| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assamulgscmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for assamulgscm 21848 (induction base). (Contributed by AV, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| assamulgscm.v | ⊢ 𝑉 = (Base‘𝑊) |
| assamulgscm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| assamulgscm.b | ⊢ 𝐵 = (Base‘𝐹) |
| assamulgscm.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| assamulgscm.g | ⊢ 𝐺 = (mulGrp‘𝐹) |
| assamulgscm.p | ⊢ ↑ = (.g‘𝐺) |
| assamulgscm.h | ⊢ 𝐻 = (mulGrp‘𝑊) |
| assamulgscm.e | ⊢ 𝐸 = (.g‘𝐻) |
| Ref | Expression |
|---|---|
| assamulgscmlem1 | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assalmod 21807 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 2 | assaring 21808 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 3 | assamulgscm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2734 | . . . . . 6 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 5 | 3, 4 | ringidcl 20212 | . . . . 5 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) ∈ 𝑉) |
| 7 | assamulgscm.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | assamulgscm.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | eqid 2734 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | 3, 7, 8, 9 | lmodvs1 20834 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → ((1r‘𝐹) · (1r‘𝑊)) = (1r‘𝑊)) |
| 11 | 10 | eqcomd 2740 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 12 | 1, 6, 11 | syl2anc 584 | . . 3 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 13 | 12 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 14 | 1 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod) |
| 15 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ 𝐵) | |
| 16 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋 ∈ 𝑉) | |
| 17 | assamulgscm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 18 | 3, 7, 8, 17 | lmodvscl 20822 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 19 | 14, 15, 16, 18 | syl3anc 1372 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉) |
| 20 | assamulgscm.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑊) | |
| 21 | 20, 3 | mgpbas 20092 | . . . 4 ⊢ 𝑉 = (Base‘𝐻) |
| 22 | 20, 4 | ringidval 20130 | . . . 4 ⊢ (1r‘𝑊) = (0g‘𝐻) |
| 23 | assamulgscm.e | . . . 4 ⊢ 𝐸 = (.g‘𝐻) | |
| 24 | 21, 22, 23 | mulg0 19044 | . . 3 ⊢ ((𝐴 · 𝑋) ∈ 𝑉 → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
| 25 | 19, 24 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
| 26 | assamulgscm.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝐹) | |
| 27 | 26, 17 | mgpbas 20092 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) |
| 28 | 26, 9 | ringidval 20130 | . . . . 5 ⊢ (1r‘𝐹) = (0g‘𝐺) |
| 29 | assamulgscm.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
| 30 | 27, 28, 29 | mulg0 19044 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (0 ↑ 𝐴) = (1r‘𝐹)) |
| 31 | 15, 30 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0 ↑ 𝐴) = (1r‘𝐹)) |
| 32 | 21, 22, 23 | mulg0 19044 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (0𝐸𝑋) = (1r‘𝑊)) |
| 33 | 16, 32 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸𝑋) = (1r‘𝑊)) |
| 34 | 31, 33 | oveq12d 7418 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → ((0 ↑ 𝐴) · (0𝐸𝑋)) = ((1r‘𝐹) · (1r‘𝑊))) |
| 35 | 13, 25, 34 | 3eqtr4d 2779 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6528 (class class class)co 7400 0cc0 11122 Basecbs 17215 Scalarcsca 17261 ·𝑠 cvsca 17262 .gcmg 19037 mulGrpcmgp 20087 1rcur 20128 Ringcrg 20180 LModclmod 20804 AssAlgcasa 21797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-n0 12495 df-z 12582 df-uz 12846 df-seq 14010 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-plusg 17271 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mulg 19038 df-mgp 20088 df-ur 20129 df-ring 20182 df-lmod 20806 df-assa 21800 |
| This theorem is referenced by: assamulgscm 21848 |
| Copyright terms: Public domain | W3C validator |