MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angvald Structured version   Visualization version   GIF version

Theorem angvald 26060
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 26057. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angvald.1 (𝜑𝑋 ∈ ℂ)
angvald.2 (𝜑𝑋 ≠ 0)
angvald.3 (𝜑𝑌 ∈ ℂ)
angvald.4 (𝜑𝑌 ≠ 0)
Assertion
Ref Expression
angvald (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angvald
StepHypRef Expression
1 angvald.1 . 2 (𝜑𝑋 ∈ ℂ)
2 angvald.2 . 2 (𝜑𝑋 ≠ 0)
3 angvald.3 . 2 (𝜑𝑌 ∈ ℂ)
4 angvald.4 . 2 (𝜑𝑌 ≠ 0)
5 ang.1 . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
65angval 26057 . 2 (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
71, 2, 3, 4, 6syl22anc 836 1 (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2940  cdif 3895  {csn 4573  cfv 6479  (class class class)co 7337  cmpo 7339  cc 10970  0cc0 10972   / cdiv 11733  cim 14908  logclog 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342
This theorem is referenced by:  angcld  26061  angrteqvd  26062  cosangneg2d  26063  ang180lem4  26068  lawcos  26072  isosctrlem3  26076  angpieqvdlem2  26085
  Copyright terms: Public domain W3C validator