| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpoa.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 4 | 2, 3 | ovmpoga 7506 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 5 | 1, 4 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 (class class class)co 7352 ∈ cmpo 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: ovmpot 7513 1st2val 7955 2nd2val 7956 mptmpoopabbrd 8018 mptmpoopabbrdOLD 8019 cantnffval 9560 cantnfsuc 9567 fseqenlem1 9922 xaddval 13124 xmulval 13126 fzoval 13562 expval 13972 ccatfval 14482 splcl 14661 cshfn 14699 bpolylem 15957 ruclem1 16142 sadfval 16365 sadcp1 16368 smufval 16390 smupp1 16393 eucalgval2 16494 pcval 16758 pc0 16768 vdwapval 16887 pwsval 17392 xpsfval 17472 xpsval 17476 rescval 17736 isfunc 17773 isfull 17821 isfth 17825 natfval 17858 catcisolem 18019 xpchom 18088 1stfval 18099 2ndfval 18102 yonedalem3a 18182 yonedainv 18189 plusfval 18557 ismgmhm 18606 ismhm 18695 mulgval 18986 eqgfval 19090 isghm 19129 isga 19205 subgga 19214 cayleylem1 19326 sylow1lem2 19513 isslw 19522 sylow2blem1 19534 sylow3lem1 19541 sylow3lem6 19546 frgpuptinv 19685 frgpup2 19690 isrhm 20398 scafval 20816 islmhm 20963 xrsdsval 21349 ipfval 21588 dsmmval 21673 psrmulfval 21882 mplval 21927 ltbval 21979 mpfrcl 22021 evlsval 22022 evlval 22031 mhpfval 22054 matval 22327 submafval 22495 mdetfval 22502 minmar1fval 22562 txval 23480 xkoval 23503 hmeofval 23674 flffval 23905 qustgplem 24037 dscmet 24488 dscopn 24489 tngval 24555 nmofval 24630 nghmfval 24638 isnmhm 24662 htpyco1 24905 htpycc 24907 phtpycc 24918 reparphti 24924 reparphtiOLD 24925 pcoval 24939 pcohtpylem 24947 pcorevlem 24954 dyadval 25521 itg1addlem3 25627 itg1addlem4 25628 mbfi1fseqlem3 25646 mbfi1fseqlem4 25647 mbfi1fseqlem5 25648 mbfi1fseqlem6 25649 mdegfval 25995 quotval 26228 elqaalem2 26256 cxpval 26601 cxpcn3 26686 angval 26739 sgmval 27080 lgsval 27240 wwlksn 29817 wspthsn 29828 rusgrnumwwlklem 29953 clwwlkn 30008 2clwwlk 30329 numclwwlkovh0 30354 numclwwlkovq 30356 shsval 31294 sshjval 31332 faeval 34280 txsconnlem 35305 cvxsconn 35308 iscvm 35324 cvmliftlem5 35354 mpomulnzcnf 36364 rngohomval 38025 rngoisoval 38038 evlselv 42706 prjcrvfval 42750 rmxfval 43022 rmyfval 43023 mendplusg 43300 mendvsca 43305 mnringvald 44331 addrval 44583 subrval 44584 mulvval 44585 sigarval 46973 dmatALTval 48526 naryfval 48754 discsubc 49190 oppfvalg 49252 upfval 49302 setc1onsubc 49728 lmdfval 49775 cmdfval 49776 |
| Copyright terms: Public domain | W3C validator |