| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpoa.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 4 | 2, 3 | ovmpoga 7546 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 5 | 1, 4 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 (class class class)co 7390 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: ovmpot 7553 1st2val 7999 2nd2val 8000 mptmpoopabbrd 8062 mptmpoopabbrdOLD 8063 cantnffval 9623 cantnfsuc 9630 fseqenlem1 9984 xaddval 13190 xmulval 13192 fzoval 13628 expval 14035 ccatfval 14545 splcl 14724 cshfn 14762 bpolylem 16021 ruclem1 16206 sadfval 16429 sadcp1 16432 smufval 16454 smupp1 16457 eucalgval2 16558 pcval 16822 pc0 16832 vdwapval 16951 pwsval 17456 xpsfval 17536 xpsval 17540 rescval 17796 isfunc 17833 isfull 17881 isfth 17885 natfval 17918 catcisolem 18079 xpchom 18148 1stfval 18159 2ndfval 18162 yonedalem3a 18242 yonedainv 18249 plusfval 18581 ismgmhm 18630 ismhm 18719 mulgval 19010 eqgfval 19115 isghm 19154 isga 19230 subgga 19239 cayleylem1 19349 sylow1lem2 19536 isslw 19545 sylow2blem1 19557 sylow3lem1 19564 sylow3lem6 19569 frgpuptinv 19708 frgpup2 19713 isrhm 20394 scafval 20794 islmhm 20941 xrsdsval 21334 ipfval 21565 dsmmval 21650 psrmulfval 21859 mplval 21905 ltbval 21957 mpfrcl 21999 evlsval 22000 evlval 22009 mhpfval 22032 matval 22305 submafval 22473 mdetfval 22480 minmar1fval 22540 txval 23458 xkoval 23481 hmeofval 23652 flffval 23883 qustgplem 24015 dscmet 24467 dscopn 24468 tngval 24534 nmofval 24609 nghmfval 24617 isnmhm 24641 htpyco1 24884 htpycc 24886 phtpycc 24897 reparphti 24903 reparphtiOLD 24904 pcoval 24918 pcohtpylem 24926 pcorevlem 24933 dyadval 25500 itg1addlem3 25606 itg1addlem4 25607 mbfi1fseqlem3 25625 mbfi1fseqlem4 25626 mbfi1fseqlem5 25627 mbfi1fseqlem6 25628 mdegfval 25974 quotval 26207 elqaalem2 26235 cxpval 26580 cxpcn3 26665 angval 26718 sgmval 27059 lgsval 27219 wwlksn 29774 wspthsn 29785 rusgrnumwwlklem 29907 clwwlkn 29962 2clwwlk 30283 numclwwlkovh0 30308 numclwwlkovq 30310 shsval 31248 sshjval 31286 faeval 34243 txsconnlem 35234 cvxsconn 35237 iscvm 35253 cvmliftlem5 35283 mpomulnzcnf 36294 rngohomval 37965 rngoisoval 37978 evlselv 42582 prjcrvfval 42626 rmxfval 42899 rmyfval 42900 mendplusg 43178 mendvsca 43183 mnringvald 44209 addrval 44462 subrval 44463 mulvval 44464 sigarval 46855 dmatALTval 48393 naryfval 48621 discsubc 49057 oppfvalg 49119 upfval 49169 setc1onsubc 49595 lmdfval 49642 cmdfval 49643 |
| Copyright terms: Public domain | W3C validator |