Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem19 Structured version   Visualization version   GIF version

Theorem fourierdlem19 43667
Description: If two elements of 𝐷 have the same periodic image in (𝐴(,]𝐵) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem19.a (𝜑𝐴 ∈ ℝ)
fourierdlem19.b (𝜑𝐵 ∈ ℝ)
fourierdlem19.altb (𝜑𝐴 < 𝐵)
fourierdlem19.x (𝜑𝑋 ∈ ℝ)
fourierdlem19.d 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
fourierdlem19.t 𝑇 = (𝐵𝐴)
fourierdlem19.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem19.w (𝜑𝑊𝐷)
fourierdlem19.z (𝜑𝑍𝐷)
fourierdlem19.ezew (𝜑 → (𝐸𝑍) = (𝐸𝑊))
Assertion
Ref Expression
fourierdlem19 (𝜑 → ¬ 𝑊 < 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝑥,𝑇   𝑥,𝑊   𝑦,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   𝑇(𝑦,𝑘)   𝐸(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)   𝑋(𝑥,𝑘)   𝑍(𝑦,𝑘)

Proof of Theorem fourierdlem19
StepHypRef Expression
1 fourierdlem19.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem19.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
31, 2readdcld 11004 . . . . 5 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
43rexrd 11025 . . . 4 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
5 fourierdlem19.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
65, 2readdcld 11004 . . . . 5 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
76rexrd 11025 . . . 4 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
8 fourierdlem19.d . . . . . 6 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
9 ssrab2 4013 . . . . . 6 {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
108, 9eqsstri 3955 . . . . 5 𝐷 ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
11 fourierdlem19.z . . . . 5 (𝜑𝑍𝐷)
1210, 11sselid 3919 . . . 4 (𝜑𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
13 iocleub 43041 . . . 4 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → 𝑍 ≤ (𝐵 + 𝑋))
144, 7, 12, 13syl3anc 1370 . . 3 (𝜑𝑍 ≤ (𝐵 + 𝑋))
1514adantr 481 . 2 ((𝜑𝑊 < 𝑍) → 𝑍 ≤ (𝐵 + 𝑋))
166adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) ∈ ℝ)
17 iocssre 13159 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ) → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
184, 6, 17syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
19 fourierdlem19.w . . . . . . . 8 (𝜑𝑊𝐷)
2010, 19sselid 3919 . . . . . . 7 (𝜑𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
2118, 20sseldd 3922 . . . . . 6 (𝜑𝑊 ∈ ℝ)
22 fourierdlem19.t . . . . . . 7 𝑇 = (𝐵𝐴)
235, 1resubcld 11403 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
2422, 23eqeltrid 2843 . . . . . 6 (𝜑𝑇 ∈ ℝ)
2521, 24readdcld 11004 . . . . 5 (𝜑 → (𝑊 + 𝑇) ∈ ℝ)
2625adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ∈ ℝ)
2718, 12sseldd 3922 . . . . 5 (𝜑𝑍 ∈ ℝ)
2827adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → 𝑍 ∈ ℝ)
2922eqcomi 2747 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) = 𝑇)
315recnd 11003 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
321recnd 11003 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
3324recnd 11003 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
3431, 32, 33subaddd 11350 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
3530, 34mpbid 231 . . . . . . . . 9 (𝜑 → (𝐴 + 𝑇) = 𝐵)
3635eqcomd 2744 . . . . . . . 8 (𝜑𝐵 = (𝐴 + 𝑇))
3736oveq1d 7290 . . . . . . 7 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑇) + 𝑋))
382recnd 11003 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
3932, 33, 38add32d 11202 . . . . . . 7 (𝜑 → ((𝐴 + 𝑇) + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
4037, 39eqtrd 2778 . . . . . 6 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
41 iocgtlb 43040 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → (𝐴 + 𝑋) < 𝑊)
424, 7, 20, 41syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴 + 𝑋) < 𝑊)
433, 21, 24, 42ltadd1dd 11586 . . . . . 6 (𝜑 → ((𝐴 + 𝑋) + 𝑇) < (𝑊 + 𝑇))
4440, 43eqbrtrd 5096 . . . . 5 (𝜑 → (𝐵 + 𝑋) < (𝑊 + 𝑇))
4544adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < (𝑊 + 𝑇))
46 fourierdlem19.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4746a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
48 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑊𝑥 = 𝑊)
49 oveq2 7283 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑊 → (𝐵𝑥) = (𝐵𝑊))
5049oveq1d 7290 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑊 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑊) / 𝑇))
5150fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑥 = 𝑊 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑊) / 𝑇)))
5251oveq1d 7290 . . . . . . . . . . . . . 14 (𝑥 = 𝑊 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
5348, 52oveq12d 7293 . . . . . . . . . . . . 13 (𝑥 = 𝑊 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
5453adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝑊) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
555, 21resubcld 11403 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊) ∈ ℝ)
56 fourierdlem19.altb . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
571, 5posdifd 11562 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5856, 57mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < (𝐵𝐴))
5958, 22breqtrrdi 5116 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑇)
6059gt0ne0d 11539 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ≠ 0)
6155, 24, 60redivcld 11803 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝑊) / 𝑇) ∈ ℝ)
6261flcld 13518 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
6362zred 12426 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
6463, 24remulcld 11005 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
6521, 64readdcld 11004 . . . . . . . . . . . 12 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) ∈ ℝ)
6647, 54, 21, 65fvmptd 6882 . . . . . . . . . . 11 (𝜑 → (𝐸𝑊) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
6766, 65eqeltrd 2839 . . . . . . . . . 10 (𝜑 → (𝐸𝑊) ∈ ℝ)
6867recnd 11003 . . . . . . . . 9 (𝜑 → (𝐸𝑊) ∈ ℂ)
6968adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℂ)
7064recnd 11003 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7170adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7233adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℂ)
7369, 71, 72subsubd 11360 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
7473eqcomd 2744 . . . . . 6 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) = ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)))
755, 27resubcld 11403 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑍) ∈ ℝ)
7675, 24, 60redivcld 11803 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑍) / 𝑇) ∈ ℝ)
7776flcld 13518 . . . . . . . . . 10 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
7877zred 12426 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
7978adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
8024adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ)
8179, 80remulcld 11005 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8263adantr 481 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
8382, 80remulcld 11005 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
8483, 80resubcld 11403 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇) ∈ ℝ)
8567adantr 481 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℝ)
8678, 24remulcld 11005 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8786recnd 11003 . . . . . . . . . . 11 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℂ)
8887, 33pncand 11333 . . . . . . . . . 10 (𝜑 → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
8988eqcomd 2744 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9089adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9181, 80readdcld 11004 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ∈ ℝ)
9278recnd 11003 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℂ)
9392, 33adddirp1d 11001 . . . . . . . . . . . 12 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇))
9493eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
9594adantr 481 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
96 1red 10976 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → 1 ∈ ℝ)
9779, 96readdcld 11004 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ∈ ℝ)
98 0red 10978 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
9998, 24, 59ltled 11123 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑇)
10099adantr 481 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → 0 ≤ 𝑇)
10185, 28resubcld 11403 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) ∈ ℝ)
10221adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 ∈ ℝ)
10385, 102resubcld 11403 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑊) ∈ ℝ)
10424, 59elrpd 12769 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
105104adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ+)
106 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 < 𝑍)
107102, 28, 85, 106ltsub2dd 11588 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) < ((𝐸𝑊) − 𝑊))
108101, 103, 105, 107ltdiv1dd 12829 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − 𝑍) / 𝑇) < (((𝐸𝑊) − 𝑊) / 𝑇))
109 fourierdlem19.ezew . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝐸𝑊))
110 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍𝑥 = 𝑍)
111 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑍 → (𝐵𝑥) = (𝐵𝑍))
112111oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑍 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑍) / 𝑇))
113112fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑍 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑍) / 𝑇)))
114113oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
115110, 114oveq12d 7293 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑍 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
116115adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 𝑍) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
11727, 86readdcld 11004 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) ∈ ℝ)
11847, 116, 27, 117fvmptd 6882 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
119109, 118eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸𝑊) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
120119oveq1d 7290 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸𝑊) − 𝑍) = ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍))
12127recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
122121, 87pncan2d 11334 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
123120, 122eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
124123oveq1d 7290 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑍) / 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇))
12592, 33, 60divcan4d 11757 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑍) / 𝑇)))
126124, 125eqtr2d 2779 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
127126adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
12866oveq1d 7290 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑊) = ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊))
129128oveq1d 7290 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑊) / 𝑇) = (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇))
13021recnd 11003 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
131130, 70pncan2d 11334 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
132131oveq1d 7290 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇) = (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇))
13363recnd 11003 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℂ)
134133, 33, 60divcan4d 11757 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑊) / 𝑇)))
135129, 132, 1343eqtrrd 2783 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
136135adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
137108, 127, 1363brtr4d 5106 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)))
13877adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
13962adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
140 zltp1le 12370 . . . . . . . . . . . . 13 (((⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ ∧ (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
141138, 139, 140syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
142137, 141mpbid 231 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇)))
14397, 82, 80, 100, 142lemul1ad 11914 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14495, 143eqbrtrd 5096 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14591, 83, 80, 144lesub1dd 11591 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14690, 145eqbrtrd 5096 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14781, 84, 85, 146lesub2dd 11592 . . . . . 6 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14874, 147eqbrtrd 5096 . . . . 5 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14966eqcomd 2744 . . . . . . . . 9 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊))
15068, 70, 130subadd2d 11351 . . . . . . . . 9 (𝜑 → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊 ↔ (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊)))
151149, 150mpbird 256 . . . . . . . 8 (𝜑 → ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊)
152151eqcomd 2744 . . . . . . 7 (𝜑𝑊 = ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
153152oveq1d 7290 . . . . . 6 (𝜑 → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
154153adantr 481 . . . . 5 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
155118eqcomd 2744 . . . . . . . 8 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍))
1561rexrd 11025 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
157 iocssre 13159 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
158156, 5, 157syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
1591, 5, 56, 22, 46fourierdlem4 43652 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
160159, 27ffvelrnd 6962 . . . . . . . . . . 11 (𝜑 → (𝐸𝑍) ∈ (𝐴(,]𝐵))
161158, 160sseldd 3922 . . . . . . . . . 10 (𝜑 → (𝐸𝑍) ∈ ℝ)
162161recnd 11003 . . . . . . . . 9 (𝜑 → (𝐸𝑍) ∈ ℂ)
163162, 87, 121subadd2d 11351 . . . . . . . 8 (𝜑 → (((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍 ↔ (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍)))
164155, 163mpbird 256 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍)
165109oveq1d 7290 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
166164, 165eqtr3d 2780 . . . . . 6 (𝜑𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
167166adantr 481 . . . . 5 ((𝜑𝑊 < 𝑍) → 𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
168148, 154, 1673brtr4d 5106 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ≤ 𝑍)
16916, 26, 28, 45, 168ltletrd 11135 . . 3 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < 𝑍)
17016, 28ltnled 11122 . . 3 ((𝜑𝑊 < 𝑍) → ((𝐵 + 𝑋) < 𝑍 ↔ ¬ 𝑍 ≤ (𝐵 + 𝑋)))
171169, 170mpbid 231 . 2 ((𝜑𝑊 < 𝑍) → ¬ 𝑍 ≤ (𝐵 + 𝑋))
17215, 171pm2.65da 814 1 (𝜑 → ¬ 𝑊 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cz 12319  +crp 12730  (,]cioc 13080  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioc 13084  df-fl 13512
This theorem is referenced by:  fourierdlem51  43698
  Copyright terms: Public domain W3C validator