Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt3addmuld Structured version   Visualization version   GIF version

Theorem lt3addmuld 41873
Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt3addmuld.a (𝜑𝐴 ∈ ℝ)
lt3addmuld.b (𝜑𝐵 ∈ ℝ)
lt3addmuld.c (𝜑𝐶 ∈ ℝ)
lt3addmuld.d (𝜑𝐷 ∈ ℝ)
lt3addmuld.altd (𝜑𝐴 < 𝐷)
lt3addmuld.bltd (𝜑𝐵 < 𝐷)
lt3addmuld.cltd (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
lt3addmuld (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷))

Proof of Theorem lt3addmuld
StepHypRef Expression
1 lt3addmuld.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 lt3addmuld.b . . . 4 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10659 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 lt3addmuld.c . . 3 (𝜑𝐶 ∈ ℝ)
5 2re 11699 . . . . 5 2 ∈ ℝ
65a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
7 lt3addmuld.d . . . 4 (𝜑𝐷 ∈ ℝ)
86, 7remulcld 10660 . . 3 (𝜑 → (2 · 𝐷) ∈ ℝ)
9 lt3addmuld.altd . . . 4 (𝜑𝐴 < 𝐷)
10 lt3addmuld.bltd . . . 4 (𝜑𝐵 < 𝐷)
111, 2, 7, 9, 10lt2addmuld 11875 . . 3 (𝜑 → (𝐴 + 𝐵) < (2 · 𝐷))
12 lt3addmuld.cltd . . 3 (𝜑𝐶 < 𝐷)
133, 4, 8, 7, 11, 12lt2addd 11252 . 2 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < ((2 · 𝐷) + 𝐷))
146recnd 10658 . . . 4 (𝜑 → 2 ∈ ℂ)
157recnd 10658 . . . 4 (𝜑𝐷 ∈ ℂ)
1614, 15adddirp1d 10656 . . 3 (𝜑 → ((2 + 1) · 𝐷) = ((2 · 𝐷) + 𝐷))
17 2p1e3 11767 . . . . 5 (2 + 1) = 3
1817a1i 11 . . . 4 (𝜑 → (2 + 1) = 3)
1918oveq1d 7155 . . 3 (𝜑 → ((2 + 1) · 𝐷) = (3 · 𝐷))
2016, 19eqtr3d 2859 . 2 (𝜑 → ((2 · 𝐷) + 𝐷) = (3 · 𝐷))
2113, 20breqtrd 5068 1 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114   class class class wbr 5042  (class class class)co 7140  cr 10525  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  2c2 11680  3c3 11681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-2 11688  df-3 11689
This theorem is referenced by:  lt4addmuld  41878
  Copyright terms: Public domain W3C validator