MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem3 Structured version   Visualization version   GIF version

Theorem isosctrlem3 26746
Description: Lemma for isosctr 26747. Corresponds to the case where one vertex is at 0. (Contributed by Saveliy Skresanov, 1-Jan-2017.)
Hypothesis
Ref Expression
isosctrlem3.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
isosctrlem3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem isosctrlem3
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ∈ ℂ)
2 simp21 1207 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ≠ 0)
3 simp1r 1199 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ∈ ℂ)
41, 3subcld 11493 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ∈ ℂ)
5 simp23 1209 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴𝐵)
61, 3, 5subne0d 11502 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ≠ 0)
7 isosctrlem3.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
87angneg 26729 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ ((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ≠ 0)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
91, 2, 4, 6, 8syl22anc 838 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
101, 3negsubdi2d 11509 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴𝐵) = (𝐵𝐴))
1110oveq2d 7369 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (-𝐴𝐹(𝐵𝐴)))
12 1cnd 11129 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ∈ ℂ)
13 ax-1ne0 11097 . . . . . 6 1 ≠ 0
1413a1i 11 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ 0)
153, 1, 2divcld 11918 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ∈ ℂ)
1612, 15subcld 11493 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ∈ ℂ)
175necomd 2980 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵𝐴)
183, 1, 2, 17divne1d 11929 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 1)
1918necomd 2980 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ (𝐵 / 𝐴))
2012, 15, 19subne0d 11502 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ≠ 0)
217, 12, 14, 16, 20angvald 26730 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))))
2216div1d 11910 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴)) / 1) = (1 − (𝐵 / 𝐴)))
2322fveq2d 6830 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (log‘((1 − (𝐵 / 𝐴)) / 1)) = (log‘(1 − (𝐵 / 𝐴))))
2423fveq2d 6830 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))) = (ℑ‘(log‘(1 − (𝐵 / 𝐴)))))
253, 1, 2absdivd 15383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = ((abs‘𝐵) / (abs‘𝐴)))
26 simp3 1138 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) = (abs‘𝐵))
2726eqcomd 2735 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐵) = (abs‘𝐴))
2827oveq1d 7368 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐵) / (abs‘𝐴)) = ((abs‘𝐴) / (abs‘𝐴)))
291abscld 15364 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℝ)
3029recnd 11162 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℂ)
311, 2absne0d 15375 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ≠ 0)
3230, 31dividd 11916 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
3325, 28, 323eqtrd 2768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = 1)
3419neneqd 2930 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ¬ 1 = (𝐵 / 𝐴))
35 isosctrlem2 26745 . . . . . 6 (((𝐵 / 𝐴) ∈ ℂ ∧ (abs‘(𝐵 / 𝐴)) = 1 ∧ ¬ 1 = (𝐵 / 𝐴)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3615, 33, 34, 35syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3715negcld 11480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ∈ ℂ)
38 simp22 1208 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ≠ 0)
393, 1, 38, 2divne0d 11934 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 0)
4015, 39negne0d 11491 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ≠ 0)
417, 16, 20, 37, 40angvald 26730 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
4236, 41eqtr4d 2767 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
4321, 24, 423eqtrd 2768 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
441mulridd 11151 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · 1) = 𝐴)
451, 12, 15subdid 11594 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))))
463, 1, 2divcan2d 11920 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (𝐵 / 𝐴)) = 𝐵)
4744, 46oveq12d 7371 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))) = (𝐴𝐵))
4845, 47eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = (𝐴𝐵))
4944, 48oveq12d 7371 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (𝐴𝐹(𝐴𝐵)))
507angcan 26728 . . . . 5 (((1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5112, 14, 16, 20, 1, 2, 50syl222anc 1388 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5249, 51eqtr3d 2766 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = (1𝐹(1 − (𝐵 / 𝐴))))
531, 15mulneg2d 11592 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -(𝐴 · (𝐵 / 𝐴)))
5446negeqd 11375 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴 · (𝐵 / 𝐴)) = -𝐵)
5553, 54eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -𝐵)
5648, 55oveq12d 7371 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((𝐴𝐵)𝐹-𝐵))
577angcan 26728 . . . . 5 ((((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (-(𝐵 / 𝐴) ∈ ℂ ∧ -(𝐵 / 𝐴) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5816, 20, 37, 40, 1, 2, 57syl222anc 1388 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5956, 58eqtr3d 2766 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴𝐵)𝐹-𝐵) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
6043, 52, 593eqtr4d 2774 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = ((𝐴𝐵)𝐹-𝐵))
619, 11, 603eqtr3d 2772 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3902  {csn 4579  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026  0cc0 11028  1c1 11029   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  cim 15023  abscabs 15159  logclog 26479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481
This theorem is referenced by:  isosctr  26747
  Copyright terms: Public domain W3C validator