Step | Hyp | Ref
| Expression |
1 | | dgrcolem1.2 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = 1 → ((𝐺‘𝑥)↑𝑦) = ((𝐺‘𝑥)↑1)) |
3 | 2 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑦 = 1 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1))) |
4 | 3 | fveq2d 6760 |
. . . . 5
⊢ (𝑦 = 1 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1)))) |
5 | | oveq1 7262 |
. . . . 5
⊢ (𝑦 = 1 → (𝑦 · 𝑁) = (1 · 𝑁)) |
6 | 4, 5 | eqeq12d 2754 |
. . . 4
⊢ (𝑦 = 1 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1))) = (1 · 𝑁))) |
7 | 6 | imbi2d 340 |
. . 3
⊢ (𝑦 = 1 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1))) = (1 · 𝑁)))) |
8 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = 𝑑 → ((𝐺‘𝑥)↑𝑦) = ((𝐺‘𝑥)↑𝑑)) |
9 | 8 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑦 = 𝑑 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) |
10 | 9 | fveq2d 6760 |
. . . . 5
⊢ (𝑦 = 𝑑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)))) |
11 | | oveq1 7262 |
. . . . 5
⊢ (𝑦 = 𝑑 → (𝑦 · 𝑁) = (𝑑 · 𝑁)) |
12 | 10, 11 | eqeq12d 2754 |
. . . 4
⊢ (𝑦 = 𝑑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁))) |
13 | 12 | imbi2d 340 |
. . 3
⊢ (𝑦 = 𝑑 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)))) |
14 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = (𝑑 + 1) → ((𝐺‘𝑥)↑𝑦) = ((𝐺‘𝑥)↑(𝑑 + 1))) |
15 | 14 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑦 = (𝑑 + 1) → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) |
16 | 15 | fveq2d 6760 |
. . . . 5
⊢ (𝑦 = (𝑑 + 1) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1))))) |
17 | | oveq1 7262 |
. . . . 5
⊢ (𝑦 = (𝑑 + 1) → (𝑦 · 𝑁) = ((𝑑 + 1) · 𝑁)) |
18 | 16, 17 | eqeq12d 2754 |
. . . 4
⊢ (𝑦 = (𝑑 + 1) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))) |
19 | 18 | imbi2d 340 |
. . 3
⊢ (𝑦 = (𝑑 + 1) → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))) |
20 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = 𝑀 → ((𝐺‘𝑥)↑𝑦) = ((𝐺‘𝑥)↑𝑀)) |
21 | 20 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑦 = 𝑀 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) |
22 | 21 | fveq2d 6760 |
. . . . 5
⊢ (𝑦 = 𝑀 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
23 | | oveq1 7262 |
. . . . 5
⊢ (𝑦 = 𝑀 → (𝑦 · 𝑁) = (𝑀 · 𝑁)) |
24 | 22, 23 | eqeq12d 2754 |
. . . 4
⊢ (𝑦 = 𝑀 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁))) |
25 | 24 | imbi2d 340 |
. . 3
⊢ (𝑦 = 𝑀 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)))) |
26 | | dgrcolem1.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
27 | | plyf 25264 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
29 | 28 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐺‘𝑥) ∈ ℂ) |
30 | 29 | exp1d 13787 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐺‘𝑥)↑1) = (𝐺‘𝑥)) |
31 | 30 | mpteq2dva 5170 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1)) = (𝑥 ∈ ℂ ↦ (𝐺‘𝑥))) |
32 | 28 | feqmptd 6819 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘𝑥))) |
33 | 31, 32 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1)) = 𝐺) |
34 | 33 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1))) = (deg‘𝐺)) |
35 | | dgrcolem1.1 |
. . . . 5
⊢ 𝑁 = (deg‘𝐺) |
36 | 34, 35 | eqtr4di 2797 |
. . . 4
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1))) = 𝑁) |
37 | | dgrcolem1.3 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
38 | 37 | nncnd 11919 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℂ) |
39 | 38 | mulid2d 10924 |
. . . 4
⊢ (𝜑 → (1 · 𝑁) = 𝑁) |
40 | 36, 39 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑1))) = (1 · 𝑁)) |
41 | 29 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝐺‘𝑥) ∈ ℂ) |
42 | | nnnn0 12170 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℕ0) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0) |
44 | 43 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑑 ∈ ℕ0) |
45 | 41, 44 | expp1d 13793 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺‘𝑥)↑(𝑑 + 1)) = (((𝐺‘𝑥)↑𝑑) · (𝐺‘𝑥))) |
46 | 45 | mpteq2dva 5170 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1))) = (𝑥 ∈ ℂ ↦ (((𝐺‘𝑥)↑𝑑) · (𝐺‘𝑥)))) |
47 | | cnex 10883 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
48 | 47 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ℂ ∈
V) |
49 | | ovexd 7290 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺‘𝑥)↑𝑑) ∈ V) |
50 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) |
51 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘𝑥))) |
52 | 48, 49, 41, 50, 51 | offval2 7531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∘f · 𝐺) = (𝑥 ∈ ℂ ↦ (((𝐺‘𝑥)↑𝑑) · (𝐺‘𝑥)))) |
53 | 46, 52 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1))) = ((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∘f · 𝐺)) |
54 | 53 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∘f · 𝐺))) |
55 | 54 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∘f · 𝐺))) |
56 | | oveq1 7262 |
. . . . . . . . 9
⊢
((deg‘(𝑥
∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁)) |
57 | 56 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁)) |
58 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑑)) = (𝑦 ∈ ℂ ↦ (𝑦↑𝑑))) |
59 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐺‘𝑥) → (𝑦↑𝑑) = ((𝐺‘𝑥)↑𝑑)) |
60 | 41, 51, 58, 59 | fmptco 6983 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦↑𝑑)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) |
61 | | ssidd 3940 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ℂ ⊆
ℂ) |
62 | | 1cnd 10901 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 1 ∈
ℂ) |
63 | | plypow 25271 |
. . . . . . . . . . . . 13
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑑 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑑)) ∈
(Poly‘ℂ)) |
64 | 61, 62, 43, 63 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑑)) ∈
(Poly‘ℂ)) |
65 | | plyssc 25266 |
. . . . . . . . . . . . 13
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
66 | 26 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆)) |
67 | 65, 66 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐺 ∈
(Poly‘ℂ)) |
68 | | addcl 10884 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ) |
69 | 68 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ) |
70 | | mulcl 10886 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ) |
71 | 70 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ) |
72 | 64, 67, 69, 71 | plyco 25307 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦↑𝑑)) ∘ 𝐺) ∈
(Poly‘ℂ)) |
73 | 60, 72 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∈
(Poly‘ℂ)) |
74 | 73 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∈
(Poly‘ℂ)) |
75 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) |
76 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℕ) |
77 | 37 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝑁 ∈ ℕ) |
78 | 76, 77 | nnmulcld 11956 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑑 · 𝑁) ∈ ℕ) |
79 | 78 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑑 · 𝑁) ≠ 0) |
80 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑑 · 𝑁) ≠ 0) |
81 | 75, 80 | eqnetrd 3010 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) ≠ 0) |
82 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) = 0𝑝 →
(deg‘(𝑥 ∈
ℂ ↦ ((𝐺‘𝑥)↑𝑑))) =
(deg‘0𝑝)) |
83 | | dgr0 25328 |
. . . . . . . . . . . 12
⊢
(deg‘0𝑝) = 0 |
84 | 82, 83 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) = 0𝑝 →
(deg‘(𝑥 ∈
ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = 0) |
85 | 84 | necon3i 2975 |
. . . . . . . . . 10
⊢
((deg‘(𝑥
∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) ≠ 0 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ≠
0𝑝) |
86 | 81, 85 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ≠
0𝑝) |
87 | 67 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ∈
(Poly‘ℂ)) |
88 | 37 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ≠ 0) |
89 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 = 0𝑝 →
(deg‘𝐺) =
(deg‘0𝑝)) |
90 | 89, 83 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝐺 = 0𝑝 →
(deg‘𝐺) =
0) |
91 | 35, 90 | syl5eq 2791 |
. . . . . . . . . . . . 13
⊢ (𝐺 = 0𝑝 →
𝑁 = 0) |
92 | 91 | necon3i 2975 |
. . . . . . . . . . . 12
⊢ (𝑁 ≠ 0 → 𝐺 ≠
0𝑝) |
93 | 88, 92 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ≠
0𝑝) |
94 | 93 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐺 ≠
0𝑝) |
95 | 94 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ≠
0𝑝) |
96 | | eqid 2738 |
. . . . . . . . . 10
⊢
(deg‘(𝑥 ∈
ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) |
97 | 96, 35 | dgrmul 25336 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘ℂ)
∧ 𝐺 ≠
0𝑝)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) + 𝑁)) |
98 | 74, 86, 87, 95, 97 | syl22anc 835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) + 𝑁)) |
99 | | nncn 11911 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℂ) |
100 | 99 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℂ) |
101 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝑁 ∈ ℂ) |
102 | 100, 101 | adddirp1d 10932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁)) |
103 | 102 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁)) |
104 | 57, 98, 103 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑)) ∘f · 𝐺))) |
105 | 55, 104 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)) |
106 | 105 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))) |
107 | 106 | expcom 413 |
. . . 4
⊢ (𝑑 ∈ ℕ → (𝜑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))) |
108 | 107 | a2d 29 |
. . 3
⊢ (𝑑 ∈ ℕ → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))) |
109 | 7, 13, 19, 25, 40, 108 | nnind 11921 |
. 2
⊢ (𝑀 ∈ ℕ → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁))) |
110 | 1, 109 | mpcom 38 |
1
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)) |