MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcos Structured version   Visualization version   GIF version

Theorem lawcos 26761
Description: Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 26759), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB, and 𝑂 is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 26760 to prove this algebraically simpler case. The Metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 16093). The Pythagorean theorem pythag 26762 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
lawcos (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem lawcos
StepHypRef Expression
1 subcl 11399 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
213adant2 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
32adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ∈ ℂ)
4 subcl 11399 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
543adant1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
65adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ∈ ℂ)
7 subeq0 11427 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = 0 ↔ 𝐴 = 𝐶))
87necon3bid 2969 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) ≠ 0 ↔ 𝐴𝐶))
98bicomd 223 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1093adant2 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1110biimpa 476 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐴𝐶) → (𝐴𝐶) ≠ 0)
1211adantrr 717 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ≠ 0)
13 subeq0 11427 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) = 0 ↔ 𝐵 = 𝐶))
1413necon3bid 2969 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) ≠ 0 ↔ 𝐵𝐶))
1514bicomd 223 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
16153adant1 1130 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
1716biimpa 476 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐵𝐶) → (𝐵𝐶) ≠ 0)
1817adantrl 716 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ≠ 0)
193, 6, 12, 18lawcoslem1 26760 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
20 lawcos.4 . . . . 5 𝑍 = (abs‘(𝐴𝐵))
21 nnncan2 11438 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
2221fveq2d 6845 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘((𝐴𝐶) − (𝐵𝐶))) = (abs‘(𝐴𝐵)))
2320, 22eqtr4id 2783 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝑍 = (abs‘((𝐴𝐶) − (𝐵𝐶))))
2423oveq1d 7385 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
2524adantr 480 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
26 lawcos.2 . . . . . 6 𝑋 = (abs‘(𝐵𝐶))
2726oveq1i 7380 . . . . 5 (𝑋↑2) = ((abs‘(𝐵𝐶))↑2)
28 lawcos.3 . . . . . 6 𝑌 = (abs‘(𝐴𝐶))
2928oveq1i 7380 . . . . 5 (𝑌↑2) = ((abs‘(𝐴𝐶))↑2)
3027, 29oveq12i 7382 . . . 4 ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2))
313abscld 15383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℝ)
3231recnd 11181 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℂ)
3332sqcld 14088 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶))↑2) ∈ ℂ)
346abscld 15383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
3534recnd 11181 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℂ)
3635sqcld 14088 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐵𝐶))↑2) ∈ ℂ)
3733, 36addcomd 11355 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2)))
3830, 37eqtr4id 2783 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)))
3926, 28oveq12i 7382 . . . . . 6 (𝑋 · 𝑌) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶)))
4032, 35mulcomd 11174 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶))))
4139, 40eqtr4id 2783 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑋 · 𝑌) = ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))
42 lawcos.5 . . . . . . . . 9 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
4342fveq2i 6844 . . . . . . . 8 (cos‘𝑂) = (cos‘((𝐵𝐶)𝐹(𝐴𝐶)))
44 lawcos.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
4544, 6, 18, 3, 12angvald 26749 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐵𝐶)𝐹(𝐴𝐶)) = (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))
4645fveq2d 6845 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘((𝐵𝐶)𝐹(𝐴𝐶))) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
4743, 46eqtrid 2776 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
483, 6, 18divcld 11937 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ)
493, 6, 12, 18divne0d 11953 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ≠ 0)
5048, 49logcld 26514 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (log‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℂ)
5150imcld 15139 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ)
52 recosval 16082 . . . . . . . 8 ((ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5351, 52syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5447, 53eqtrd 2764 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
55 efiarg 26551 . . . . . . . 8 ((((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ ∧ ((𝐴𝐶) / (𝐵𝐶)) ≠ 0) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5648, 49, 55syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5756fveq2d 6845 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))) = (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
5848abscld 15383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℝ)
5948, 49absne0d 15394 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ≠ 0)
6058, 48, 59redivd 15173 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6154, 57, 603eqtrd 2768 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6241, 61oveq12d 7388 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋 · 𝑌) · (cos‘𝑂)) = (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
6362oveq2d 7386 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))))
6438, 63oveq12d 7388 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
6519, 25, 643eqtr4d 2774 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585  cfv 6500  (class class class)co 7370  cmpo 7372  cc 11045  cr 11046  0cc0 11047  ici 11049   + caddc 11050   · cmul 11052  cmin 11384   / cdiv 11814  2c2 12220  cexp 14005  cre 15041  cim 15042  abscabs 15178  expce 16005  cosccos 16008  logclog 26498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-map 8779  df-pm 8780  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-fi 9339  df-sup 9370  df-inf 9371  df-oi 9440  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-q 12887  df-rp 12931  df-xneg 13051  df-xadd 13052  df-xmul 13053  df-ioo 13289  df-ioc 13290  df-ico 13291  df-icc 13292  df-fz 13448  df-fzo 13595  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-fac 14218  df-bc 14247  df-hash 14275  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15631  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17363  df-topn 17364  df-0g 17382  df-gsum 17383  df-topgen 17384  df-pt 17385  df-prds 17388  df-xrs 17443  df-qtop 17448  df-imas 17449  df-xps 17451  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-submnd 18695  df-mulg 18984  df-cntz 19233  df-cmn 19698  df-psmet 21290  df-xmet 21291  df-met 21292  df-bl 21293  df-mopn 21294  df-fbas 21295  df-fg 21296  df-cnfld 21299  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22868  df-cld 22941  df-ntr 22942  df-cls 22943  df-nei 23020  df-lp 23058  df-perf 23059  df-cn 23149  df-cnp 23150  df-haus 23237  df-tx 23484  df-hmeo 23677  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-xms 24243  df-ms 24244  df-tms 24245  df-cncf 24806  df-limc 25802  df-dv 25803  df-log 26500
This theorem is referenced by:  pythag  26762  ssscongptld  26767  heron  26783
  Copyright terms: Public domain W3C validator