| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assamulgscmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for assamulgscm 21836 (induction base). (Contributed by AV, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| assamulgscm.v | ⊢ 𝑉 = (Base‘𝑊) |
| assamulgscm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| assamulgscm.b | ⊢ 𝐵 = (Base‘𝐹) |
| assamulgscm.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| assamulgscm.g | ⊢ 𝐺 = (mulGrp‘𝐹) |
| assamulgscm.p | ⊢ ↑ = (.g‘𝐺) |
| assamulgscm.h | ⊢ 𝐻 = (mulGrp‘𝑊) |
| assamulgscm.e | ⊢ 𝐸 = (.g‘𝐻) |
| Ref | Expression |
|---|---|
| assamulgscmlem1 | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assalmod 21795 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 2 | assaring 21796 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 3 | assamulgscm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 5 | 3, 4 | ringidcl 20181 | . . . . 5 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) ∈ 𝑉) |
| 7 | assamulgscm.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | assamulgscm.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | 3, 7, 8, 9 | lmodvs1 20821 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → ((1r‘𝐹) · (1r‘𝑊)) = (1r‘𝑊)) |
| 11 | 10 | eqcomd 2737 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 12 | 1, 6, 11 | syl2anc 584 | . . 3 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 13 | 12 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 14 | 1 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod) |
| 15 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ 𝐵) | |
| 16 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋 ∈ 𝑉) | |
| 17 | assamulgscm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 18 | 3, 7, 8, 17 | lmodvscl 20809 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 19 | 14, 15, 16, 18 | syl3anc 1373 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉) |
| 20 | assamulgscm.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑊) | |
| 21 | 20, 3 | mgpbas 20061 | . . . 4 ⊢ 𝑉 = (Base‘𝐻) |
| 22 | 20, 4 | ringidval 20099 | . . . 4 ⊢ (1r‘𝑊) = (0g‘𝐻) |
| 23 | assamulgscm.e | . . . 4 ⊢ 𝐸 = (.g‘𝐻) | |
| 24 | 21, 22, 23 | mulg0 18984 | . . 3 ⊢ ((𝐴 · 𝑋) ∈ 𝑉 → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
| 25 | 19, 24 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
| 26 | assamulgscm.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝐹) | |
| 27 | 26, 17 | mgpbas 20061 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) |
| 28 | 26, 9 | ringidval 20099 | . . . . 5 ⊢ (1r‘𝐹) = (0g‘𝐺) |
| 29 | assamulgscm.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
| 30 | 27, 28, 29 | mulg0 18984 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (0 ↑ 𝐴) = (1r‘𝐹)) |
| 31 | 15, 30 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0 ↑ 𝐴) = (1r‘𝐹)) |
| 32 | 21, 22, 23 | mulg0 18984 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (0𝐸𝑋) = (1r‘𝑊)) |
| 33 | 16, 32 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸𝑋) = (1r‘𝑊)) |
| 34 | 31, 33 | oveq12d 7364 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → ((0 ↑ 𝐴) · (0𝐸𝑋)) = ((1r‘𝐹) · (1r‘𝑊))) |
| 35 | 13, 25, 34 | 3eqtr4d 2776 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 0cc0 11003 Basecbs 17117 Scalarcsca 17161 ·𝑠 cvsca 17162 .gcmg 18977 mulGrpcmgp 20056 1rcur 20097 Ringcrg 20149 LModclmod 20791 AssAlgcasa 21785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mulg 18978 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20793 df-assa 21788 |
| This theorem is referenced by: assamulgscm 21836 |
| Copyright terms: Public domain | W3C validator |