Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > angvald | Structured version Visualization version GIF version |
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 25856. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
angvald.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
angvald.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
angvald.3 | ⊢ (𝜑 → 𝑌 ∈ ℂ) |
angvald.4 | ⊢ (𝜑 → 𝑌 ≠ 0) |
Ref | Expression |
---|---|
angvald | ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | angvald.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
2 | angvald.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
3 | angvald.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℂ) | |
4 | angvald.4 | . 2 ⊢ (𝜑 → 𝑌 ≠ 0) | |
5 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
6 | 5 | angval 25856 | . 2 ⊢ (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
7 | 1, 2, 3, 4, 6 | syl22anc 835 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℂcc 10800 0cc0 10802 / cdiv 11562 ℑcim 14737 logclog 25615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: angcld 25860 angrteqvd 25861 cosangneg2d 25862 ang180lem4 25867 lawcos 25871 isosctrlem3 25875 angpieqvdlem2 25884 |
Copyright terms: Public domain | W3C validator |