| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpoa.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 4 | 2, 3 | ovmpoga 7561 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 5 | 1, 4 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 (class class class)co 7405 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: ovmpot 7568 1st2val 8016 2nd2val 8017 mptmpoopabbrd 8079 mptmpoopabbrdOLD 8080 cantnffval 9677 cantnfsuc 9684 fseqenlem1 10038 xaddval 13239 xmulval 13241 fzoval 13677 expval 14081 ccatfval 14591 splcl 14770 cshfn 14808 bpolylem 16064 ruclem1 16249 sadfval 16471 sadcp1 16474 smufval 16496 smupp1 16499 eucalgval2 16600 pcval 16864 pc0 16874 vdwapval 16993 pwsval 17500 xpsfval 17580 xpsval 17584 rescval 17840 isfunc 17877 isfull 17925 isfth 17929 natfval 17962 catcisolem 18123 xpchom 18192 1stfval 18203 2ndfval 18206 yonedalem3a 18286 yonedainv 18293 plusfval 18625 ismgmhm 18674 ismhm 18763 mulgval 19054 eqgfval 19159 isghm 19198 isga 19274 subgga 19283 cayleylem1 19393 sylow1lem2 19580 isslw 19589 sylow2blem1 19601 sylow3lem1 19608 sylow3lem6 19613 frgpuptinv 19752 frgpup2 19757 isrhm 20438 scafval 20838 islmhm 20985 xrsdsval 21378 ipfval 21609 dsmmval 21694 psrmulfval 21903 mplval 21949 ltbval 22001 mpfrcl 22043 evlsval 22044 evlval 22053 mhpfval 22076 matval 22349 submafval 22517 mdetfval 22524 minmar1fval 22584 txval 23502 xkoval 23525 hmeofval 23696 flffval 23927 qustgplem 24059 dscmet 24511 dscopn 24512 tngval 24578 nmofval 24653 nghmfval 24661 isnmhm 24685 htpyco1 24928 htpycc 24930 phtpycc 24941 reparphti 24947 reparphtiOLD 24948 pcoval 24962 pcohtpylem 24970 pcorevlem 24977 dyadval 25545 itg1addlem3 25651 itg1addlem4 25652 mbfi1fseqlem3 25670 mbfi1fseqlem4 25671 mbfi1fseqlem5 25672 mbfi1fseqlem6 25673 mdegfval 26019 quotval 26252 elqaalem2 26280 cxpval 26625 cxpcn3 26710 angval 26763 sgmval 27104 lgsval 27264 wwlksn 29819 wspthsn 29830 rusgrnumwwlklem 29952 clwwlkn 30007 2clwwlk 30328 numclwwlkovh0 30353 numclwwlkovq 30355 shsval 31293 sshjval 31331 faeval 34277 txsconnlem 35262 cvxsconn 35265 iscvm 35281 cvmliftlem5 35311 mpomulnzcnf 36317 rngohomval 37988 rngoisoval 38001 evlselv 42610 prjcrvfval 42654 rmxfval 42927 rmyfval 42928 mendplusg 43206 mendvsca 43211 mnringvald 44237 addrval 44490 subrval 44491 mulvval 44492 sigarval 46879 dmatALTval 48376 naryfval 48608 discsubc 49031 oppfvalg 49074 upfval 49111 setc1onsubc 49479 lmdfval 49523 cmdfval 49524 |
| Copyright terms: Public domain | W3C validator |