MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angvald Structured version   Visualization version   GIF version

Theorem angvald 25954
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 25951. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angvald.1 (𝜑𝑋 ∈ ℂ)
angvald.2 (𝜑𝑋 ≠ 0)
angvald.3 (𝜑𝑌 ∈ ℂ)
angvald.4 (𝜑𝑌 ≠ 0)
Assertion
Ref Expression
angvald (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angvald
StepHypRef Expression
1 angvald.1 . 2 (𝜑𝑋 ∈ ℂ)
2 angvald.2 . 2 (𝜑𝑋 ≠ 0)
3 angvald.3 . 2 (𝜑𝑌 ∈ ℂ)
4 angvald.4 . 2 (𝜑𝑌 ≠ 0)
5 ang.1 . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
65angval 25951 . 2 (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
71, 2, 3, 4, 6syl22anc 836 1 (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  cmpo 7277  cc 10869  0cc0 10871   / cdiv 11632  cim 14809  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  angcld  25955  angrteqvd  25956  cosangneg2d  25957  ang180lem4  25962  lawcos  25966  isosctrlem3  25970  angpieqvdlem2  25979
  Copyright terms: Public domain W3C validator