| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > angvald | Structured version Visualization version GIF version | ||
| Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 26768. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| angvald.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| angvald.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| angvald.3 | ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| angvald.4 | ⊢ (𝜑 → 𝑌 ≠ 0) |
| Ref | Expression |
|---|---|
| angvald | ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | angvald.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 2 | angvald.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 3 | angvald.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℂ) | |
| 4 | angvald.4 | . 2 ⊢ (𝜑 → 𝑌 ≠ 0) | |
| 5 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 6 | 5 | angval 26768 | . 2 ⊢ (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
| 7 | 1, 2, 3, 4, 6 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 {csn 4606 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ℂcc 11132 0cc0 11134 / cdiv 11899 ℑcim 15122 logclog 26520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: angcld 26772 angrteqvd 26773 cosangneg2d 26774 ang180lem4 26779 lawcos 26783 isosctrlem3 26787 angpieqvdlem2 26796 |
| Copyright terms: Public domain | W3C validator |