MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem3 Structured version   Visualization version   GIF version

Theorem isosctrlem3 26881
Description: Lemma for isosctr 26882. Corresponds to the case where one vertex is at 0. (Contributed by Saveliy Skresanov, 1-Jan-2017.)
Hypothesis
Ref Expression
isosctrlem3.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
isosctrlem3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem isosctrlem3
StepHypRef Expression
1 simp1l 1197 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ∈ ℂ)
2 simp21 1206 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴 ≠ 0)
3 simp1r 1198 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ∈ ℂ)
41, 3subcld 11647 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ∈ ℂ)
5 simp23 1208 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐴𝐵)
61, 3, 5subne0d 11656 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐵) ≠ 0)
7 isosctrlem3.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
87angneg 26864 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ ((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ≠ 0)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
91, 2, 4, 6, 8syl22anc 838 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (𝐴𝐹(𝐴𝐵)))
101, 3negsubdi2d 11663 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴𝐵) = (𝐵𝐴))
1110oveq2d 7464 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹-(𝐴𝐵)) = (-𝐴𝐹(𝐵𝐴)))
12 1cnd 11285 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ∈ ℂ)
13 ax-1ne0 11253 . . . . . 6 1 ≠ 0
1413a1i 11 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ 0)
153, 1, 2divcld 12070 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ∈ ℂ)
1612, 15subcld 11647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ∈ ℂ)
175necomd 3002 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵𝐴)
183, 1, 2, 17divne1d 12081 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 1)
1918necomd 3002 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 1 ≠ (𝐵 / 𝐴))
2012, 15, 19subne0d 11656 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1 − (𝐵 / 𝐴)) ≠ 0)
217, 12, 14, 16, 20angvald 26865 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))))
2216div1d 12062 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴)) / 1) = (1 − (𝐵 / 𝐴)))
2322fveq2d 6924 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (log‘((1 − (𝐵 / 𝐴)) / 1)) = (log‘(1 − (𝐵 / 𝐴))))
2423fveq2d 6924 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘((1 − (𝐵 / 𝐴)) / 1))) = (ℑ‘(log‘(1 − (𝐵 / 𝐴)))))
253, 1, 2absdivd 15504 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = ((abs‘𝐵) / (abs‘𝐴)))
26 simp3 1138 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) = (abs‘𝐵))
2726eqcomd 2746 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐵) = (abs‘𝐴))
2827oveq1d 7463 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐵) / (abs‘𝐴)) = ((abs‘𝐴) / (abs‘𝐴)))
291abscld 15485 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℝ)
3029recnd 11318 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ∈ ℂ)
311, 2absne0d 15496 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘𝐴) ≠ 0)
3230, 31dividd 12068 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
3325, 28, 323eqtrd 2784 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (abs‘(𝐵 / 𝐴)) = 1)
3419neneqd 2951 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ¬ 1 = (𝐵 / 𝐴))
35 isosctrlem2 26880 . . . . . 6 (((𝐵 / 𝐴) ∈ ℂ ∧ (abs‘(𝐵 / 𝐴)) = 1 ∧ ¬ 1 = (𝐵 / 𝐴)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3615, 33, 34, 35syl3anc 1371 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
3715negcld 11634 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ∈ ℂ)
38 simp22 1207 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → 𝐵 ≠ 0)
393, 1, 38, 2divne0d 12086 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐵 / 𝐴) ≠ 0)
4015, 39negne0d 11645 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐵 / 𝐴) ≠ 0)
417, 16, 20, 37, 40angvald 26865 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)) = (ℑ‘(log‘(-(𝐵 / 𝐴) / (1 − (𝐵 / 𝐴))))))
4236, 41eqtr4d 2783 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (ℑ‘(log‘(1 − (𝐵 / 𝐴)))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
4321, 24, 423eqtrd 2784 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (1𝐹(1 − (𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
441mulridd 11307 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · 1) = 𝐴)
451, 12, 15subdid 11746 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))))
463, 1, 2divcan2d 12072 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (𝐵 / 𝐴)) = 𝐵)
4744, 46oveq12d 7466 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1) − (𝐴 · (𝐵 / 𝐴))) = (𝐴𝐵))
4845, 47eqtrd 2780 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · (1 − (𝐵 / 𝐴))) = (𝐴𝐵))
4944, 48oveq12d 7466 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (𝐴𝐹(𝐴𝐵)))
507angcan 26863 . . . . 5 (((1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5112, 14, 16, 20, 1, 2, 50syl222anc 1386 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · 1)𝐹(𝐴 · (1 − (𝐵 / 𝐴)))) = (1𝐹(1 − (𝐵 / 𝐴))))
5249, 51eqtr3d 2782 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = (1𝐹(1 − (𝐵 / 𝐴))))
531, 15mulneg2d 11744 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -(𝐴 · (𝐵 / 𝐴)))
5446negeqd 11530 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → -(𝐴 · (𝐵 / 𝐴)) = -𝐵)
5553, 54eqtrd 2780 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴 · -(𝐵 / 𝐴)) = -𝐵)
5648, 55oveq12d 7466 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((𝐴𝐵)𝐹-𝐵))
577angcan 26863 . . . . 5 ((((1 − (𝐵 / 𝐴)) ∈ ℂ ∧ (1 − (𝐵 / 𝐴)) ≠ 0) ∧ (-(𝐵 / 𝐴) ∈ ℂ ∧ -(𝐵 / 𝐴) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5816, 20, 37, 40, 1, 2, 57syl222anc 1386 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴 · (1 − (𝐵 / 𝐴)))𝐹(𝐴 · -(𝐵 / 𝐴))) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
5956, 58eqtr3d 2782 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → ((𝐴𝐵)𝐹-𝐵) = ((1 − (𝐵 / 𝐴))𝐹-(𝐵 / 𝐴)))
6043, 52, 593eqtr4d 2790 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (𝐴𝐹(𝐴𝐵)) = ((𝐴𝐵)𝐹-𝐵))
619, 11, 603eqtr3d 2788 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648  cfv 6573  (class class class)co 7448  cmpo 7450  cc 11182  0cc0 11184  1c1 11185   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  cim 15147  abscabs 15283  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  isosctr  26882
  Copyright terms: Public domain W3C validator