![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpoa.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
4 | 2, 3 | ovmpoga 7586 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
5 | 1, 4 | mp3an3 1449 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 (class class class)co 7430 ∈ cmpo 7432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 |
This theorem is referenced by: ovmpot 7593 1st2val 8040 2nd2val 8041 mptmpoopabbrd 8103 mptmpoopabbrdOLD 8104 cantnffval 9700 cantnfsuc 9707 fseqenlem1 10061 xaddval 13261 xmulval 13263 fzoval 13696 expval 14100 ccatfval 14607 splcl 14786 cshfn 14824 bpolylem 16080 ruclem1 16263 sadfval 16485 sadcp1 16488 smufval 16510 smupp1 16513 eucalgval2 16614 pcval 16877 pc0 16887 vdwapval 17006 pwsval 17532 xpsfval 17612 xpsval 17616 rescval 17874 isfunc 17914 isfull 17963 isfth 17967 natfval 18000 catcisolem 18163 xpchom 18235 1stfval 18246 2ndfval 18249 yonedalem3a 18330 yonedainv 18337 plusfval 18672 ismgmhm 18721 ismhm 18810 mulgval 19101 eqgfval 19206 isghm 19245 isga 19321 subgga 19330 cayleylem1 19444 sylow1lem2 19631 isslw 19640 sylow2blem1 19652 sylow3lem1 19659 sylow3lem6 19664 frgpuptinv 19803 frgpup2 19808 isrhm 20494 scafval 20895 islmhm 21043 xrsdsval 21445 ipfval 21684 dsmmval 21771 psrmulfval 21980 mplval 22026 ltbval 22078 mpfrcl 22126 evlsval 22127 evlval 22136 mhpfval 22159 matval 22430 submafval 22600 mdetfval 22607 minmar1fval 22667 txval 23587 xkoval 23610 hmeofval 23781 flffval 24012 qustgplem 24144 dscmet 24600 dscopn 24601 tngval 24667 nmofval 24750 nghmfval 24758 isnmhm 24782 htpyco1 25023 htpycc 25025 phtpycc 25036 reparphti 25042 reparphtiOLD 25043 pcoval 25057 pcohtpylem 25065 pcorevlem 25072 dyadval 25640 itg1addlem3 25746 itg1addlem4 25747 itg1addlem4OLD 25748 mbfi1fseqlem3 25766 mbfi1fseqlem4 25767 mbfi1fseqlem5 25768 mbfi1fseqlem6 25769 mdegfval 26115 quotval 26348 elqaalem2 26376 cxpval 26720 cxpcn3 26805 angval 26858 sgmval 27199 lgsval 27359 wwlksn 29866 wspthsn 29877 rusgrnumwwlklem 29999 clwwlkn 30054 2clwwlk 30375 numclwwlkovh0 30400 numclwwlkovq 30402 shsval 31340 sshjval 31378 faeval 34226 txsconnlem 35224 cvxsconn 35227 iscvm 35243 cvmliftlem5 35273 mpomulnzcnf 36281 rngohomval 37950 rngoisoval 37963 evlselv 42573 prjcrvfval 42617 rmxfval 42891 rmyfval 42892 mendplusg 43170 mendvsca 43175 mnringvald 44203 addrval 44461 subrval 44462 mulvval 44463 sigarval 46805 dmatALTval 48245 naryfval 48477 |
Copyright terms: Public domain | W3C validator |