MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angvald Structured version   Visualization version   GIF version

Theorem angvald 26771
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 26768. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angvald.1 (𝜑𝑋 ∈ ℂ)
angvald.2 (𝜑𝑋 ≠ 0)
angvald.3 (𝜑𝑌 ∈ ℂ)
angvald.4 (𝜑𝑌 ≠ 0)
Assertion
Ref Expression
angvald (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angvald
StepHypRef Expression
1 angvald.1 . 2 (𝜑𝑋 ∈ ℂ)
2 angvald.2 . 2 (𝜑𝑋 ≠ 0)
3 angvald.3 . 2 (𝜑𝑌 ∈ ℂ)
4 angvald.4 . 2 (𝜑𝑌 ≠ 0)
5 ang.1 . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
65angval 26768 . 2 (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
71, 2, 3, 4, 6syl22anc 838 1 (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  cdif 3928  {csn 4606  cfv 6536  (class class class)co 7410  cmpo 7412  cc 11132  0cc0 11134   / cdiv 11899  cim 15122  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415
This theorem is referenced by:  angcld  26772  angrteqvd  26773  cosangneg2d  26774  ang180lem4  26779  lawcos  26783  isosctrlem3  26787  angpieqvdlem2  26796
  Copyright terms: Public domain W3C validator