MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcexp Structured version   Visualization version   GIF version

Theorem pcexp 16906
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))

Proof of Theorem pcexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
21oveq2d 7464 . . . 4 (𝑥 = 0 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑0)))
3 oveq1 7455 . . . 4 (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴)))
42, 3eqeq12d 2756 . . 3 (𝑥 = 0 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))))
5 oveq2 7456 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
65oveq2d 7464 . . . 4 (𝑥 = 𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑦)))
7 oveq1 7455 . . . 4 (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴)))
86, 7eqeq12d 2756 . . 3 (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴))))
9 oveq2 7456 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
109oveq2d 7464 . . . 4 (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1))))
11 oveq1 7455 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))
1210, 11eqeq12d 2756 . . 3 (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
13 oveq2 7456 . . . . 5 (𝑥 = -𝑦 → (𝐴𝑥) = (𝐴↑-𝑦))
1413oveq2d 7464 . . . 4 (𝑥 = -𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑-𝑦)))
15 oveq1 7455 . . . 4 (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴)))
1614, 15eqeq12d 2756 . . 3 (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
17 oveq2 7456 . . . . 5 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
1817oveq2d 7464 . . . 4 (𝑥 = 𝑁 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑁)))
19 oveq1 7455 . . . 4 (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴)))
2018, 19eqeq12d 2756 . . 3 (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
21 pc1 16902 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2221adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0)
23 qcn 13028 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2423ad2antrl 727 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈ ℂ)
2524exp0d 14190 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1)
2625oveq2d 7464 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1))
27 pcqcl 16903 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ)
2827zcnd 12748 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ)
2928mul02d 11488 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 · (𝑃 pCnt 𝐴)) = 0)
3022, 26, 293eqtr4d 2790 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))
31 oveq1 7455 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
32 expp1 14119 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3324, 32sylan 579 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3433oveq2d 7464 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴𝑦) · 𝐴)))
35 simpll 766 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑃 ∈ ℙ)
36 simplrl 776 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℚ)
37 simplrr 777 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ≠ 0)
38 nn0z 12664 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
3938adantl 481 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
40 qexpclz 14132 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴𝑦) ∈ ℚ)
4136, 37, 39, 40syl3anc 1371 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ∈ ℚ)
4224adantr 480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℂ)
4342, 37, 39expne0d 14202 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ≠ 0)
44 pcqmul 16900 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
4535, 41, 43, 36, 37, 44syl122anc 1379 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
4634, 45eqtrd 2780 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
47 nn0cn 12563 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
4847adantl 481 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
4928adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt 𝐴) ∈ ℂ)
5048, 49adddirp1d 11316 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
5146, 50eqeq12d 2756 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))))
5231, 51imbitrrid 246 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
5352ex 412 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0 → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))))
54 negeq 11528 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))
55 nnnn0 12560 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
56 expneg 14120 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
5724, 55, 56syl2an 595 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
5857oveq2d 7464 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴𝑦))))
59 simpll 766 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℙ)
6055, 41sylan2 592 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ∈ ℚ)
6155, 43sylan2 592 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ≠ 0)
62 pcrec 16905 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
6359, 60, 61, 62syl12anc 836 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
6458, 63eqtrd 2780 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴𝑦)))
65 nncn 12301 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
66 mulneg1 11726 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
6765, 28, 66syl2anr 596 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
6864, 67eqeq12d 2756 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))))
6954, 68imbitrrid 246 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
7069ex 412 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))))
714, 8, 12, 16, 20, 30, 53, 70zindd 12744 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
72713impia 1117 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cq 13013  cexp 14112  cprime 16718   pCnt cpc 16883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884
This theorem is referenced by:  qexpz  16948  expnprm  16949  dchrisum0flblem1  27570  dchrisum0flblem2  27571  aks4d1p7d1  42039  aks6d1c2p2  42076  aks6d1c7  42141
  Copyright terms: Public domain W3C validator