MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcos Structured version   Visualization version   GIF version

Theorem lawcos 26759
Description: Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 26757), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB, and 𝑂 is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 26758 to prove this algebraically simpler case. The Metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 16062). The Pythagorean theorem pythag 26760 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
lawcos (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem lawcos
StepHypRef Expression
1 subcl 11365 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
213adant2 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
32adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ∈ ℂ)
4 subcl 11365 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
543adant1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
65adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ∈ ℂ)
7 subeq0 11393 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = 0 ↔ 𝐴 = 𝐶))
87necon3bid 2972 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) ≠ 0 ↔ 𝐴𝐶))
98bicomd 223 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1093adant2 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1110biimpa 476 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐴𝐶) → (𝐴𝐶) ≠ 0)
1211adantrr 717 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ≠ 0)
13 subeq0 11393 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) = 0 ↔ 𝐵 = 𝐶))
1413necon3bid 2972 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) ≠ 0 ↔ 𝐵𝐶))
1514bicomd 223 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
16153adant1 1130 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
1716biimpa 476 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐵𝐶) → (𝐵𝐶) ≠ 0)
1817adantrl 716 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ≠ 0)
193, 6, 12, 18lawcoslem1 26758 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
20 lawcos.4 . . . . 5 𝑍 = (abs‘(𝐴𝐵))
21 nnncan2 11404 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
2221fveq2d 6832 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘((𝐴𝐶) − (𝐵𝐶))) = (abs‘(𝐴𝐵)))
2320, 22eqtr4id 2785 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝑍 = (abs‘((𝐴𝐶) − (𝐵𝐶))))
2423oveq1d 7367 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
2524adantr 480 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
26 lawcos.2 . . . . . 6 𝑋 = (abs‘(𝐵𝐶))
2726oveq1i 7362 . . . . 5 (𝑋↑2) = ((abs‘(𝐵𝐶))↑2)
28 lawcos.3 . . . . . 6 𝑌 = (abs‘(𝐴𝐶))
2928oveq1i 7362 . . . . 5 (𝑌↑2) = ((abs‘(𝐴𝐶))↑2)
3027, 29oveq12i 7364 . . . 4 ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2))
313abscld 15352 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℝ)
3231recnd 11146 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℂ)
3332sqcld 14057 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶))↑2) ∈ ℂ)
346abscld 15352 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
3534recnd 11146 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℂ)
3635sqcld 14057 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐵𝐶))↑2) ∈ ℂ)
3733, 36addcomd 11321 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2)))
3830, 37eqtr4id 2785 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)))
3926, 28oveq12i 7364 . . . . . 6 (𝑋 · 𝑌) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶)))
4032, 35mulcomd 11139 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶))))
4139, 40eqtr4id 2785 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑋 · 𝑌) = ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))
42 lawcos.5 . . . . . . . . 9 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
4342fveq2i 6831 . . . . . . . 8 (cos‘𝑂) = (cos‘((𝐵𝐶)𝐹(𝐴𝐶)))
44 lawcos.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
4544, 6, 18, 3, 12angvald 26747 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐵𝐶)𝐹(𝐴𝐶)) = (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))
4645fveq2d 6832 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘((𝐵𝐶)𝐹(𝐴𝐶))) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
4743, 46eqtrid 2778 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
483, 6, 18divcld 11903 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ)
493, 6, 12, 18divne0d 11919 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ≠ 0)
5048, 49logcld 26512 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (log‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℂ)
5150imcld 15108 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ)
52 recosval 16051 . . . . . . . 8 ((ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5351, 52syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5447, 53eqtrd 2766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
55 efiarg 26549 . . . . . . . 8 ((((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ ∧ ((𝐴𝐶) / (𝐵𝐶)) ≠ 0) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5648, 49, 55syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5756fveq2d 6832 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))) = (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
5848abscld 15352 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℝ)
5948, 49absne0d 15363 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ≠ 0)
6058, 48, 59redivd 15142 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6154, 57, 603eqtrd 2770 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6241, 61oveq12d 7370 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋 · 𝑌) · (cos‘𝑂)) = (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
6362oveq2d 7368 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))))
6438, 63oveq12d 7370 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
6519, 25, 643eqtr4d 2776 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4575  cfv 6487  (class class class)co 7352  cmpo 7354  cc 11010  cr 11011  0cc0 11012  ici 11014   + caddc 11015   · cmul 11017  cmin 11350   / cdiv 11780  2c2 12186  cexp 13974  cre 15010  cim 15011  abscabs 15147  expce 15974  cosccos 15977  logclog 26496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13255  df-ioc 13256  df-ico 13257  df-icc 13258  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-seq 13915  df-exp 13975  df-fac 14187  df-bc 14216  df-hash 14244  df-shft 14980  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-limsup 15384  df-clim 15401  df-rlim 15402  df-sum 15600  df-ef 15980  df-sin 15982  df-cos 15983  df-pi 15985  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-rest 17332  df-topn 17333  df-0g 17351  df-gsum 17352  df-topgen 17353  df-pt 17354  df-prds 17357  df-xrs 17412  df-qtop 17417  df-imas 17418  df-xps 17420  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-mulg 18987  df-cntz 19235  df-cmn 19700  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498
This theorem is referenced by:  pythag  26760  ssscongptld  26765  heron  26781
  Copyright terms: Public domain W3C validator