Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt3addmuld Structured version   Visualization version   GIF version

Theorem lt3addmuld 45216
Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt3addmuld.a (𝜑𝐴 ∈ ℝ)
lt3addmuld.b (𝜑𝐵 ∈ ℝ)
lt3addmuld.c (𝜑𝐶 ∈ ℝ)
lt3addmuld.d (𝜑𝐷 ∈ ℝ)
lt3addmuld.altd (𝜑𝐴 < 𝐷)
lt3addmuld.bltd (𝜑𝐵 < 𝐷)
lt3addmuld.cltd (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
lt3addmuld (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷))

Proof of Theorem lt3addmuld
StepHypRef Expression
1 lt3addmuld.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 lt3addmuld.b . . . 4 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 11319 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 lt3addmuld.c . . 3 (𝜑𝐶 ∈ ℝ)
5 2re 12367 . . . . 5 2 ∈ ℝ
65a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
7 lt3addmuld.d . . . 4 (𝜑𝐷 ∈ ℝ)
86, 7remulcld 11320 . . 3 (𝜑 → (2 · 𝐷) ∈ ℝ)
9 lt3addmuld.altd . . . 4 (𝜑𝐴 < 𝐷)
10 lt3addmuld.bltd . . . 4 (𝜑𝐵 < 𝐷)
111, 2, 7, 9, 10lt2addmuld 12543 . . 3 (𝜑 → (𝐴 + 𝐵) < (2 · 𝐷))
12 lt3addmuld.cltd . . 3 (𝜑𝐶 < 𝐷)
133, 4, 8, 7, 11, 12lt2addd 11913 . 2 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < ((2 · 𝐷) + 𝐷))
146recnd 11318 . . . 4 (𝜑 → 2 ∈ ℂ)
157recnd 11318 . . . 4 (𝜑𝐷 ∈ ℂ)
1614, 15adddirp1d 11316 . . 3 (𝜑 → ((2 + 1) · 𝐷) = ((2 · 𝐷) + 𝐷))
17 2p1e3 12435 . . . . 5 (2 + 1) = 3
1817a1i 11 . . . 4 (𝜑 → (2 + 1) = 3)
1918oveq1d 7463 . . 3 (𝜑 → ((2 + 1) · 𝐷) = (3 · 𝐷))
2016, 19eqtr3d 2782 . 2 (𝜑 → ((2 · 𝐷) + 𝐷) = (3 · 𝐷))
2113, 20breqtrd 5192 1 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  2c2 12348  3c3 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-2 12356  df-3 12357
This theorem is referenced by:  lt4addmuld  45221
  Copyright terms: Public domain W3C validator