| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpoa.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 4 | 2, 3 | ovmpoga 7543 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 5 | 1, 4 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 (class class class)co 7387 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: ovmpot 7550 1st2val 7996 2nd2val 7997 mptmpoopabbrd 8059 mptmpoopabbrdOLD 8060 cantnffval 9616 cantnfsuc 9623 fseqenlem1 9977 xaddval 13183 xmulval 13185 fzoval 13621 expval 14028 ccatfval 14538 splcl 14717 cshfn 14755 bpolylem 16014 ruclem1 16199 sadfval 16422 sadcp1 16425 smufval 16447 smupp1 16450 eucalgval2 16551 pcval 16815 pc0 16825 vdwapval 16944 pwsval 17449 xpsfval 17529 xpsval 17533 rescval 17789 isfunc 17826 isfull 17874 isfth 17878 natfval 17911 catcisolem 18072 xpchom 18141 1stfval 18152 2ndfval 18155 yonedalem3a 18235 yonedainv 18242 plusfval 18574 ismgmhm 18623 ismhm 18712 mulgval 19003 eqgfval 19108 isghm 19147 isga 19223 subgga 19232 cayleylem1 19342 sylow1lem2 19529 isslw 19538 sylow2blem1 19550 sylow3lem1 19557 sylow3lem6 19562 frgpuptinv 19701 frgpup2 19706 isrhm 20387 scafval 20787 islmhm 20934 xrsdsval 21327 ipfval 21558 dsmmval 21643 psrmulfval 21852 mplval 21898 ltbval 21950 mpfrcl 21992 evlsval 21993 evlval 22002 mhpfval 22025 matval 22298 submafval 22466 mdetfval 22473 minmar1fval 22533 txval 23451 xkoval 23474 hmeofval 23645 flffval 23876 qustgplem 24008 dscmet 24460 dscopn 24461 tngval 24527 nmofval 24602 nghmfval 24610 isnmhm 24634 htpyco1 24877 htpycc 24879 phtpycc 24890 reparphti 24896 reparphtiOLD 24897 pcoval 24911 pcohtpylem 24919 pcorevlem 24926 dyadval 25493 itg1addlem3 25599 itg1addlem4 25600 mbfi1fseqlem3 25618 mbfi1fseqlem4 25619 mbfi1fseqlem5 25620 mbfi1fseqlem6 25621 mdegfval 25967 quotval 26200 elqaalem2 26228 cxpval 26573 cxpcn3 26658 angval 26711 sgmval 27052 lgsval 27212 wwlksn 29767 wspthsn 29778 rusgrnumwwlklem 29900 clwwlkn 29955 2clwwlk 30276 numclwwlkovh0 30301 numclwwlkovq 30303 shsval 31241 sshjval 31279 faeval 34236 txsconnlem 35227 cvxsconn 35230 iscvm 35246 cvmliftlem5 35276 mpomulnzcnf 36287 rngohomval 37958 rngoisoval 37971 evlselv 42575 prjcrvfval 42619 rmxfval 42892 rmyfval 42893 mendplusg 43171 mendvsca 43176 mnringvald 44202 addrval 44455 subrval 44456 mulvval 44457 sigarval 46848 dmatALTval 48389 naryfval 48617 discsubc 49053 oppfvalg 49115 upfval 49165 setc1onsubc 49591 lmdfval 49638 cmdfval 49639 |
| Copyright terms: Public domain | W3C validator |