MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Structured version   Visualization version   GIF version

Theorem dgrcolem1 24857
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1 𝑁 = (deg‘𝐺)
dgrcolem1.2 (𝜑𝑀 ∈ ℕ)
dgrcolem1.3 (𝜑𝑁 ∈ ℕ)
dgrcolem1.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrcolem1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑁(𝑥)

Proof of Theorem dgrcolem1
Dummy variables 𝑤 𝑑 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2 (𝜑𝑀 ∈ ℕ)
2 oveq2 7158 . . . . . . 7 (𝑦 = 1 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑1))
32mpteq2dv 5155 . . . . . 6 (𝑦 = 1 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)))
43fveq2d 6669 . . . . 5 (𝑦 = 1 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))))
5 oveq1 7157 . . . . 5 (𝑦 = 1 → (𝑦 · 𝑁) = (1 · 𝑁))
64, 5eqeq12d 2837 . . . 4 (𝑦 = 1 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁)))
76imbi2d 343 . . 3 (𝑦 = 1 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))))
8 oveq2 7158 . . . . . . 7 (𝑦 = 𝑑 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑑))
98mpteq2dv 5155 . . . . . 6 (𝑦 = 𝑑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
109fveq2d 6669 . . . . 5 (𝑦 = 𝑑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))))
11 oveq1 7157 . . . . 5 (𝑦 = 𝑑 → (𝑦 · 𝑁) = (𝑑 · 𝑁))
1210, 11eqeq12d 2837 . . . 4 (𝑦 = 𝑑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)))
1312imbi2d 343 . . 3 (𝑦 = 𝑑 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))))
14 oveq2 7158 . . . . . . 7 (𝑦 = (𝑑 + 1) → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑(𝑑 + 1)))
1514mpteq2dv 5155 . . . . . 6 (𝑦 = (𝑑 + 1) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))))
1615fveq2d 6669 . . . . 5 (𝑦 = (𝑑 + 1) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))))
17 oveq1 7157 . . . . 5 (𝑦 = (𝑑 + 1) → (𝑦 · 𝑁) = ((𝑑 + 1) · 𝑁))
1816, 17eqeq12d 2837 . . . 4 (𝑦 = (𝑑 + 1) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
1918imbi2d 343 . . 3 (𝑦 = (𝑑 + 1) → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
20 oveq2 7158 . . . . . . 7 (𝑦 = 𝑀 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑀))
2120mpteq2dv 5155 . . . . . 6 (𝑦 = 𝑀 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
2221fveq2d 6669 . . . . 5 (𝑦 = 𝑀 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
23 oveq1 7157 . . . . 5 (𝑦 = 𝑀 → (𝑦 · 𝑁) = (𝑀 · 𝑁))
2422, 23eqeq12d 2837 . . . 4 (𝑦 = 𝑀 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
2524imbi2d 343 . . 3 (𝑦 = 𝑀 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))))
26 dgrcolem1.4 . . . . . . . . . . 11 (𝜑𝐺 ∈ (Poly‘𝑆))
27 plyf 24782 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
2826, 27syl 17 . . . . . . . . . 10 (𝜑𝐺:ℂ⟶ℂ)
2928ffvelrnda 6846 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
3029exp1d 13499 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝐺𝑥)↑1) = (𝐺𝑥))
3130mpteq2dva 5154 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3228feqmptd 6728 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3331, 32eqtr4d 2859 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = 𝐺)
3433fveq2d 6669 . . . . 5 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (deg‘𝐺))
35 dgrcolem1.1 . . . . 5 𝑁 = (deg‘𝐺)
3634, 35syl6eqr 2874 . . . 4 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = 𝑁)
37 dgrcolem1.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
3837nncnd 11648 . . . . 5 (𝜑𝑁 ∈ ℂ)
3938mulid2d 10653 . . . 4 (𝜑 → (1 · 𝑁) = 𝑁)
4036, 39eqtr4d 2859 . . 3 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))
4129adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
42 nnnn0 11898 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
4342adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
4443adantr 483 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑑 ∈ ℕ0)
4541, 44expp1d 13505 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑(𝑑 + 1)) = (((𝐺𝑥)↑𝑑) · (𝐺𝑥)))
4645mpteq2dva 5154 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
47 cnex 10612 . . . . . . . . . . . 12 ℂ ∈ V
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
49 ovexd 7185 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑𝑑) ∈ V)
50 eqidd 2822 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
5132adantr 483 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
5248, 49, 41, 50, 51offval2 7420 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
5346, 52eqtr4d 2859 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺))
5453fveq2d 6669 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
5554adantr 483 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
56 oveq1 7157 . . . . . . . . 9 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
5756adantl 484 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
58 eqidd 2822 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) = (𝑦 ∈ ℂ ↦ (𝑦𝑑)))
59 oveq1 7157 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑥) → (𝑦𝑑) = ((𝐺𝑥)↑𝑑))
6041, 51, 58, 59fmptco 6886 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
61 ssidd 3990 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → ℂ ⊆ ℂ)
62 1cnd 10630 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 1 ∈ ℂ)
63 plypow 24789 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑑 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
6461, 62, 43, 63syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
65 plyssc 24784 . . . . . . . . . . . . 13 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6626adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆))
6765, 66sseldi 3965 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘ℂ))
68 addcl 10613 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
6968adantl 484 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
70 mulcl 10615 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
7170adantl 484 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
7264, 67, 69, 71plyco 24825 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) ∈ (Poly‘ℂ))
7360, 72eqeltrrd 2914 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
7473adantr 483 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
75 simpr 487 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))
76 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ)
7737adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℕ)
7876, 77nnmulcld 11684 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ∈ ℕ)
7978nnne0d 11681 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ≠ 0)
8079adantr 483 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑑 · 𝑁) ≠ 0)
8175, 80eqnetrd 3083 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0)
82 fveq2 6665 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘0𝑝))
83 dgr0 24846 . . . . . . . . . . . 12 (deg‘0𝑝) = 0
8482, 83syl6eq 2872 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = 0)
8584necon3i 3048 . . . . . . . . . 10 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8681, 85syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8767adantr 483 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ∈ (Poly‘ℂ))
8837nnne0d 11681 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
89 fveq2 6665 . . . . . . . . . . . . . . 15 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
9089, 83syl6eq 2872 . . . . . . . . . . . . . 14 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
9135, 90syl5eq 2868 . . . . . . . . . . . . 13 (𝐺 = 0𝑝𝑁 = 0)
9291necon3i 3048 . . . . . . . . . . . 12 (𝑁 ≠ 0 → 𝐺 ≠ 0𝑝)
9388, 92syl 17 . . . . . . . . . . 11 (𝜑𝐺 ≠ 0𝑝)
9493adantr 483 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝐺 ≠ 0𝑝)
9594adantr 483 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ≠ 0𝑝)
96 eqid 2821 . . . . . . . . . 10 (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
9796, 35dgrmul 24854 . . . . . . . . 9 ((((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
9874, 86, 87, 95, 97syl22anc 836 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
99 nncn 11640 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 𝑑 ∈ ℂ)
10099adantl 484 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℂ)
10138adantr 483 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℂ)
102100, 101adddirp1d 10661 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
103102adantr 483 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
10457, 98, 1033eqtr4rd 2867 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
10555, 104eqtr4d 2859 . . . . . 6 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))
106105ex 415 . . . . 5 ((𝜑𝑑 ∈ ℕ) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
107106expcom 416 . . . 4 (𝑑 ∈ ℕ → (𝜑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
108107a2d 29 . . 3 (𝑑 ∈ ℕ → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
1097, 13, 19, 25, 40, 108nnind 11650 . 2 (𝑀 ∈ ℕ → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
1101, 109mpcom 38 1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  wss 3936  cmpt 5139  ccom 5554  wf 6346  cfv 6350  (class class class)co 7150  f cof 7401  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cn 11632  0cn0 11891  cexp 13423  0𝑝c0p 24264  Polycply 24768  degcdgr 24771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-0p 24265  df-ply 24772  df-coe 24774  df-dgr 24775
This theorem is referenced by:  dgrcolem2  24858
  Copyright terms: Public domain W3C validator