MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem3 Structured version   Visualization version   GIF version

Theorem isosctrlem3 26851
Description: Lemma for isosctr 26852. Corresponds to the case where one vertex is at 0. (Contributed by Saveliy Skresanov, 1-Jan-2017.)
Hypothesis
Ref Expression
isosctrlem3.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
isosctrlem3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem isosctrlem3
StepHypRef Expression
1 simp1l 1194 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ∈ ℂ)
2 simp21 1203 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ≠ 0)
3 simp1r 1195 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ∈ ℂ)
41, 3subcld 11623 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ∈ ℂ)
5 simp23 1205 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴𝐵)
61, 3, 5subne0d 11632 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ≠ 0)
7 isosctrlem3.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
87angneg 26834 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ ((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ≠ 0)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
91, 2, 4, 6, 8syl22anc 837 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
101, 3negsubdi2d 11639 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴𝐵) = (𝐵𝐴))
1110oveq2d 7442 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (-𝐴𝐹(𝐵𝐴)))
12 1cnd 11261 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ∈ ℂ)
13 ax-1ne0 11229 . . . . . 6 1 ≠ 0
1413a1i 11 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ 0)
153, 1, 2divcld 12043 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ∈ ℂ)
1612, 15subcld 11623 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ∈ ℂ)
175necomd 2986 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵𝐴)
183, 1, 2, 17divne1d 12054 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 1)
1918necomd 2986 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ (𝐵 / 𝐴))
2012, 15, 19subne0d 11632 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ≠ 0)
217, 12, 14, 16, 20angvald 26835 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))))
2216div1d 12035 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴)) / 1) = (1 − (𝐵 / 𝐴)))
2322fveq2d 6907 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (log‘((1 − (𝐵 / 𝐴)) / 1)) = (log‘(1 − (𝐵 / 𝐴))))
2423fveq2d 6907 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))) = (ℑ‘(log‘(1 − (𝐵 / 𝐴)))))
253, 1, 2absdivd 15462 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = ((abs‘𝐵) / (abs‘𝐴)))
26 simp3 1135 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) = (abs‘𝐵))
2726eqcomd 2732 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐵) = (abs‘𝐴))
2827oveq1d 7441 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐵) / (abs‘𝐴)) = ((abs‘𝐴) / (abs‘𝐴)))
291abscld 15443 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℝ)
3029recnd 11294 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℂ)
311, 2absne0d 15454 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ≠ 0)
3230, 31dividd 12041 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
3325, 28, 323eqtrd 2770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = 1)
3419neneqd 2935 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ¬ 1 = (𝐵 / 𝐴))
35 isosctrlem2 26850 . . . . . 6 (((𝐵 / 𝐴) ∈ ℂ ∧ (abs‘(𝐵 / 𝐴)) = 1 ∧ ¬ 1 = (𝐵 / 𝐴)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3615, 33, 34, 35syl3anc 1368 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3715negcld 11610 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ∈ ℂ)
38 simp22 1204 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ≠ 0)
393, 1, 38, 2divne0d 12059 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 0)
4015, 39negne0d 11621 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ≠ 0)
417, 16, 20, 37, 40angvald 26835 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
4236, 41eqtr4d 2769 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
4321, 24, 423eqtrd 2770 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
441mulridd 11283 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · 1) = 𝐴)
451, 12, 15subdid 11722 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))))
463, 1, 2divcan2d 12045 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (𝐵 / 𝐴)) = 𝐵)
4744, 46oveq12d 7444 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))) = (𝐴𝐵))
4845, 47eqtrd 2766 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = (𝐴𝐵))
4944, 48oveq12d 7444 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (𝐴𝐹(𝐴𝐵)))
507angcan 26833 . . . . 5 (((1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5112, 14, 16, 20, 1, 2, 50syl222anc 1383 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5249, 51eqtr3d 2768 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = (1𝐹(1 − (𝐵 / 𝐴))))
531, 15mulneg2d 11720 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -(𝐴 · (𝐵 / 𝐴)))
5446negeqd 11506 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴 · (𝐵 / 𝐴)) = -𝐵)
5553, 54eqtrd 2766 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -𝐵)
5648, 55oveq12d 7444 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((𝐴𝐵)𝐹-𝐵))
577angcan 26833 . . . . 5 ((((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (-(𝐵 / 𝐴) ∈ ℂ ∧ -(𝐵 / 𝐴) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5816, 20, 37, 40, 1, 2, 57syl222anc 1383 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5956, 58eqtr3d 2768 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴𝐵)𝐹-𝐵) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
6043, 52, 593eqtr4d 2776 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = ((𝐴𝐵)𝐹-𝐵))
619, 11, 603eqtr3d 2774 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  cdif 3944  {csn 4633  cfv 6556  (class class class)co 7426  cmpo 7428  cc 11158  0cc0 11160  1c1 11161   · cmul 11165  cmin 11496  -cneg 11497   / cdiv 11923  cim 15105  abscabs 15241  logclog 26584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-inf2 9686  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238  ax-addf 11239
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8005  df-2nd 8006  df-supp 8177  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-pm 8860  df-ixp 8929  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-fsupp 9408  df-fi 9456  df-sup 9487  df-inf 9488  df-oi 9555  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-dec 12732  df-uz 12877  df-q 12987  df-rp 13031  df-xneg 13148  df-xadd 13149  df-xmul 13150  df-ioo 13384  df-ioc 13385  df-ico 13386  df-icc 13387  df-fz 13541  df-fzo 13684  df-fl 13814  df-mod 13892  df-seq 14024  df-exp 14084  df-fac 14293  df-bc 14322  df-hash 14350  df-shft 15074  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-limsup 15475  df-clim 15492  df-rlim 15493  df-sum 15693  df-ef 16071  df-sin 16073  df-cos 16074  df-pi 16076  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-starv 17283  df-sca 17284  df-vsca 17285  df-ip 17286  df-tset 17287  df-ple 17288  df-ds 17290  df-unif 17291  df-hom 17292  df-cco 17293  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-submnd 18776  df-mulg 19064  df-cntz 19313  df-cmn 19782  df-psmet 21337  df-xmet 21338  df-met 21339  df-bl 21340  df-mopn 21341  df-fbas 21342  df-fg 21343  df-cnfld 21346  df-top 22890  df-topon 22907  df-topsp 22929  df-bases 22943  df-cld 23017  df-ntr 23018  df-cls 23019  df-nei 23096  df-lp 23134  df-perf 23135  df-cn 23225  df-cnp 23226  df-haus 23313  df-tx 23560  df-hmeo 23753  df-fil 23844  df-fm 23936  df-flim 23937  df-flf 23938  df-xms 24320  df-ms 24321  df-tms 24322  df-cncf 24892  df-limc 25889  df-dv 25890  df-log 26586
This theorem is referenced by:  isosctr  26852
  Copyright terms: Public domain W3C validator