MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcolem1 Structured version   Visualization version   GIF version

Theorem dgrcolem1 24870
Description: The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrcolem1.1 𝑁 = (deg‘𝐺)
dgrcolem1.2 (𝜑𝑀 ∈ ℕ)
dgrcolem1.3 (𝜑𝑁 ∈ ℕ)
dgrcolem1.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrcolem1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑁(𝑥)

Proof of Theorem dgrcolem1
Dummy variables 𝑤 𝑑 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrcolem1.2 . 2 (𝜑𝑀 ∈ ℕ)
2 oveq2 7143 . . . . . . 7 (𝑦 = 1 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑1))
32mpteq2dv 5126 . . . . . 6 (𝑦 = 1 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)))
43fveq2d 6649 . . . . 5 (𝑦 = 1 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))))
5 oveq1 7142 . . . . 5 (𝑦 = 1 → (𝑦 · 𝑁) = (1 · 𝑁))
64, 5eqeq12d 2814 . . . 4 (𝑦 = 1 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁)))
76imbi2d 344 . . 3 (𝑦 = 1 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))))
8 oveq2 7143 . . . . . . 7 (𝑦 = 𝑑 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑑))
98mpteq2dv 5126 . . . . . 6 (𝑦 = 𝑑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
109fveq2d 6649 . . . . 5 (𝑦 = 𝑑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))))
11 oveq1 7142 . . . . 5 (𝑦 = 𝑑 → (𝑦 · 𝑁) = (𝑑 · 𝑁))
1210, 11eqeq12d 2814 . . . 4 (𝑦 = 𝑑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)))
1312imbi2d 344 . . 3 (𝑦 = 𝑑 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))))
14 oveq2 7143 . . . . . . 7 (𝑦 = (𝑑 + 1) → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑(𝑑 + 1)))
1514mpteq2dv 5126 . . . . . 6 (𝑦 = (𝑑 + 1) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))))
1615fveq2d 6649 . . . . 5 (𝑦 = (𝑑 + 1) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))))
17 oveq1 7142 . . . . 5 (𝑦 = (𝑑 + 1) → (𝑦 · 𝑁) = ((𝑑 + 1) · 𝑁))
1816, 17eqeq12d 2814 . . . 4 (𝑦 = (𝑑 + 1) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
1918imbi2d 344 . . 3 (𝑦 = (𝑑 + 1) → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
20 oveq2 7143 . . . . . . 7 (𝑦 = 𝑀 → ((𝐺𝑥)↑𝑦) = ((𝐺𝑥)↑𝑀))
2120mpteq2dv 5126 . . . . . 6 (𝑦 = 𝑀 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀)))
2221fveq2d 6649 . . . . 5 (𝑦 = 𝑀 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))))
23 oveq1 7142 . . . . 5 (𝑦 = 𝑀 → (𝑦 · 𝑁) = (𝑀 · 𝑁))
2422, 23eqeq12d 2814 . . . 4 (𝑦 = 𝑀 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁) ↔ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
2524imbi2d 344 . . 3 (𝑦 = 𝑀 → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑦))) = (𝑦 · 𝑁)) ↔ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))))
26 dgrcolem1.4 . . . . . . . . . . 11 (𝜑𝐺 ∈ (Poly‘𝑆))
27 plyf 24795 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
2826, 27syl 17 . . . . . . . . . 10 (𝜑𝐺:ℂ⟶ℂ)
2928ffvelrnda 6828 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
3029exp1d 13501 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝐺𝑥)↑1) = (𝐺𝑥))
3130mpteq2dva 5125 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3228feqmptd 6708 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
3331, 32eqtr4d 2836 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1)) = 𝐺)
3433fveq2d 6649 . . . . 5 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (deg‘𝐺))
35 dgrcolem1.1 . . . . 5 𝑁 = (deg‘𝐺)
3634, 35eqtr4di 2851 . . . 4 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = 𝑁)
37 dgrcolem1.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
3837nncnd 11641 . . . . 5 (𝜑𝑁 ∈ ℂ)
3938mulid2d 10648 . . . 4 (𝜑 → (1 · 𝑁) = 𝑁)
4036, 39eqtr4d 2836 . . 3 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑1))) = (1 · 𝑁))
4129adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝐺𝑥) ∈ ℂ)
42 nnnn0 11892 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
4342adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
4443adantr 484 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑑 ∈ ℕ0)
4541, 44expp1d 13507 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑(𝑑 + 1)) = (((𝐺𝑥)↑𝑑) · (𝐺𝑥)))
4645mpteq2dva 5125 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
47 cnex 10607 . . . . . . . . . . . 12 ℂ ∈ V
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
49 ovexd 7170 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → ((𝐺𝑥)↑𝑑) ∈ V)
50 eqidd 2799 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
5132adantr 484 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺𝑥)))
5248, 49, 41, 50, 51offval2 7406 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺) = (𝑥 ∈ ℂ ↦ (((𝐺𝑥)↑𝑑) · (𝐺𝑥))))
5346, 52eqtr4d 2836 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1))) = ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺))
5453fveq2d 6649 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
5554adantr 484 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
56 oveq1 7142 . . . . . . . . 9 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
5756adantl 485 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁) = ((𝑑 · 𝑁) + 𝑁))
58 eqidd 2799 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) = (𝑦 ∈ ℂ ↦ (𝑦𝑑)))
59 oveq1 7142 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑥) → (𝑦𝑑) = ((𝐺𝑥)↑𝑑))
6041, 51, 58, 59fmptco 6868 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
61 ssidd 3938 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → ℂ ⊆ ℂ)
62 1cnd 10625 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 1 ∈ ℂ)
63 plypow 24802 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑑 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
6461, 62, 43, 63syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∈ (Poly‘ℂ))
65 plyssc 24797 . . . . . . . . . . . . 13 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6626adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆))
6765, 66sseldi 3913 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → 𝐺 ∈ (Poly‘ℂ))
68 addcl 10608 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ)
6968adantl 485 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ)
70 mulcl 10610 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ)
7170adantl 485 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ)
7264, 67, 69, 71plyco 24838 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ) → ((𝑦 ∈ ℂ ↦ (𝑦𝑑)) ∘ 𝐺) ∈ (Poly‘ℂ))
7360, 72eqeltrrd 2891 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
7473adantr 484 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ))
75 simpr 488 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁))
76 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℕ)
7737adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℕ)
7876, 77nnmulcld 11678 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ∈ ℕ)
7978nnne0d 11675 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ) → (𝑑 · 𝑁) ≠ 0)
8079adantr 484 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑑 · 𝑁) ≠ 0)
8175, 80eqnetrd 3054 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0)
82 fveq2 6645 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘0𝑝))
83 dgr0 24859 . . . . . . . . . . . 12 (deg‘0𝑝) = 0
8482, 83eqtrdi 2849 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) = 0𝑝 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = 0)
8584necon3i 3019 . . . . . . . . . 10 ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) ≠ 0 → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8681, 85syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝)
8767adantr 484 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ∈ (Poly‘ℂ))
8837nnne0d 11675 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
89 fveq2 6645 . . . . . . . . . . . . . . 15 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
9089, 83eqtrdi 2849 . . . . . . . . . . . . . 14 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
9135, 90syl5eq 2845 . . . . . . . . . . . . 13 (𝐺 = 0𝑝𝑁 = 0)
9291necon3i 3019 . . . . . . . . . . . 12 (𝑁 ≠ 0 → 𝐺 ≠ 0𝑝)
9388, 92syl 17 . . . . . . . . . . 11 (𝜑𝐺 ≠ 0𝑝)
9493adantr 484 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝐺 ≠ 0𝑝)
9594adantr 484 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → 𝐺 ≠ 0𝑝)
96 eqid 2798 . . . . . . . . . 10 (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)))
9796, 35dgrmul 24867 . . . . . . . . 9 ((((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
9874, 86, 87, 95, 97syl22anc 837 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)) = ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) + 𝑁))
99 nncn 11633 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 𝑑 ∈ ℂ)
10099adantl 485 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑑 ∈ ℂ)
10138adantr 484 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ) → 𝑁 ∈ ℂ)
102100, 101adddirp1d 10656 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
103102adantr 484 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = ((𝑑 · 𝑁) + 𝑁))
10457, 98, 1033eqtr4rd 2844 . . . . . . 7 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → ((𝑑 + 1) · 𝑁) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑)) ∘f · 𝐺)))
10555, 104eqtr4d 2836 . . . . . 6 (((𝜑𝑑 ∈ ℕ) ∧ (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))
106105ex 416 . . . . 5 ((𝜑𝑑 ∈ ℕ) → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁)))
107106expcom 417 . . . 4 (𝑑 ∈ ℕ → (𝜑 → ((deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
108107a2d 29 . . 3 (𝑑 ∈ ℕ → ((𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑑))) = (𝑑 · 𝑁)) → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑(𝑑 + 1)))) = ((𝑑 + 1) · 𝑁))))
1097, 13, 19, 25, 40, 108nnind 11643 . 2 (𝑀 ∈ ℕ → (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁)))
1101, 109mpcom 38 1 (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺𝑥)↑𝑀))) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  wss 3881  cmpt 5110  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cn 11625  0cn0 11885  cexp 13425  0𝑝c0p 24273  Polycply 24781  degcdgr 24784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24274  df-ply 24785  df-coe 24787  df-dgr 24788
This theorem is referenced by:  dgrcolem2  24871
  Copyright terms: Public domain W3C validator