| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assamulgscmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for assamulgscm 21817 (induction base). (Contributed by AV, 26-Aug-2019.) |
| Ref | Expression |
|---|---|
| assamulgscm.v | ⊢ 𝑉 = (Base‘𝑊) |
| assamulgscm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| assamulgscm.b | ⊢ 𝐵 = (Base‘𝐹) |
| assamulgscm.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| assamulgscm.g | ⊢ 𝐺 = (mulGrp‘𝐹) |
| assamulgscm.p | ⊢ ↑ = (.g‘𝐺) |
| assamulgscm.h | ⊢ 𝐻 = (mulGrp‘𝑊) |
| assamulgscm.e | ⊢ 𝐸 = (.g‘𝐻) |
| Ref | Expression |
|---|---|
| assamulgscmlem1 | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assalmod 21776 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 2 | assaring 21777 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 3 | assamulgscm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 5 | 3, 4 | ringidcl 20181 | . . . . 5 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) ∈ 𝑉) |
| 7 | assamulgscm.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | assamulgscm.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | 3, 7, 8, 9 | lmodvs1 20803 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → ((1r‘𝐹) · (1r‘𝑊)) = (1r‘𝑊)) |
| 11 | 10 | eqcomd 2736 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 12 | 1, 6, 11 | syl2anc 584 | . . 3 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 13 | 12 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
| 14 | 1 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod) |
| 15 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ 𝐵) | |
| 16 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋 ∈ 𝑉) | |
| 17 | assamulgscm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 18 | 3, 7, 8, 17 | lmodvscl 20791 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 19 | 14, 15, 16, 18 | syl3anc 1373 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉) |
| 20 | assamulgscm.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑊) | |
| 21 | 20, 3 | mgpbas 20061 | . . . 4 ⊢ 𝑉 = (Base‘𝐻) |
| 22 | 20, 4 | ringidval 20099 | . . . 4 ⊢ (1r‘𝑊) = (0g‘𝐻) |
| 23 | assamulgscm.e | . . . 4 ⊢ 𝐸 = (.g‘𝐻) | |
| 24 | 21, 22, 23 | mulg0 19013 | . . 3 ⊢ ((𝐴 · 𝑋) ∈ 𝑉 → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
| 25 | 19, 24 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
| 26 | assamulgscm.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝐹) | |
| 27 | 26, 17 | mgpbas 20061 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) |
| 28 | 26, 9 | ringidval 20099 | . . . . 5 ⊢ (1r‘𝐹) = (0g‘𝐺) |
| 29 | assamulgscm.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
| 30 | 27, 28, 29 | mulg0 19013 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (0 ↑ 𝐴) = (1r‘𝐹)) |
| 31 | 15, 30 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0 ↑ 𝐴) = (1r‘𝐹)) |
| 32 | 21, 22, 23 | mulg0 19013 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (0𝐸𝑋) = (1r‘𝑊)) |
| 33 | 16, 32 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸𝑋) = (1r‘𝑊)) |
| 34 | 31, 33 | oveq12d 7408 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → ((0 ↑ 𝐴) · (0𝐸𝑋)) = ((1r‘𝐹) · (1r‘𝑊))) |
| 35 | 13, 25, 34 | 3eqtr4d 2775 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 0cc0 11075 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 .gcmg 19006 mulGrpcmgp 20056 1rcur 20097 Ringcrg 20149 LModclmod 20773 AssAlgcasa 21766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mulg 19007 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-assa 21769 |
| This theorem is referenced by: assamulgscm 21817 |
| Copyright terms: Public domain | W3C validator |