| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . 5
⊢ (𝑥 = 0 → (𝐴↑𝑥) = (𝐴↑0)) |
| 2 | 1 | oveq2d 7426 |
. . . 4
⊢ (𝑥 = 0 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑0))) |
| 3 | | oveq1 7417 |
. . . 4
⊢ (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴))) |
| 4 | 2, 3 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 0 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))) |
| 5 | | oveq2 7418 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) |
| 6 | 5 | oveq2d 7426 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑦))) |
| 7 | | oveq1 7417 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴))) |
| 8 | 6, 7 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)))) |
| 9 | | oveq2 7418 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 1))) |
| 10 | 9 | oveq2d 7426 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1)))) |
| 11 | | oveq1 7417 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))) |
| 12 | 10, 11 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
| 13 | | oveq2 7418 |
. . . . 5
⊢ (𝑥 = -𝑦 → (𝐴↑𝑥) = (𝐴↑-𝑦)) |
| 14 | 13 | oveq2d 7426 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑-𝑦))) |
| 15 | | oveq1 7417 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴))) |
| 16 | 14, 15 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
| 17 | | oveq2 7418 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) |
| 18 | 17 | oveq2d 7426 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑁))) |
| 19 | | oveq1 7417 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴))) |
| 20 | 18, 19 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
| 21 | | pc1 16880 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
| 22 | 21 | adantr 480 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0) |
| 23 | | qcn 12984 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
| 24 | 23 | ad2antrl 728 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈
ℂ) |
| 25 | 24 | exp0d 14163 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1) |
| 26 | 25 | oveq2d 7426 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1)) |
| 27 | | pcqcl 16881 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ) |
| 28 | 27 | zcnd 12703 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ) |
| 29 | 28 | mul02d 11438 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 ·
(𝑃 pCnt 𝐴)) = 0) |
| 30 | 22, 26, 29 | 3eqtr4d 2781 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))) |
| 31 | | oveq1 7417 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
| 32 | | expp1 14091 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
| 33 | 24, 32 | sylan 580 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
| 34 | 33 | oveq2d 7426 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴↑𝑦) · 𝐴))) |
| 35 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∈
ℙ) |
| 36 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℚ) |
| 37 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ≠
0) |
| 38 | | nn0z 12618 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
| 39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℤ) |
| 40 | | qexpclz 14104 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴↑𝑦) ∈ ℚ) |
| 41 | 36, 37, 39, 40 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ∈
ℚ) |
| 42 | 24 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
| 43 | 42, 37, 39 | expne0d 14175 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ≠ 0) |
| 44 | | pcqmul 16878 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
| 45 | 35, 41, 43, 36, 37, 44 | syl122anc 1381 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
| 46 | 34, 45 | eqtrd 2771 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
| 47 | | nn0cn 12516 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
| 48 | 47 | adantl 481 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℂ) |
| 49 | 28 | adantr 480 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt 𝐴) ∈
ℂ) |
| 50 | 48, 49 | adddirp1d 11266 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑦 + 1) ·
(𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
| 51 | 46, 50 | eqeq12d 2752 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))) |
| 52 | 31, 51 | imbitrrid 246 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
| 53 | 52 | ex 412 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))) |
| 54 | | negeq 11479 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
| 55 | | nnnn0 12513 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
| 56 | | expneg 14092 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
| 57 | 24, 55, 56 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
| 58 | 57 | oveq2d 7426 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴↑𝑦)))) |
| 59 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℙ) |
| 60 | 55, 41 | sylan2 593 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ∈ ℚ) |
| 61 | 55, 43 | sylan2 593 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ≠ 0) |
| 62 | | pcrec 16883 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
| 63 | 59, 60, 61, 62 | syl12anc 836 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
| 64 | 58, 63 | eqtrd 2771 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴↑𝑦))) |
| 65 | | nncn 12253 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
| 66 | | mulneg1 11678 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
| 67 | 65, 28, 66 | syl2anr 597 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
| 68 | 64, 67 | eqeq12d 2752 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))) |
| 69 | 54, 68 | imbitrrid 246 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
| 70 | 69 | ex 412 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))) |
| 71 | 4, 8, 12, 16, 20, 30, 53, 70 | zindd 12699 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
| 72 | 71 | 3impia 1117 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) |