MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Structured version   Visualization version   GIF version

Theorem dgrcolem1 25339
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1 𝑁 = (deg‘𝐺)
dgrcolem1.2 (𝜑𝑀 ∈ ℕ)
dgrcolem1.3 (𝜑𝑁 ∈ ℕ)
dgrcolem1.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrcolem1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑁(𝑥)

Proof of Theorem dgrcolem1
Dummy variables 𝑤 𝑑 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2 (𝜑𝑀 ∈ ℕ)
2 oveq2 7263 . . . . . . 7 (𝑦 = 1 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑1))
32mpteq2dv 5172 . . . . . 6 (𝑦 = 1 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)))
43fveq2d 6760 . . . . 5 (𝑦 = 1 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))))
5 oveq1 7262 . . . . 5 (𝑦 = 1 → (𝑦 · 𝑁) = (1 · 𝑁))
64, 5eqeq12d 2754 . . . 4 (𝑦 = 1 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁)))
76imbi2d 340 . . 3 (𝑦 = 1 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))))
8 oveq2 7263 . . . . . . 7 (𝑦 = 𝑑 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑑))
98mpteq2dv 5172 . . . . . 6 (𝑦 = 𝑑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
109fveq2d 6760 . . . . 5 (𝑦 = 𝑑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))))
11 oveq1 7262 . . . . 5 (𝑦 = 𝑑 → (𝑦 · 𝑁) = (𝑑 · 𝑁))
1210, 11eqeq12d 2754 . . . 4 (𝑦 = 𝑑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)))
1312imbi2d 340 . . 3 (𝑦 = 𝑑 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))))
14 oveq2 7263 . . . . . . 7 (𝑦 = (𝑑 + 1) → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑(𝑑 + 1)))
1514mpteq2dv 5172 . . . . . 6 (𝑦 = (𝑑 + 1) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))))
1615fveq2d 6760 . . . . 5 (𝑦 = (𝑑 + 1) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))))
17 oveq1 7262 . . . . 5 (𝑦 = (𝑑 + 1) → (𝑦 · 𝑁) = ((𝑑 + 1) · 𝑁))
1816, 17eqeq12d 2754 . . . 4 (𝑦 = (𝑑 + 1) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
1918imbi2d 340 . . 3 (𝑦 = (𝑑 + 1) → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
20 oveq2 7263 . . . . . . 7 (𝑦 = 𝑀 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑀))
2120mpteq2dv 5172 . . . . . 6 (𝑦 = 𝑀 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
2221fveq2d 6760 . . . . 5 (𝑦 = 𝑀 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
23 oveq1 7262 . . . . 5 (𝑦 = 𝑀 → (𝑦 · 𝑁) = (𝑀 · 𝑁))
2422, 23eqeq12d 2754 . . . 4 (𝑦 = 𝑀 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
2524imbi2d 340 . . 3 (𝑦 = 𝑀 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))))
26 dgrcolem1.4 . . . . . . . . . . 11 (𝜑𝐺 ∈ (Poly‘𝑆))
27 plyf 25264 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
2826, 27syl 17 . . . . . . . . . 10 (𝜑𝐺:ℂ⟶ℂ)
2928ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
3029exp1d 13787 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝐺𝑥)↑1) = (𝐺𝑥))
3130mpteq2dva 5170 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3228feqmptd 6819 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3331, 32eqtr4d 2781 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = 𝐺)
3433fveq2d 6760 . . . . 5 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (deg‘𝐺))
35 dgrcolem1.1 . . . . 5 𝑁 = (deg‘𝐺)
3634, 35eqtr4di 2797 . . . 4 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = 𝑁)
37 dgrcolem1.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
3837nncnd 11919 . . . . 5 (𝜑𝑁 ∈ ℂ)
3938mulid2d 10924 . . . 4 (𝜑 → (1 · 𝑁) = 𝑁)
4036, 39eqtr4d 2781 . . 3 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))
4129adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
42 nnnn0 12170 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
4342adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
4443adantr 480 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑑 ∈ ℕ0)
4541, 44expp1d 13793 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑(𝑑 + 1)) = (((𝐺𝑥)↑𝑑) · (𝐺𝑥)))
4645mpteq2dva 5170 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
47 cnex 10883 . . . . . . . . . . . 12 ℂ ∈ V
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
49 ovexd 7290 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑𝑑) ∈ V)
50 eqidd 2739 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
5132adantr 480 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
5248, 49, 41, 50, 51offval2 7531 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
5346, 52eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺))
5453fveq2d 6760 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
5554adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
56 oveq1 7262 . . . . . . . . 9 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
5756adantl 481 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
58 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) = (𝑦 ∈ ℂ ↦ (𝑦𝑑)))
59 oveq1 7262 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑥) → (𝑦𝑑) = ((𝐺𝑥)↑𝑑))
6041, 51, 58, 59fmptco 6983 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
61 ssidd 3940 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → ℂ ⊆ ℂ)
62 1cnd 10901 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 1 ∈ ℂ)
63 plypow 25271 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑑 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
6461, 62, 43, 63syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
65 plyssc 25266 . . . . . . . . . . . . 13 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6626adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆))
6765, 66sselid 3915 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘ℂ))
68 addcl 10884 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
6968adantl 481 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
70 mulcl 10886 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
7170adantl 481 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
7264, 67, 69, 71plyco 25307 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) ∈ (Poly‘ℂ))
7360, 72eqeltrrd 2840 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
7473adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
75 simpr 484 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))
76 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ)
7737adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℕ)
7876, 77nnmulcld 11956 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ∈ ℕ)
7978nnne0d 11953 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ≠ 0)
8079adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑑 · 𝑁) ≠ 0)
8175, 80eqnetrd 3010 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0)
82 fveq2 6756 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘0𝑝))
83 dgr0 25328 . . . . . . . . . . . 12 (deg‘0𝑝) = 0
8482, 83eqtrdi 2795 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = 0)
8584necon3i 2975 . . . . . . . . . 10 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8681, 85syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8767adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ∈ (Poly‘ℂ))
8837nnne0d 11953 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
89 fveq2 6756 . . . . . . . . . . . . . . 15 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
9089, 83eqtrdi 2795 . . . . . . . . . . . . . 14 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
9135, 90syl5eq 2791 . . . . . . . . . . . . 13 (𝐺 = 0𝑝𝑁 = 0)
9291necon3i 2975 . . . . . . . . . . . 12 (𝑁 ≠ 0 → 𝐺 ≠ 0𝑝)
9388, 92syl 17 . . . . . . . . . . 11 (𝜑𝐺 ≠ 0𝑝)
9493adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝐺 ≠ 0𝑝)
9594adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ≠ 0𝑝)
96 eqid 2738 . . . . . . . . . 10 (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
9796, 35dgrmul 25336 . . . . . . . . 9 ((((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
9874, 86, 87, 95, 97syl22anc 835 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
99 nncn 11911 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 𝑑 ∈ ℂ)
10099adantl 481 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℂ)
10138adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℂ)
102100, 101adddirp1d 10932 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
103102adantr 480 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
10457, 98, 1033eqtr4rd 2789 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
10555, 104eqtr4d 2781 . . . . . 6 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))
106105ex 412 . . . . 5 ((𝜑𝑑 ∈ ℕ) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
107106expcom 413 . . . 4 (𝑑 ∈ ℕ → (𝜑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
108107a2d 29 . . 3 (𝑑 ∈ ℕ → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
1097, 13, 19, 25, 40, 108nnind 11921 . 2 (𝑀 ∈ ℕ → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
1101, 109mpcom 38 1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  cmpt 5153  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cn 11903  0cn0 12163  cexp 13710  0𝑝c0p 24738  Polycply 25250  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  dgrcolem2  25340
  Copyright terms: Public domain W3C validator