![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > angvald | Structured version Visualization version GIF version |
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 26862. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
angvald.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
angvald.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
angvald.3 | ⊢ (𝜑 → 𝑌 ∈ ℂ) |
angvald.4 | ⊢ (𝜑 → 𝑌 ≠ 0) |
Ref | Expression |
---|---|
angvald | ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | angvald.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
2 | angvald.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
3 | angvald.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℂ) | |
4 | angvald.4 | . 2 ⊢ (𝜑 → 𝑌 ≠ 0) | |
5 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
6 | 5 | angval 26862 | . 2 ⊢ (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
7 | 1, 2, 3, 4, 6 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℂcc 11182 0cc0 11184 / cdiv 11947 ℑcim 15147 logclog 26614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: angcld 26866 angrteqvd 26867 cosangneg2d 26868 ang180lem4 26873 lawcos 26877 isosctrlem3 26881 angpieqvdlem2 26890 |
Copyright terms: Public domain | W3C validator |