Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lt3addmuld | Structured version Visualization version GIF version |
Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lt3addmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lt3addmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lt3addmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt3addmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lt3addmuld.altd | ⊢ (𝜑 → 𝐴 < 𝐷) |
lt3addmuld.bltd | ⊢ (𝜑 → 𝐵 < 𝐷) |
lt3addmuld.cltd | ⊢ (𝜑 → 𝐶 < 𝐷) |
Ref | Expression |
---|---|
lt3addmuld | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt3addmuld.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lt3addmuld.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 11110 | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
4 | lt3addmuld.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2re 12153 | . . . . 5 ⊢ 2 ∈ ℝ | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℝ) |
7 | lt3addmuld.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
8 | 6, 7 | remulcld 11111 | . . 3 ⊢ (𝜑 → (2 · 𝐷) ∈ ℝ) |
9 | lt3addmuld.altd | . . . 4 ⊢ (𝜑 → 𝐴 < 𝐷) | |
10 | lt3addmuld.bltd | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐷) | |
11 | 1, 2, 7, 9, 10 | lt2addmuld 12329 | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) < (2 · 𝐷)) |
12 | lt3addmuld.cltd | . . 3 ⊢ (𝜑 → 𝐶 < 𝐷) | |
13 | 3, 4, 8, 7, 11, 12 | lt2addd 11704 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) < ((2 · 𝐷) + 𝐷)) |
14 | 6 | recnd 11109 | . . . 4 ⊢ (𝜑 → 2 ∈ ℂ) |
15 | 7 | recnd 11109 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
16 | 14, 15 | adddirp1d 11107 | . . 3 ⊢ (𝜑 → ((2 + 1) · 𝐷) = ((2 · 𝐷) + 𝐷)) |
17 | 2p1e3 12221 | . . . . 5 ⊢ (2 + 1) = 3 | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (2 + 1) = 3) |
19 | 18 | oveq1d 7357 | . . 3 ⊢ (𝜑 → ((2 + 1) · 𝐷) = (3 · 𝐷)) |
20 | 16, 19 | eqtr3d 2779 | . 2 ⊢ (𝜑 → ((2 · 𝐷) + 𝐷) = (3 · 𝐷)) |
21 | 13, 20 | breqtrd 5123 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 class class class wbr 5097 (class class class)co 7342 ℝcr 10976 1c1 10978 + caddc 10980 · cmul 10982 < clt 11115 2c2 12134 3c3 12135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-2 12142 df-3 12143 |
This theorem is referenced by: lt4addmuld 43230 |
Copyright terms: Public domain | W3C validator |