| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpoa.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 4 | 2, 3 | ovmpoga 7500 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 5 | 1, 4 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: ovmpot 7507 1st2val 7949 2nd2val 7950 mptmpoopabbrd 8012 mptmpoopabbrdOLD 8013 cantnffval 9553 cantnfsuc 9560 fseqenlem1 9915 xaddval 13122 xmulval 13124 fzoval 13560 expval 13970 ccatfval 14480 splcl 14659 cshfn 14697 bpolylem 15955 ruclem1 16140 sadfval 16363 sadcp1 16366 smufval 16388 smupp1 16391 eucalgval2 16492 pcval 16756 pc0 16766 vdwapval 16885 pwsval 17390 xpsfval 17470 xpsval 17474 rescval 17734 isfunc 17771 isfull 17819 isfth 17823 natfval 17856 catcisolem 18017 xpchom 18086 1stfval 18097 2ndfval 18100 yonedalem3a 18180 yonedainv 18187 plusfval 18555 ismgmhm 18604 ismhm 18693 mulgval 18984 eqgfval 19089 isghm 19128 isga 19204 subgga 19213 cayleylem1 19325 sylow1lem2 19512 isslw 19521 sylow2blem1 19533 sylow3lem1 19540 sylow3lem6 19545 frgpuptinv 19684 frgpup2 19689 isrhm 20397 scafval 20815 islmhm 20962 xrsdsval 21348 ipfval 21587 dsmmval 21672 psrmulfval 21881 mplval 21927 ltbval 21979 mpfrcl 22021 evlsval 22022 evlval 22031 mhpfval 22054 matval 22327 submafval 22495 mdetfval 22502 minmar1fval 22562 txval 23480 xkoval 23503 hmeofval 23674 flffval 23905 qustgplem 24037 dscmet 24488 dscopn 24489 tngval 24555 nmofval 24630 nghmfval 24638 isnmhm 24662 htpyco1 24905 htpycc 24907 phtpycc 24918 reparphti 24924 reparphtiOLD 24925 pcoval 24939 pcohtpylem 24947 pcorevlem 24954 dyadval 25521 itg1addlem3 25627 itg1addlem4 25628 mbfi1fseqlem3 25646 mbfi1fseqlem4 25647 mbfi1fseqlem5 25648 mbfi1fseqlem6 25649 mdegfval 25995 quotval 26228 elqaalem2 26256 cxpval 26601 cxpcn3 26686 angval 26739 sgmval 27080 lgsval 27240 wwlksn 29816 wspthsn 29827 rusgrnumwwlklem 29949 clwwlkn 30004 2clwwlk 30325 numclwwlkovh0 30350 numclwwlkovq 30352 shsval 31290 sshjval 31328 faeval 34257 txsconnlem 35282 cvxsconn 35285 iscvm 35301 cvmliftlem5 35331 mpomulnzcnf 36339 rngohomval 38010 rngoisoval 38023 evlselv 42626 prjcrvfval 42670 rmxfval 42943 rmyfval 42944 mendplusg 43221 mendvsca 43226 mnringvald 44252 addrval 44504 subrval 44505 mulvval 44506 sigarval 46894 dmatALTval 48438 naryfval 48666 discsubc 49102 oppfvalg 49164 upfval 49214 setc1onsubc 49640 lmdfval 49687 cmdfval 49688 |
| Copyright terms: Public domain | W3C validator |