MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Structured version   Visualization version   GIF version

Theorem dgrcolem1 25022
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1 𝑁 = (deg‘𝐺)
dgrcolem1.2 (𝜑𝑀 ∈ ℕ)
dgrcolem1.3 (𝜑𝑁 ∈ ℕ)
dgrcolem1.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrcolem1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑁(𝑥)

Proof of Theorem dgrcolem1
Dummy variables 𝑤 𝑑 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2 (𝜑𝑀 ∈ ℕ)
2 oveq2 7178 . . . . . . 7 (𝑦 = 1 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑1))
32mpteq2dv 5126 . . . . . 6 (𝑦 = 1 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)))
43fveq2d 6678 . . . . 5 (𝑦 = 1 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))))
5 oveq1 7177 . . . . 5 (𝑦 = 1 → (𝑦 · 𝑁) = (1 · 𝑁))
64, 5eqeq12d 2754 . . . 4 (𝑦 = 1 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁)))
76imbi2d 344 . . 3 (𝑦 = 1 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))))
8 oveq2 7178 . . . . . . 7 (𝑦 = 𝑑 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑑))
98mpteq2dv 5126 . . . . . 6 (𝑦 = 𝑑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
109fveq2d 6678 . . . . 5 (𝑦 = 𝑑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))))
11 oveq1 7177 . . . . 5 (𝑦 = 𝑑 → (𝑦 · 𝑁) = (𝑑 · 𝑁))
1210, 11eqeq12d 2754 . . . 4 (𝑦 = 𝑑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)))
1312imbi2d 344 . . 3 (𝑦 = 𝑑 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))))
14 oveq2 7178 . . . . . . 7 (𝑦 = (𝑑 + 1) → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑(𝑑 + 1)))
1514mpteq2dv 5126 . . . . . 6 (𝑦 = (𝑑 + 1) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))))
1615fveq2d 6678 . . . . 5 (𝑦 = (𝑑 + 1) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))))
17 oveq1 7177 . . . . 5 (𝑦 = (𝑑 + 1) → (𝑦 · 𝑁) = ((𝑑 + 1) · 𝑁))
1816, 17eqeq12d 2754 . . . 4 (𝑦 = (𝑑 + 1) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
1918imbi2d 344 . . 3 (𝑦 = (𝑑 + 1) → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
20 oveq2 7178 . . . . . . 7 (𝑦 = 𝑀 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑀))
2120mpteq2dv 5126 . . . . . 6 (𝑦 = 𝑀 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
2221fveq2d 6678 . . . . 5 (𝑦 = 𝑀 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
23 oveq1 7177 . . . . 5 (𝑦 = 𝑀 → (𝑦 · 𝑁) = (𝑀 · 𝑁))
2422, 23eqeq12d 2754 . . . 4 (𝑦 = 𝑀 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
2524imbi2d 344 . . 3 (𝑦 = 𝑀 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))))
26 dgrcolem1.4 . . . . . . . . . . 11 (𝜑𝐺 ∈ (Poly‘𝑆))
27 plyf 24947 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
2826, 27syl 17 . . . . . . . . . 10 (𝜑𝐺:ℂ⟶ℂ)
2928ffvelrnda 6861 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
3029exp1d 13597 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝐺𝑥)↑1) = (𝐺𝑥))
3130mpteq2dva 5125 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3228feqmptd 6737 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3331, 32eqtr4d 2776 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = 𝐺)
3433fveq2d 6678 . . . . 5 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (deg‘𝐺))
35 dgrcolem1.1 . . . . 5 𝑁 = (deg‘𝐺)
3634, 35eqtr4di 2791 . . . 4 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = 𝑁)
37 dgrcolem1.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
3837nncnd 11732 . . . . 5 (𝜑𝑁 ∈ ℂ)
3938mulid2d 10737 . . . 4 (𝜑 → (1 · 𝑁) = 𝑁)
4036, 39eqtr4d 2776 . . 3 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))
4129adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
42 nnnn0 11983 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
4342adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
4443adantr 484 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑑 ∈ ℕ0)
4541, 44expp1d 13603 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑(𝑑 + 1)) = (((𝐺𝑥)↑𝑑) · (𝐺𝑥)))
4645mpteq2dva 5125 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
47 cnex 10696 . . . . . . . . . . . 12 ℂ ∈ V
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
49 ovexd 7205 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑𝑑) ∈ V)
50 eqidd 2739 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
5132adantr 484 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
5248, 49, 41, 50, 51offval2 7444 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
5346, 52eqtr4d 2776 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺))
5453fveq2d 6678 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
5554adantr 484 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
56 oveq1 7177 . . . . . . . . 9 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
5756adantl 485 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
58 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) = (𝑦 ∈ ℂ ↦ (𝑦𝑑)))
59 oveq1 7177 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑥) → (𝑦𝑑) = ((𝐺𝑥)↑𝑑))
6041, 51, 58, 59fmptco 6901 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
61 ssidd 3900 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → ℂ ⊆ ℂ)
62 1cnd 10714 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 1 ∈ ℂ)
63 plypow 24954 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑑 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
6461, 62, 43, 63syl3anc 1372 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
65 plyssc 24949 . . . . . . . . . . . . 13 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6626adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆))
6765, 66sseldi 3875 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘ℂ))
68 addcl 10697 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
6968adantl 485 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
70 mulcl 10699 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
7170adantl 485 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
7264, 67, 69, 71plyco 24990 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) ∈ (Poly‘ℂ))
7360, 72eqeltrrd 2834 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
7473adantr 484 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
75 simpr 488 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))
76 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ)
7737adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℕ)
7876, 77nnmulcld 11769 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ∈ ℕ)
7978nnne0d 11766 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ≠ 0)
8079adantr 484 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑑 · 𝑁) ≠ 0)
8175, 80eqnetrd 3001 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0)
82 fveq2 6674 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘0𝑝))
83 dgr0 25011 . . . . . . . . . . . 12 (deg‘0𝑝) = 0
8482, 83eqtrdi 2789 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = 0)
8584necon3i 2966 . . . . . . . . . 10 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8681, 85syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8767adantr 484 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ∈ (Poly‘ℂ))
8837nnne0d 11766 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
89 fveq2 6674 . . . . . . . . . . . . . . 15 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
9089, 83eqtrdi 2789 . . . . . . . . . . . . . 14 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
9135, 90syl5eq 2785 . . . . . . . . . . . . 13 (𝐺 = 0𝑝𝑁 = 0)
9291necon3i 2966 . . . . . . . . . . . 12 (𝑁 ≠ 0 → 𝐺 ≠ 0𝑝)
9388, 92syl 17 . . . . . . . . . . 11 (𝜑𝐺 ≠ 0𝑝)
9493adantr 484 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝐺 ≠ 0𝑝)
9594adantr 484 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ≠ 0𝑝)
96 eqid 2738 . . . . . . . . . 10 (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
9796, 35dgrmul 25019 . . . . . . . . 9 ((((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
9874, 86, 87, 95, 97syl22anc 838 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
99 nncn 11724 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 𝑑 ∈ ℂ)
10099adantl 485 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℂ)
10138adantr 484 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℂ)
102100, 101adddirp1d 10745 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
103102adantr 484 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
10457, 98, 1033eqtr4rd 2784 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
10555, 104eqtr4d 2776 . . . . . 6 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))
106105ex 416 . . . . 5 ((𝜑𝑑 ∈ ℕ) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
107106expcom 417 . . . 4 (𝑑 ∈ ℕ → (𝜑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
108107a2d 29 . . 3 (𝑑 ∈ ℕ → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
1097, 13, 19, 25, 40, 108nnind 11734 . 2 (𝑀 ∈ ℕ → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
1101, 109mpcom 38 1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934  Vcvv 3398  wss 3843  cmpt 5110  ccom 5529  wf 6335  cfv 6339  (class class class)co 7170  f cof 7423  cc 10613  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620  cn 11716  0cn0 11976  cexp 13521  0𝑝c0p 24421  Polycply 24933  degcdgr 24936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136  df-0p 24422  df-ply 24937  df-coe 24939  df-dgr 24940
This theorem is referenced by:  dgrcolem2  25023
  Copyright terms: Public domain W3C validator