Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpoa.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
4 | 2, 3 | ovmpoga 7427 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
5 | 1, 4 | mp3an3 1449 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 (class class class)co 7275 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: 1st2val 7859 2nd2val 7860 mptmpoopabbrd 7921 cantnffval 9421 cantnfsuc 9428 fseqenlem1 9780 xaddval 12957 xmulval 12959 fzoval 13388 expval 13784 ccatfval 14276 splcl 14465 cshfn 14503 bpolylem 15758 ruclem1 15940 sadfval 16159 sadcp1 16162 smufval 16184 smupp1 16187 eucalgval2 16286 pcval 16545 pc0 16555 vdwapval 16674 pwsval 17197 xpsfval 17277 xpsval 17281 rescval 17539 isfunc 17579 isfull 17626 isfth 17630 natfval 17662 catcisolem 17825 xpchom 17897 1stfval 17908 2ndfval 17911 yonedalem3a 17992 yonedainv 17999 plusfval 18333 ismhm 18432 mulgval 18704 eqgfval 18804 isga 18897 subgga 18906 cayleylem1 19020 sylow1lem2 19204 isslw 19213 sylow2blem1 19225 sylow3lem1 19232 sylow3lem6 19237 frgpuptinv 19377 frgpup2 19382 isrhm 19965 scafval 20142 islmhm 20289 xrsdsval 20642 ipfval 20854 dsmmval 20941 psrmulfval 21154 mplval 21197 ltbval 21244 mpfrcl 21295 evlsval 21296 evlval 21305 mhpfval 21329 matval 21558 submafval 21728 mdetfval 21735 minmar1fval 21795 txval 22715 xkoval 22738 hmeofval 22909 flffval 23140 qustgplem 23272 dscmet 23728 dscopn 23729 tngval 23795 nmofval 23878 nghmfval 23886 isnmhm 23910 htpyco1 24141 htpycc 24143 phtpycc 24154 reparphti 24160 pcoval 24174 pcohtpylem 24182 pcorevlem 24189 dyadval 24756 itg1addlem3 24862 itg1addlem4 24863 itg1addlem4OLD 24864 mbfi1fseqlem3 24882 mbfi1fseqlem4 24883 mbfi1fseqlem5 24884 mbfi1fseqlem6 24885 mdegfval 25227 quotval 25452 elqaalem2 25480 cxpval 25819 cxpcn3 25901 angval 25951 sgmval 26291 lgsval 26449 wwlksn 28202 wspthsn 28213 rusgrnumwwlklem 28335 clwwlkn 28390 2clwwlk 28711 numclwwlkovh0 28736 numclwwlkovq 28738 shsval 29674 sshjval 29712 faeval 32214 txsconnlem 33202 cvxsconn 33205 iscvm 33221 cvmliftlem5 33251 rngohomval 36122 rngoisoval 36135 prjcrvfval 40468 rmxfval 40726 rmyfval 40727 mendplusg 41011 mendvsca 41016 mnringvald 41826 addrval 42084 subrval 42085 mulvval 42086 sigarval 44366 ismgmhm 45337 dmatALTval 45741 naryfval 45974 |
Copyright terms: Public domain | W3C validator |