Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > angvald | Structured version Visualization version GIF version |
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 26057. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
angvald.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
angvald.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
angvald.3 | ⊢ (𝜑 → 𝑌 ∈ ℂ) |
angvald.4 | ⊢ (𝜑 → 𝑌 ≠ 0) |
Ref | Expression |
---|---|
angvald | ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | angvald.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
2 | angvald.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
3 | angvald.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℂ) | |
4 | angvald.4 | . 2 ⊢ (𝜑 → 𝑌 ≠ 0) | |
5 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
6 | 5 | angval 26057 | . 2 ⊢ (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
7 | 1, 2, 3, 4, 6 | syl22anc 836 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∖ cdif 3895 {csn 4573 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 ℂcc 10970 0cc0 10972 / cdiv 11733 ℑcim 14908 logclog 25816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 |
This theorem is referenced by: angcld 26061 angrteqvd 26062 cosangneg2d 26063 ang180lem4 26068 lawcos 26072 isosctrlem3 26076 angpieqvdlem2 26085 |
Copyright terms: Public domain | W3C validator |