MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcos Structured version   Visualization version   GIF version

Theorem lawcos 24760
Description: Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 24758), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB, and 𝑂 is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 24759 to prove this algebraically simpler case. The metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 15076). The Pythagorean theorem pythag 24761 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
lawcos (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem lawcos
StepHypRef Expression
1 subcl 10480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
213adant2 1125 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
32adantr 466 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ∈ ℂ)
4 subcl 10480 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
543adant1 1124 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
65adantr 466 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ∈ ℂ)
7 subeq0 10507 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = 0 ↔ 𝐴 = 𝐶))
87necon3bid 2987 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) ≠ 0 ↔ 𝐴𝐶))
98bicomd 213 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1093adant2 1125 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1110biimpa 462 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐴𝐶) → (𝐴𝐶) ≠ 0)
1211adantrr 696 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ≠ 0)
13 subeq0 10507 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) = 0 ↔ 𝐵 = 𝐶))
1413necon3bid 2987 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) ≠ 0 ↔ 𝐵𝐶))
1514bicomd 213 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
16153adant1 1124 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
1716biimpa 462 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐵𝐶) → (𝐵𝐶) ≠ 0)
1817adantrl 695 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ≠ 0)
193, 6, 12, 18lawcoslem1 24759 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
20 nnncan2 10518 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
2120fveq2d 6334 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘((𝐴𝐶) − (𝐵𝐶))) = (abs‘(𝐴𝐵)))
22 lawcos.4 . . . . 5 𝑍 = (abs‘(𝐴𝐵))
2321, 22syl6reqr 2824 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝑍 = (abs‘((𝐴𝐶) − (𝐵𝐶))))
2423oveq1d 6806 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
2524adantr 466 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
263abscld 14376 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℝ)
2726recnd 10268 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℂ)
2827sqcld 13206 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶))↑2) ∈ ℂ)
296abscld 14376 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
3029recnd 10268 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℂ)
3130sqcld 13206 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐵𝐶))↑2) ∈ ℂ)
3228, 31addcomd 10438 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2)))
33 lawcos.2 . . . . . 6 𝑋 = (abs‘(𝐵𝐶))
3433oveq1i 6801 . . . . 5 (𝑋↑2) = ((abs‘(𝐵𝐶))↑2)
35 lawcos.3 . . . . . 6 𝑌 = (abs‘(𝐴𝐶))
3635oveq1i 6801 . . . . 5 (𝑌↑2) = ((abs‘(𝐴𝐶))↑2)
3734, 36oveq12i 6803 . . . 4 ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2))
3832, 37syl6reqr 2824 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)))
3927, 30mulcomd 10261 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶))))
4033, 35oveq12i 6803 . . . . . 6 (𝑋 · 𝑌) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶)))
4139, 40syl6reqr 2824 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑋 · 𝑌) = ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))
42 lawcos.5 . . . . . . . . 9 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
4342fveq2i 6333 . . . . . . . 8 (cos‘𝑂) = (cos‘((𝐵𝐶)𝐹(𝐴𝐶)))
44 lawcos.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
4544, 6, 18, 3, 12angvald 24748 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐵𝐶)𝐹(𝐴𝐶)) = (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))
4645fveq2d 6334 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘((𝐵𝐶)𝐹(𝐴𝐶))) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
4743, 46syl5eq 2817 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
483, 6, 18divcld 11001 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ)
493, 6, 12, 18divne0d 11017 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ≠ 0)
5048, 49logcld 24531 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (log‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℂ)
5150imcld 14136 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ)
52 recosval 15065 . . . . . . . 8 ((ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5351, 52syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5447, 53eqtrd 2805 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
55 efiarg 24567 . . . . . . . 8 ((((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ ∧ ((𝐴𝐶) / (𝐵𝐶)) ≠ 0) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5648, 49, 55syl2anc 573 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5756fveq2d 6334 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))) = (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
5848abscld 14376 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℝ)
5948, 49absne0d 14387 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ≠ 0)
6058, 48, 59redivd 14170 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6154, 57, 603eqtrd 2809 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6241, 61oveq12d 6809 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋 · 𝑌) · (cos‘𝑂)) = (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
6362oveq2d 6807 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))))
6438, 63oveq12d 6809 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
6519, 25, 643eqtr4d 2815 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cdif 3720  {csn 4316  cfv 6029  (class class class)co 6791  cmpt2 6793  cc 10134  cr 10135  0cc0 10136  ici 10138   + caddc 10139   · cmul 10141  cmin 10466   / cdiv 10884  2c2 11270  cexp 13060  cre 14038  cim 14039  abscabs 14175  expce 14991  cosccos 14994  logclog 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-limc 23843  df-dv 23844  df-log 24517
This theorem is referenced by:  pythag  24761  ssscongptld  24766  heron  24779
  Copyright terms: Public domain W3C validator