Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 0 → (𝐴↑𝑥) = (𝐴↑0)) |
2 | 1 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = 0 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑0))) |
3 | | oveq1 7262 |
. . . 4
⊢ (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴))) |
4 | 2, 3 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = 0 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))) |
5 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) |
6 | 5 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑦))) |
7 | | oveq1 7262 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴))) |
8 | 6, 7 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)))) |
9 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 1))) |
10 | 9 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1)))) |
11 | | oveq1 7262 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))) |
12 | 10, 11 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
13 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = -𝑦 → (𝐴↑𝑥) = (𝐴↑-𝑦)) |
14 | 13 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑-𝑦))) |
15 | | oveq1 7262 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴))) |
16 | 14, 15 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
17 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) |
18 | 17 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑁))) |
19 | | oveq1 7262 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴))) |
20 | 18, 19 | eqeq12d 2754 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
21 | | pc1 16484 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
22 | 21 | adantr 480 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0) |
23 | | qcn 12632 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
24 | 23 | ad2antrl 724 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈
ℂ) |
25 | 24 | exp0d 13786 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1) |
26 | 25 | oveq2d 7271 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1)) |
27 | | pcqcl 16485 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ) |
28 | 27 | zcnd 12356 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ) |
29 | 28 | mul02d 11103 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 ·
(𝑃 pCnt 𝐴)) = 0) |
30 | 22, 26, 29 | 3eqtr4d 2788 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))) |
31 | | oveq1 7262 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
32 | | expp1 13717 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
33 | 24, 32 | sylan 579 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
34 | 33 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴↑𝑦) · 𝐴))) |
35 | | simpll 763 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∈
ℙ) |
36 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℚ) |
37 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ≠
0) |
38 | | nn0z 12273 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℤ) |
40 | | qexpclz 13731 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴↑𝑦) ∈ ℚ) |
41 | 36, 37, 39, 40 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ∈
ℚ) |
42 | 24 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
43 | 42, 37, 39 | expne0d 13798 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ≠ 0) |
44 | | pcqmul 16482 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
45 | 35, 41, 43, 36, 37, 44 | syl122anc 1377 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
46 | 34, 45 | eqtrd 2778 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
47 | | nn0cn 12173 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
48 | 47 | adantl 481 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℂ) |
49 | 28 | adantr 480 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt 𝐴) ∈
ℂ) |
50 | 48, 49 | adddirp1d 10932 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑦 + 1) ·
(𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
51 | 46, 50 | eqeq12d 2754 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))) |
52 | 31, 51 | syl5ibr 245 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
53 | 52 | ex 412 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))) |
54 | | negeq 11143 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
55 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
56 | | expneg 13718 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
57 | 24, 55, 56 | syl2an 595 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
58 | 57 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴↑𝑦)))) |
59 | | simpll 763 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℙ) |
60 | 55, 41 | sylan2 592 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ∈ ℚ) |
61 | 55, 43 | sylan2 592 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ≠ 0) |
62 | | pcrec 16487 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
63 | 59, 60, 61, 62 | syl12anc 833 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
64 | 58, 63 | eqtrd 2778 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴↑𝑦))) |
65 | | nncn 11911 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
66 | | mulneg1 11341 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
67 | 65, 28, 66 | syl2anr 596 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
68 | 64, 67 | eqeq12d 2754 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))) |
69 | 54, 68 | syl5ibr 245 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
70 | 69 | ex 412 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))) |
71 | 4, 8, 12, 16, 20, 30, 53, 70 | zindd 12351 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
72 | 71 | 3impia 1115 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) |