MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem3 Structured version   Visualization version   GIF version

Theorem isosctrlem3 25970
Description: Lemma for isosctr 25971. Corresponds to the case where one vertex is at 0. (Contributed by Saveliy Skresanov, 1-Jan-2017.)
Hypothesis
Ref Expression
isosctrlem3.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
isosctrlem3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem isosctrlem3
StepHypRef Expression
1 simp1l 1196 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ∈ ℂ)
2 simp21 1205 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ≠ 0)
3 simp1r 1197 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ∈ ℂ)
41, 3subcld 11332 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ∈ ℂ)
5 simp23 1207 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴𝐵)
61, 3, 5subne0d 11341 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ≠ 0)
7 isosctrlem3.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
87angneg 25953 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ ((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ≠ 0)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
91, 2, 4, 6, 8syl22anc 836 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
101, 3negsubdi2d 11348 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴𝐵) = (𝐵𝐴))
1110oveq2d 7291 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (-𝐴𝐹(𝐵𝐴)))
12 1cnd 10970 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ∈ ℂ)
13 ax-1ne0 10940 . . . . . 6 1 ≠ 0
1413a1i 11 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ 0)
153, 1, 2divcld 11751 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ∈ ℂ)
1612, 15subcld 11332 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ∈ ℂ)
175necomd 2999 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵𝐴)
183, 1, 2, 17divne1d 11762 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 1)
1918necomd 2999 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ (𝐵 / 𝐴))
2012, 15, 19subne0d 11341 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ≠ 0)
217, 12, 14, 16, 20angvald 25954 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))))
2216div1d 11743 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴)) / 1) = (1 − (𝐵 / 𝐴)))
2322fveq2d 6778 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (log‘((1 − (𝐵 / 𝐴)) / 1)) = (log‘(1 − (𝐵 / 𝐴))))
2423fveq2d 6778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))) = (ℑ‘(log‘(1 − (𝐵 / 𝐴)))))
253, 1, 2absdivd 15167 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = ((abs‘𝐵) / (abs‘𝐴)))
26 simp3 1137 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) = (abs‘𝐵))
2726eqcomd 2744 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐵) = (abs‘𝐴))
2827oveq1d 7290 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐵) / (abs‘𝐴)) = ((abs‘𝐴) / (abs‘𝐴)))
291abscld 15148 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℝ)
3029recnd 11003 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℂ)
311, 2absne0d 15159 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ≠ 0)
3230, 31dividd 11749 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
3325, 28, 323eqtrd 2782 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = 1)
3419neneqd 2948 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ¬ 1 = (𝐵 / 𝐴))
35 isosctrlem2 25969 . . . . . 6 (((𝐵 / 𝐴) ∈ ℂ ∧ (abs‘(𝐵 / 𝐴)) = 1 ∧ ¬ 1 = (𝐵 / 𝐴)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3615, 33, 34, 35syl3anc 1370 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3715negcld 11319 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ∈ ℂ)
38 simp22 1206 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ≠ 0)
393, 1, 38, 2divne0d 11767 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 0)
4015, 39negne0d 11330 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ≠ 0)
417, 16, 20, 37, 40angvald 25954 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
4236, 41eqtr4d 2781 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
4321, 24, 423eqtrd 2782 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
441mulid1d 10992 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · 1) = 𝐴)
451, 12, 15subdid 11431 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))))
463, 1, 2divcan2d 11753 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (𝐵 / 𝐴)) = 𝐵)
4744, 46oveq12d 7293 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))) = (𝐴𝐵))
4845, 47eqtrd 2778 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = (𝐴𝐵))
4944, 48oveq12d 7293 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (𝐴𝐹(𝐴𝐵)))
507angcan 25952 . . . . 5 (((1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5112, 14, 16, 20, 1, 2, 50syl222anc 1385 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5249, 51eqtr3d 2780 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = (1𝐹(1 − (𝐵 / 𝐴))))
531, 15mulneg2d 11429 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -(𝐴 · (𝐵 / 𝐴)))
5446negeqd 11215 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴 · (𝐵 / 𝐴)) = -𝐵)
5553, 54eqtrd 2778 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -𝐵)
5648, 55oveq12d 7293 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((𝐴𝐵)𝐹-𝐵))
577angcan 25952 . . . . 5 ((((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (-(𝐵 / 𝐴) ∈ ℂ ∧ -(𝐵 / 𝐴) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5816, 20, 37, 40, 1, 2, 57syl222anc 1385 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5956, 58eqtr3d 2780 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴𝐵)𝐹-𝐵) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
6043, 52, 593eqtr4d 2788 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = ((𝐴𝐵)𝐹-𝐵))
619, 11, 603eqtr3d 2786 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  cmpo 7277  cc 10869  0cc0 10871  1c1 10872   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  cim 14809  abscabs 14945  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712
This theorem is referenced by:  isosctr  25971
  Copyright terms: Public domain W3C validator