Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpoa.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
4 | 2, 3 | ovmpoga 7421 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
5 | 1, 4 | mp3an3 1449 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 (class class class)co 7271 ∈ cmpo 7273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 |
This theorem is referenced by: 1st2val 7852 2nd2val 7853 cantnffval 9399 cantnfsuc 9406 fseqenlem1 9781 xaddval 12956 xmulval 12958 fzoval 13387 expval 13782 ccatfval 14274 splcl 14463 cshfn 14501 bpolylem 15756 ruclem1 15938 sadfval 16157 sadcp1 16160 smufval 16182 smupp1 16185 eucalgval2 16284 pcval 16543 pc0 16553 vdwapval 16672 pwsval 17195 xpsfval 17275 xpsval 17279 rescval 17537 isfunc 17577 isfull 17624 isfth 17628 natfval 17660 catcisolem 17823 xpchom 17895 1stfval 17906 2ndfval 17909 yonedalem3a 17990 yonedainv 17997 plusfval 18331 ismhm 18430 mulgval 18702 eqgfval 18802 isga 18895 subgga 18904 cayleylem1 19018 sylow1lem2 19202 isslw 19211 sylow2blem1 19223 sylow3lem1 19230 sylow3lem6 19235 frgpuptinv 19375 frgpup2 19380 isrhm 19963 scafval 20140 islmhm 20287 xrsdsval 20640 ipfval 20852 dsmmval 20939 psrmulfval 21152 mplval 21195 ltbval 21242 mpfrcl 21293 evlsval 21294 evlval 21303 mhpfval 21327 matval 21556 submafval 21726 mdetfval 21733 minmar1fval 21793 txval 22713 xkoval 22736 hmeofval 22907 flffval 23138 qustgplem 23270 dscmet 23726 dscopn 23727 tngval 23793 nmofval 23876 nghmfval 23884 isnmhm 23908 htpyco1 24139 htpycc 24141 phtpycc 24152 reparphti 24158 pcoval 24172 pcohtpylem 24180 pcorevlem 24187 dyadval 24754 itg1addlem3 24860 itg1addlem4 24861 itg1addlem4OLD 24862 mbfi1fseqlem3 24880 mbfi1fseqlem4 24881 mbfi1fseqlem5 24882 mbfi1fseqlem6 24883 mdegfval 25225 quotval 25450 elqaalem2 25478 cxpval 25817 cxpcn3 25899 angval 25949 sgmval 26289 lgsval 26447 wwlksn 28198 wspthsn 28209 rusgrnumwwlklem 28331 clwwlkn 28386 2clwwlk 28707 numclwwlkovh0 28732 numclwwlkovq 28734 shsval 29670 sshjval 29708 faeval 32210 txsconnlem 33198 cvxsconn 33201 iscvm 33217 cvmliftlem5 33247 rngohomval 36118 rngoisoval 36131 prjcrvfval 40465 rmxfval 40723 rmyfval 40724 mendplusg 41008 mendvsca 41013 mnringvald 41796 addrval 42054 subrval 42055 mulvval 42056 sigarval 44334 ismgmhm 45306 dmatALTval 45710 naryfval 45943 |
Copyright terms: Public domain | W3C validator |