![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpoa | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovmpoga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
ovmpoga.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpoa.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpoa | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpoa.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpoga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
3 | ovmpoga.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
4 | 2, 3 | ovmpoga 7604 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
5 | 1, 4 | mp3an3 1450 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 (class class class)co 7448 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: ovmpot 7611 1st2val 8058 2nd2val 8059 mptmpoopabbrd 8121 mptmpoopabbrdOLD 8122 cantnffval 9732 cantnfsuc 9739 fseqenlem1 10093 xaddval 13285 xmulval 13287 fzoval 13717 expval 14114 ccatfval 14621 splcl 14800 cshfn 14838 bpolylem 16096 ruclem1 16279 sadfval 16498 sadcp1 16501 smufval 16523 smupp1 16526 eucalgval2 16628 pcval 16891 pc0 16901 vdwapval 17020 pwsval 17546 xpsfval 17626 xpsval 17630 rescval 17888 isfunc 17928 isfull 17977 isfth 17981 natfval 18014 catcisolem 18177 xpchom 18249 1stfval 18260 2ndfval 18263 yonedalem3a 18344 yonedainv 18351 plusfval 18685 ismgmhm 18734 ismhm 18820 mulgval 19111 eqgfval 19216 isghm 19255 isga 19331 subgga 19340 cayleylem1 19454 sylow1lem2 19641 isslw 19650 sylow2blem1 19662 sylow3lem1 19669 sylow3lem6 19674 frgpuptinv 19813 frgpup2 19818 isrhm 20504 scafval 20901 islmhm 21049 xrsdsval 21451 ipfval 21690 dsmmval 21777 psrmulfval 21986 mplval 22032 ltbval 22084 mpfrcl 22132 evlsval 22133 evlval 22142 mhpfval 22165 matval 22436 submafval 22606 mdetfval 22613 minmar1fval 22673 txval 23593 xkoval 23616 hmeofval 23787 flffval 24018 qustgplem 24150 dscmet 24606 dscopn 24607 tngval 24673 nmofval 24756 nghmfval 24764 isnmhm 24788 htpyco1 25029 htpycc 25031 phtpycc 25042 reparphti 25048 reparphtiOLD 25049 pcoval 25063 pcohtpylem 25071 pcorevlem 25078 dyadval 25646 itg1addlem3 25752 itg1addlem4 25753 itg1addlem4OLD 25754 mbfi1fseqlem3 25772 mbfi1fseqlem4 25773 mbfi1fseqlem5 25774 mbfi1fseqlem6 25775 mdegfval 26121 quotval 26352 elqaalem2 26380 cxpval 26724 cxpcn3 26809 angval 26862 sgmval 27203 lgsval 27363 wwlksn 29870 wspthsn 29881 rusgrnumwwlklem 30003 clwwlkn 30058 2clwwlk 30379 numclwwlkovh0 30404 numclwwlkovq 30406 shsval 31344 sshjval 31382 faeval 34210 txsconnlem 35208 cvxsconn 35211 iscvm 35227 cvmliftlem5 35257 mpomulnzcnf 36265 rngohomval 37924 rngoisoval 37937 evlselv 42542 prjcrvfval 42586 rmxfval 42860 rmyfval 42861 mendplusg 43143 mendvsca 43148 mnringvald 44177 addrval 44435 subrval 44436 mulvval 44437 sigarval 46771 dmatALTval 48129 naryfval 48362 |
Copyright terms: Public domain | W3C validator |