| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cosangneg2d | Structured version Visualization version GIF version | ||
| Description: The cosine of the angle between 𝑋 and -𝑌 is the negative of that between 𝑋 and 𝑌. If A, B and C are collinear points, this implies that the cosines of DBA and DBC sum to zero, i.e., that DBA and DBC are supplementary. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| cosangneg2d.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| cosangneg2d.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| cosangneg2d.3 | ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| cosangneg2d.4 | ⊢ (𝜑 → 𝑌 ≠ 0) |
| Ref | Expression |
|---|---|
| cosangneg2d | ⊢ (𝜑 → (cos‘(𝑋𝐹-𝑌)) = -(cos‘(𝑋𝐹𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosangneg2d.3 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) | |
| 2 | cosangneg2d.1 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 3 | cosangneg2d.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 4 | 1, 2, 3 | divcld 11919 | . . . . 5 ⊢ (𝜑 → (𝑌 / 𝑋) ∈ ℂ) |
| 5 | 4 | recld 15120 | . . . 4 ⊢ (𝜑 → (ℜ‘(𝑌 / 𝑋)) ∈ ℝ) |
| 6 | 5 | recnd 11162 | . . 3 ⊢ (𝜑 → (ℜ‘(𝑌 / 𝑋)) ∈ ℂ) |
| 7 | 4 | abscld 15365 | . . . 4 ⊢ (𝜑 → (abs‘(𝑌 / 𝑋)) ∈ ℝ) |
| 8 | 7 | recnd 11162 | . . 3 ⊢ (𝜑 → (abs‘(𝑌 / 𝑋)) ∈ ℂ) |
| 9 | cosangneg2d.4 | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0) | |
| 10 | 1, 2, 9, 3 | divne0d 11935 | . . . 4 ⊢ (𝜑 → (𝑌 / 𝑋) ≠ 0) |
| 11 | 4, 10 | absne0d 15376 | . . 3 ⊢ (𝜑 → (abs‘(𝑌 / 𝑋)) ≠ 0) |
| 12 | 6, 8, 11 | divnegd 11932 | . 2 ⊢ (𝜑 → -((ℜ‘(𝑌 / 𝑋)) / (abs‘(𝑌 / 𝑋))) = (-(ℜ‘(𝑌 / 𝑋)) / (abs‘(𝑌 / 𝑋)))) |
| 13 | ang.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 14 | 13, 2, 3, 1, 9 | angvald 26731 | . . . . 5 ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
| 15 | 14 | fveq2d 6830 | . . . 4 ⊢ (𝜑 → (cos‘(𝑋𝐹𝑌)) = (cos‘(ℑ‘(log‘(𝑌 / 𝑋))))) |
| 16 | 4, 10 | cosargd 26534 | . . . 4 ⊢ (𝜑 → (cos‘(ℑ‘(log‘(𝑌 / 𝑋)))) = ((ℜ‘(𝑌 / 𝑋)) / (abs‘(𝑌 / 𝑋)))) |
| 17 | 15, 16 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (cos‘(𝑋𝐹𝑌)) = ((ℜ‘(𝑌 / 𝑋)) / (abs‘(𝑌 / 𝑋)))) |
| 18 | 17 | negeqd 11376 | . 2 ⊢ (𝜑 → -(cos‘(𝑋𝐹𝑌)) = -((ℜ‘(𝑌 / 𝑋)) / (abs‘(𝑌 / 𝑋)))) |
| 19 | 1 | negcld 11481 | . . . . 5 ⊢ (𝜑 → -𝑌 ∈ ℂ) |
| 20 | 1, 9 | negne0d 11492 | . . . . 5 ⊢ (𝜑 → -𝑌 ≠ 0) |
| 21 | 13, 2, 3, 19, 20 | angvald 26731 | . . . 4 ⊢ (𝜑 → (𝑋𝐹-𝑌) = (ℑ‘(log‘(-𝑌 / 𝑋)))) |
| 22 | 21 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (cos‘(𝑋𝐹-𝑌)) = (cos‘(ℑ‘(log‘(-𝑌 / 𝑋))))) |
| 23 | 19, 2, 3 | divcld 11919 | . . . 4 ⊢ (𝜑 → (-𝑌 / 𝑋) ∈ ℂ) |
| 24 | 19, 2, 20, 3 | divne0d 11935 | . . . 4 ⊢ (𝜑 → (-𝑌 / 𝑋) ≠ 0) |
| 25 | 23, 24 | cosargd 26534 | . . 3 ⊢ (𝜑 → (cos‘(ℑ‘(log‘(-𝑌 / 𝑋)))) = ((ℜ‘(-𝑌 / 𝑋)) / (abs‘(-𝑌 / 𝑋)))) |
| 26 | 1, 2, 3 | divnegd 11932 | . . . . . 6 ⊢ (𝜑 → -(𝑌 / 𝑋) = (-𝑌 / 𝑋)) |
| 27 | 26 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (ℜ‘-(𝑌 / 𝑋)) = (ℜ‘(-𝑌 / 𝑋))) |
| 28 | 4 | renegd 15135 | . . . . 5 ⊢ (𝜑 → (ℜ‘-(𝑌 / 𝑋)) = -(ℜ‘(𝑌 / 𝑋))) |
| 29 | 27, 28 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → (ℜ‘(-𝑌 / 𝑋)) = -(ℜ‘(𝑌 / 𝑋))) |
| 30 | 26 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (abs‘-(𝑌 / 𝑋)) = (abs‘(-𝑌 / 𝑋))) |
| 31 | 4 | absnegd 15378 | . . . . 5 ⊢ (𝜑 → (abs‘-(𝑌 / 𝑋)) = (abs‘(𝑌 / 𝑋))) |
| 32 | 30, 31 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → (abs‘(-𝑌 / 𝑋)) = (abs‘(𝑌 / 𝑋))) |
| 33 | 29, 32 | oveq12d 7371 | . . 3 ⊢ (𝜑 → ((ℜ‘(-𝑌 / 𝑋)) / (abs‘(-𝑌 / 𝑋))) = (-(ℜ‘(𝑌 / 𝑋)) / (abs‘(𝑌 / 𝑋)))) |
| 34 | 22, 25, 33 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → (cos‘(𝑋𝐹-𝑌)) = (-(ℜ‘(𝑌 / 𝑋)) / (abs‘(𝑌 / 𝑋)))) |
| 35 | 12, 18, 34 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → (cos‘(𝑋𝐹-𝑌)) = -(cos‘(𝑋𝐹𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℂcc 11026 0cc0 11028 -cneg 11367 / cdiv 11796 ℜcre 15023 ℑcim 15024 abscabs 15160 cosccos 15990 logclog 26480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ioc 13272 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-fac 14200 df-bc 14229 df-hash 14257 df-shft 14993 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-limsup 15397 df-clim 15414 df-rlim 15415 df-sum 15613 df-ef 15993 df-sin 15995 df-cos 15996 df-pi 15998 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-lp 23040 df-perf 23041 df-cn 23131 df-cnp 23132 df-haus 23219 df-tx 23466 df-hmeo 23659 df-fil 23750 df-fm 23842 df-flim 23843 df-flf 23844 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24788 df-limc 25784 df-dv 25785 df-log 26482 |
| This theorem is referenced by: chordthmlem 26759 |
| Copyright terms: Public domain | W3C validator |