Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem19 Structured version   Visualization version   GIF version

Theorem fourierdlem19 46131
Description: If two elements of 𝐷 have the same periodic image in (𝐴(,]𝐵) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem19.a (𝜑𝐴 ∈ ℝ)
fourierdlem19.b (𝜑𝐵 ∈ ℝ)
fourierdlem19.altb (𝜑𝐴 < 𝐵)
fourierdlem19.x (𝜑𝑋 ∈ ℝ)
fourierdlem19.d 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
fourierdlem19.t 𝑇 = (𝐵𝐴)
fourierdlem19.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem19.w (𝜑𝑊𝐷)
fourierdlem19.z (𝜑𝑍𝐷)
fourierdlem19.ezew (𝜑 → (𝐸𝑍) = (𝐸𝑊))
Assertion
Ref Expression
fourierdlem19 (𝜑 → ¬ 𝑊 < 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝑥,𝑇   𝑥,𝑊   𝑦,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   𝑇(𝑦,𝑘)   𝐸(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)   𝑋(𝑥,𝑘)   𝑍(𝑦,𝑘)

Proof of Theorem fourierdlem19
StepHypRef Expression
1 fourierdlem19.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem19.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
31, 2readdcld 11210 . . . . 5 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
43rexrd 11231 . . . 4 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
5 fourierdlem19.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
65, 2readdcld 11210 . . . . 5 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
76rexrd 11231 . . . 4 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
8 fourierdlem19.d . . . . . 6 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
9 ssrab2 4046 . . . . . 6 {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
108, 9eqsstri 3996 . . . . 5 𝐷 ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
11 fourierdlem19.z . . . . 5 (𝜑𝑍𝐷)
1210, 11sselid 3947 . . . 4 (𝜑𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
13 iocleub 45508 . . . 4 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → 𝑍 ≤ (𝐵 + 𝑋))
144, 7, 12, 13syl3anc 1373 . . 3 (𝜑𝑍 ≤ (𝐵 + 𝑋))
1514adantr 480 . 2 ((𝜑𝑊 < 𝑍) → 𝑍 ≤ (𝐵 + 𝑋))
166adantr 480 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) ∈ ℝ)
17 iocssre 13395 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ) → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
184, 6, 17syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
19 fourierdlem19.w . . . . . . . 8 (𝜑𝑊𝐷)
2010, 19sselid 3947 . . . . . . 7 (𝜑𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
2118, 20sseldd 3950 . . . . . 6 (𝜑𝑊 ∈ ℝ)
22 fourierdlem19.t . . . . . . 7 𝑇 = (𝐵𝐴)
235, 1resubcld 11613 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
2422, 23eqeltrid 2833 . . . . . 6 (𝜑𝑇 ∈ ℝ)
2521, 24readdcld 11210 . . . . 5 (𝜑 → (𝑊 + 𝑇) ∈ ℝ)
2625adantr 480 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ∈ ℝ)
2718, 12sseldd 3950 . . . . 5 (𝜑𝑍 ∈ ℝ)
2827adantr 480 . . . 4 ((𝜑𝑊 < 𝑍) → 𝑍 ∈ ℝ)
2922eqcomi 2739 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) = 𝑇)
315recnd 11209 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
321recnd 11209 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
3324recnd 11209 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
3431, 32, 33subaddd 11558 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
3530, 34mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 + 𝑇) = 𝐵)
3635eqcomd 2736 . . . . . . . 8 (𝜑𝐵 = (𝐴 + 𝑇))
3736oveq1d 7405 . . . . . . 7 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑇) + 𝑋))
382recnd 11209 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
3932, 33, 38add32d 11409 . . . . . . 7 (𝜑 → ((𝐴 + 𝑇) + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
4037, 39eqtrd 2765 . . . . . 6 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
41 iocgtlb 45507 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → (𝐴 + 𝑋) < 𝑊)
424, 7, 20, 41syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴 + 𝑋) < 𝑊)
433, 21, 24, 42ltadd1dd 11796 . . . . . 6 (𝜑 → ((𝐴 + 𝑋) + 𝑇) < (𝑊 + 𝑇))
4440, 43eqbrtrd 5132 . . . . 5 (𝜑 → (𝐵 + 𝑋) < (𝑊 + 𝑇))
4544adantr 480 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < (𝑊 + 𝑇))
46 fourierdlem19.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4746a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
48 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑊𝑥 = 𝑊)
49 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑊 → (𝐵𝑥) = (𝐵𝑊))
5049oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑊 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑊) / 𝑇))
5150fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑥 = 𝑊 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑊) / 𝑇)))
5251oveq1d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑊 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
5348, 52oveq12d 7408 . . . . . . . . . . . . 13 (𝑥 = 𝑊 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
5453adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝑊) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
555, 21resubcld 11613 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊) ∈ ℝ)
56 fourierdlem19.altb . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
571, 5posdifd 11772 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5856, 57mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < (𝐵𝐴))
5958, 22breqtrrdi 5152 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑇)
6059gt0ne0d 11749 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ≠ 0)
6155, 24, 60redivcld 12017 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝑊) / 𝑇) ∈ ℝ)
6261flcld 13767 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
6362zred 12645 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
6463, 24remulcld 11211 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
6521, 64readdcld 11210 . . . . . . . . . . . 12 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) ∈ ℝ)
6647, 54, 21, 65fvmptd 6978 . . . . . . . . . . 11 (𝜑 → (𝐸𝑊) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
6766, 65eqeltrd 2829 . . . . . . . . . 10 (𝜑 → (𝐸𝑊) ∈ ℝ)
6867recnd 11209 . . . . . . . . 9 (𝜑 → (𝐸𝑊) ∈ ℂ)
6968adantr 480 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℂ)
7064recnd 11209 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7170adantr 480 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7233adantr 480 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℂ)
7369, 71, 72subsubd 11568 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
7473eqcomd 2736 . . . . . 6 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) = ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)))
755, 27resubcld 11613 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑍) ∈ ℝ)
7675, 24, 60redivcld 12017 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑍) / 𝑇) ∈ ℝ)
7776flcld 13767 . . . . . . . . . 10 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
7877zred 12645 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
7978adantr 480 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
8024adantr 480 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ)
8179, 80remulcld 11211 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8263adantr 480 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
8382, 80remulcld 11211 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
8483, 80resubcld 11613 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇) ∈ ℝ)
8567adantr 480 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℝ)
8678, 24remulcld 11211 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8786recnd 11209 . . . . . . . . . . 11 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℂ)
8887, 33pncand 11541 . . . . . . . . . 10 (𝜑 → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
8988eqcomd 2736 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9089adantr 480 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9181, 80readdcld 11210 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ∈ ℝ)
9278recnd 11209 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℂ)
9392, 33adddirp1d 11207 . . . . . . . . . . . 12 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇))
9493eqcomd 2736 . . . . . . . . . . 11 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
9594adantr 480 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
96 1red 11182 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → 1 ∈ ℝ)
9779, 96readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ∈ ℝ)
98 0red 11184 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
9998, 24, 59ltled 11329 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑇)
10099adantr 480 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → 0 ≤ 𝑇)
10185, 28resubcld 11613 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) ∈ ℝ)
10221adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 ∈ ℝ)
10385, 102resubcld 11613 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑊) ∈ ℝ)
10424, 59elrpd 12999 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
105104adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ+)
106 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 < 𝑍)
107102, 28, 85, 106ltsub2dd 11798 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) < ((𝐸𝑊) − 𝑊))
108101, 103, 105, 107ltdiv1dd 13059 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − 𝑍) / 𝑇) < (((𝐸𝑊) − 𝑊) / 𝑇))
109 fourierdlem19.ezew . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝐸𝑊))
110 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍𝑥 = 𝑍)
111 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑍 → (𝐵𝑥) = (𝐵𝑍))
112111oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑍 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑍) / 𝑇))
113112fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑍 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑍) / 𝑇)))
114113oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
115110, 114oveq12d 7408 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑍 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
116115adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 𝑍) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
11727, 86readdcld 11210 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) ∈ ℝ)
11847, 116, 27, 117fvmptd 6978 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
119109, 118eqtr3d 2767 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸𝑊) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
120119oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸𝑊) − 𝑍) = ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍))
12127recnd 11209 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
122121, 87pncan2d 11542 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
123120, 122eqtrd 2765 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
124123oveq1d 7405 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑍) / 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇))
12592, 33, 60divcan4d 11971 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑍) / 𝑇)))
126124, 125eqtr2d 2766 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
127126adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
12866oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑊) = ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊))
129128oveq1d 7405 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑊) / 𝑇) = (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇))
13021recnd 11209 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
131130, 70pncan2d 11542 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
132131oveq1d 7405 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇) = (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇))
13363recnd 11209 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℂ)
134133, 33, 60divcan4d 11971 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑊) / 𝑇)))
135129, 132, 1343eqtrrd 2770 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
136135adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
137108, 127, 1363brtr4d 5142 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)))
13877adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
13962adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
140 zltp1le 12590 . . . . . . . . . . . . 13 (((⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ ∧ (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
141138, 139, 140syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
142137, 141mpbid 232 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇)))
14397, 82, 80, 100, 142lemul1ad 12129 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14495, 143eqbrtrd 5132 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14591, 83, 80, 144lesub1dd 11801 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14690, 145eqbrtrd 5132 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14781, 84, 85, 146lesub2dd 11802 . . . . . 6 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14874, 147eqbrtrd 5132 . . . . 5 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14966eqcomd 2736 . . . . . . . . 9 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊))
15068, 70, 130subadd2d 11559 . . . . . . . . 9 (𝜑 → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊 ↔ (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊)))
151149, 150mpbird 257 . . . . . . . 8 (𝜑 → ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊)
152151eqcomd 2736 . . . . . . 7 (𝜑𝑊 = ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
153152oveq1d 7405 . . . . . 6 (𝜑 → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
154153adantr 480 . . . . 5 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
155118eqcomd 2736 . . . . . . . 8 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍))
1561rexrd 11231 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
157 iocssre 13395 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
158156, 5, 157syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
1591, 5, 56, 22, 46fourierdlem4 46116 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
160159, 27ffvelcdmd 7060 . . . . . . . . . . 11 (𝜑 → (𝐸𝑍) ∈ (𝐴(,]𝐵))
161158, 160sseldd 3950 . . . . . . . . . 10 (𝜑 → (𝐸𝑍) ∈ ℝ)
162161recnd 11209 . . . . . . . . 9 (𝜑 → (𝐸𝑍) ∈ ℂ)
163162, 87, 121subadd2d 11559 . . . . . . . 8 (𝜑 → (((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍 ↔ (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍)))
164155, 163mpbird 257 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍)
165109oveq1d 7405 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
166164, 165eqtr3d 2767 . . . . . 6 (𝜑𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
167166adantr 480 . . . . 5 ((𝜑𝑊 < 𝑍) → 𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
168148, 154, 1673brtr4d 5142 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ≤ 𝑍)
16916, 26, 28, 45, 168ltletrd 11341 . . 3 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < 𝑍)
17016, 28ltnled 11328 . . 3 ((𝜑𝑊 < 𝑍) → ((𝐵 + 𝑋) < 𝑍 ↔ ¬ 𝑍 ≤ (𝐵 + 𝑋)))
171169, 170mpbid 232 . 2 ((𝜑𝑊 < 𝑍) → ¬ 𝑍 ≤ (𝐵 + 𝑋))
17215, 171pm2.65da 816 1 (𝜑 → ¬ 𝑊 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cz 12536  +crp 12958  (,]cioc 13314  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioc 13318  df-fl 13761
This theorem is referenced by:  fourierdlem51  46162
  Copyright terms: Public domain W3C validator