ℝ)
10385, 102resubcld 11260 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑊) ∈ ℝ)
10424, 59elrpd 12625 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
105104adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ+)
106 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 < 𝑍)
107102, 28, 85, 106ltsub2dd 11445 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) < ((𝐸𝑊) − 𝑊))
108101, 103, 105, 107ltdiv1dd 12685 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − 𝑍) / 𝑇) < (((𝐸𝑊) − 𝑊) / 𝑇))
109 fourierdlem19.ezew . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝐸𝑊))
110 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍𝑥 = 𝑍)
111 oveq2 7221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑍 → (𝐵𝑥) = (𝐵𝑍))
112111oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑍 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑍) / 𝑇))
113112fveq2d 6721 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑍 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑍) / 𝑇)))
114113oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
115110, 114oveq12d 7231 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑍 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
116115adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 𝑍) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
11727, 86readdcld 10862 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) ∈ ℝ)
11847, 116, 27, 117fvmptd 6825 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
119109, 118eqtr3d 2779 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸𝑊) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
120119oveq1d 7228 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸𝑊) − 𝑍) = ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍))
12127recnd 10861 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
122121, 87pncan2d 11191 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
123120, 122eqtrd 2777 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
124123oveq1d 7228 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑍) / 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇))
12592, 33, 60divcan4d 11614 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑍) / 𝑇)))
126124, 125eqtr2d 2778 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
127126adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
12866oveq1d 7228 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑊) = ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊))
129128oveq1d 7228 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑊) / 𝑇) = (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇))
13021recnd 10861 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
131130, 70pncan2d 11191 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
132131oveq1d 7228 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇) = (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇))
13363recnd 10861 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℂ)
134133, 33, 60divcan4d 11614 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑊) / 𝑇)))
135129, 132, 1343eqtrrd 2782 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
136135adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
137108, 127, 1363brtr4d 5085 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)))
13877adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
13962adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
140 zltp1le 12227 . . . . . . . . . . . . 13 (((⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ ∧ (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
141138, 139, 140syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
142137, 141mpbid 235 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇)))
14397, 82, 80, 100, 142lemul1ad 11771 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14495, 143eqbrtrd 5075 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14591, 83, 80, 144lesub1dd 11448 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14690, 145eqbrtrd 5075 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14781, 84, 85, 146lesub2dd 11449 . . . . . 6 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14874, 147eqbrtrd 5075 . . . . 5 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14966eqcomd 2743 . . . . . . . . 9 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊))
15068, 70, 130subadd2d 11208 . . . . . . . . 9 (𝜑 → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊 ↔ (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊)))
151149, 150mpbird 260 . . . . . . . 8 (𝜑 → ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊)
152151eqcomd 2743 . . . . . . 7 (𝜑𝑊 = ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
153152oveq1d 7228 . . . . . 6 (𝜑 → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
154153adantr 484 . . . . 5 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
155118eqcomd 2743 . . . . . . . 8 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍))
1561rexrd 10883 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
157 iocssre 13015 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
158156, 5, 157syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
1591, 5, 56, 22, 46fourierdlem4 43327 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
160159, 27ffvelrnd 6905 . . . . . . . . . . 11 (𝜑 → (𝐸𝑍) ∈ (𝐴(,]𝐵))
161158, 160sseldd 3902 . . . . . . . . . 10 (𝜑 → (𝐸𝑍) ∈ ℝ)
162161recnd 10861 . . . . . . . . 9 (𝜑 → (𝐸𝑍) ∈ ℂ)
163162, 87, 121subadd2d 11208 . . . . . . . 8 (𝜑 → (((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍 ↔ (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍)))
164155, 163mpbird 260 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍)
165109oveq1d 7228 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
166164, 165eqtr3d 2779 . . . . . 6 (𝜑𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
167166adantr 484 . . . . 5 ((𝜑𝑊 < 𝑍) → 𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
168148, 154, 1673brtr4d 5085 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ≤ 𝑍)
16916, 26, 28, 45, 168ltletrd 10992 . . 3 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < 𝑍)
17016, 28ltnled 10979 . . 3 ((𝜑𝑊 < 𝑍) → ((𝐵 + 𝑋) < 𝑍 ↔ ¬ 𝑍 ≤ (𝐵 + 𝑋)))
171169, 170mpbid 235 . 2 ((𝜑𝑊 < 𝑍) → ¬ 𝑍 ≤ (𝐵 + 𝑋))
17215, 171pm2.65da 817 1 (𝜑 → ¬ 𝑊 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wrex 3062  {crab 3065  wss 3866   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  *cxr 10866   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cz 12176  +crp 12586  (,]cioc 12936  cfl 13365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ioc 12940  df-fl 13367
This theorem is referenced by:  fourierdlem51  43373
  Copyright terms: Public domain W3C validator