Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > assamulgscmlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for assamulgscm 21015 (induction base). (Contributed by AV, 26-Aug-2019.) |
Ref | Expression |
---|---|
assamulgscm.v | ⊢ 𝑉 = (Base‘𝑊) |
assamulgscm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
assamulgscm.b | ⊢ 𝐵 = (Base‘𝐹) |
assamulgscm.s | ⊢ · = ( ·𝑠 ‘𝑊) |
assamulgscm.g | ⊢ 𝐺 = (mulGrp‘𝐹) |
assamulgscm.p | ⊢ ↑ = (.g‘𝐺) |
assamulgscm.h | ⊢ 𝐻 = (mulGrp‘𝑊) |
assamulgscm.e | ⊢ 𝐸 = (.g‘𝐻) |
Ref | Expression |
---|---|
assamulgscmlem1 | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assalmod 20977 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
2 | assaring 20978 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
3 | assamulgscm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
5 | 3, 4 | ringidcl 19722 | . . . . 5 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) ∈ 𝑉) |
7 | assamulgscm.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
8 | assamulgscm.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | 3, 7, 8, 9 | lmodvs1 20066 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → ((1r‘𝐹) · (1r‘𝑊)) = (1r‘𝑊)) |
11 | 10 | eqcomd 2744 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
12 | 1, 6, 11 | syl2anc 583 | . . 3 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
13 | 12 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) |
14 | 1 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod) |
15 | simpll 763 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ 𝐵) | |
16 | simplr 765 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋 ∈ 𝑉) | |
17 | assamulgscm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
18 | 3, 7, 8, 17 | lmodvscl 20055 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
19 | 14, 15, 16, 18 | syl3anc 1369 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉) |
20 | assamulgscm.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑊) | |
21 | 20, 3 | mgpbas 19641 | . . . 4 ⊢ 𝑉 = (Base‘𝐻) |
22 | 20, 4 | ringidval 19654 | . . . 4 ⊢ (1r‘𝑊) = (0g‘𝐻) |
23 | assamulgscm.e | . . . 4 ⊢ 𝐸 = (.g‘𝐻) | |
24 | 21, 22, 23 | mulg0 18622 | . . 3 ⊢ ((𝐴 · 𝑋) ∈ 𝑉 → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
25 | 19, 24 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) |
26 | assamulgscm.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝐹) | |
27 | 26, 17 | mgpbas 19641 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) |
28 | 26, 9 | ringidval 19654 | . . . . 5 ⊢ (1r‘𝐹) = (0g‘𝐺) |
29 | assamulgscm.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
30 | 27, 28, 29 | mulg0 18622 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (0 ↑ 𝐴) = (1r‘𝐹)) |
31 | 15, 30 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0 ↑ 𝐴) = (1r‘𝐹)) |
32 | 21, 22, 23 | mulg0 18622 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (0𝐸𝑋) = (1r‘𝑊)) |
33 | 16, 32 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸𝑋) = (1r‘𝑊)) |
34 | 31, 33 | oveq12d 7273 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → ((0 ↑ 𝐴) · (0𝐸𝑋)) = ((1r‘𝐹) · (1r‘𝑊))) |
35 | 13, 25, 34 | 3eqtr4d 2788 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 0cc0 10802 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 .gcmg 18615 mulGrpcmgp 19635 1rcur 19652 Ringcrg 19698 LModclmod 20038 AssAlgcasa 20967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mulg 18616 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-assa 20970 |
This theorem is referenced by: assamulgscm 21015 |
Copyright terms: Public domain | W3C validator |