Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpoa.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
4 | 2, 3 | ovmpoga 7405 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
5 | 1, 4 | mp3an3 1448 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 (class class class)co 7255 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: 1st2val 7832 2nd2val 7833 cantnffval 9351 cantnfsuc 9358 fseqenlem1 9711 xaddval 12886 xmulval 12888 fzoval 13317 expval 13712 ccatfval 14204 splcl 14393 cshfn 14431 bpolylem 15686 ruclem1 15868 sadfval 16087 sadcp1 16090 smufval 16112 smupp1 16115 eucalgval2 16214 pcval 16473 pc0 16483 vdwapval 16602 pwsval 17114 xpsfval 17194 xpsval 17198 rescval 17456 isfunc 17495 isfull 17542 isfth 17546 natfval 17578 catcisolem 17741 xpchom 17813 1stfval 17824 2ndfval 17827 yonedalem3a 17908 yonedainv 17915 plusfval 18248 ismhm 18347 mulgval 18619 eqgfval 18719 isga 18812 subgga 18821 cayleylem1 18935 sylow1lem2 19119 isslw 19128 sylow2blem1 19140 sylow3lem1 19147 sylow3lem6 19152 frgpuptinv 19292 frgpup2 19297 isrhm 19880 scafval 20057 islmhm 20204 xrsdsval 20554 ipfval 20766 dsmmval 20851 psrmulfval 21064 mplval 21107 ltbval 21154 mpfrcl 21205 evlsval 21206 evlval 21215 mhpfval 21239 matval 21468 submafval 21636 mdetfval 21643 minmar1fval 21703 txval 22623 xkoval 22646 hmeofval 22817 flffval 23048 qustgplem 23180 dscmet 23634 dscopn 23635 tngval 23701 nmofval 23784 nghmfval 23792 isnmhm 23816 htpyco1 24047 htpycc 24049 phtpycc 24060 reparphti 24066 pcoval 24080 pcohtpylem 24088 pcorevlem 24095 dyadval 24661 itg1addlem3 24767 itg1addlem4 24768 itg1addlem4OLD 24769 mbfi1fseqlem3 24787 mbfi1fseqlem4 24788 mbfi1fseqlem5 24789 mbfi1fseqlem6 24790 mdegfval 25132 quotval 25357 elqaalem2 25385 cxpval 25724 cxpcn3 25806 angval 25856 sgmval 26196 lgsval 26354 wwlksn 28103 wspthsn 28114 rusgrnumwwlklem 28236 clwwlkn 28291 2clwwlk 28612 numclwwlkovh0 28637 numclwwlkovq 28639 shsval 29575 sshjval 29613 faeval 32114 txsconnlem 33102 cvxsconn 33105 iscvm 33121 cvmliftlem5 33151 rngohomval 36049 rngoisoval 36062 rmxfval 40642 rmyfval 40643 mendplusg 40927 mendvsca 40932 mnringvald 41715 addrval 41973 subrval 41974 mulvval 41975 sigarval 44253 ismgmhm 45225 dmatALTval 45629 naryfval 45862 |
Copyright terms: Public domain | W3C validator |