| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpoa.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 4 | 2, 3 | ovmpoga 7507 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 5 | 1, 4 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 (class class class)co 7353 ∈ cmpo 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 |
| This theorem is referenced by: ovmpot 7514 1st2val 7959 2nd2val 7960 mptmpoopabbrd 8022 mptmpoopabbrdOLD 8023 cantnffval 9578 cantnfsuc 9585 fseqenlem1 9937 xaddval 13143 xmulval 13145 fzoval 13581 expval 13988 ccatfval 14498 splcl 14676 cshfn 14714 bpolylem 15973 ruclem1 16158 sadfval 16381 sadcp1 16384 smufval 16406 smupp1 16409 eucalgval2 16510 pcval 16774 pc0 16784 vdwapval 16903 pwsval 17408 xpsfval 17488 xpsval 17492 rescval 17752 isfunc 17789 isfull 17837 isfth 17841 natfval 17874 catcisolem 18035 xpchom 18104 1stfval 18115 2ndfval 18118 yonedalem3a 18198 yonedainv 18205 plusfval 18539 ismgmhm 18588 ismhm 18677 mulgval 18968 eqgfval 19073 isghm 19112 isga 19188 subgga 19197 cayleylem1 19309 sylow1lem2 19496 isslw 19505 sylow2blem1 19517 sylow3lem1 19524 sylow3lem6 19529 frgpuptinv 19668 frgpup2 19673 isrhm 20381 scafval 20802 islmhm 20949 xrsdsval 21335 ipfval 21574 dsmmval 21659 psrmulfval 21868 mplval 21914 ltbval 21966 mpfrcl 22008 evlsval 22009 evlval 22018 mhpfval 22041 matval 22314 submafval 22482 mdetfval 22489 minmar1fval 22549 txval 23467 xkoval 23490 hmeofval 23661 flffval 23892 qustgplem 24024 dscmet 24476 dscopn 24477 tngval 24543 nmofval 24618 nghmfval 24626 isnmhm 24650 htpyco1 24893 htpycc 24895 phtpycc 24906 reparphti 24912 reparphtiOLD 24913 pcoval 24927 pcohtpylem 24935 pcorevlem 24942 dyadval 25509 itg1addlem3 25615 itg1addlem4 25616 mbfi1fseqlem3 25634 mbfi1fseqlem4 25635 mbfi1fseqlem5 25636 mbfi1fseqlem6 25637 mdegfval 25983 quotval 26216 elqaalem2 26244 cxpval 26589 cxpcn3 26674 angval 26727 sgmval 27068 lgsval 27228 wwlksn 29800 wspthsn 29811 rusgrnumwwlklem 29933 clwwlkn 29988 2clwwlk 30309 numclwwlkovh0 30334 numclwwlkovq 30336 shsval 31274 sshjval 31312 faeval 34215 txsconnlem 35215 cvxsconn 35218 iscvm 35234 cvmliftlem5 35264 mpomulnzcnf 36275 rngohomval 37946 rngoisoval 37959 evlselv 42563 prjcrvfval 42607 rmxfval 42880 rmyfval 42881 mendplusg 43158 mendvsca 43163 mnringvald 44189 addrval 44442 subrval 44443 mulvval 44444 sigarval 46835 dmatALTval 48389 naryfval 48617 discsubc 49053 oppfvalg 49115 upfval 49165 setc1onsubc 49591 lmdfval 49638 cmdfval 49639 |
| Copyright terms: Public domain | W3C validator |