|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > assamulgscmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for assamulgscm 21922 (induction base). (Contributed by AV, 26-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| assamulgscm.v | ⊢ 𝑉 = (Base‘𝑊) | 
| assamulgscm.f | ⊢ 𝐹 = (Scalar‘𝑊) | 
| assamulgscm.b | ⊢ 𝐵 = (Base‘𝐹) | 
| assamulgscm.s | ⊢ · = ( ·𝑠 ‘𝑊) | 
| assamulgscm.g | ⊢ 𝐺 = (mulGrp‘𝐹) | 
| assamulgscm.p | ⊢ ↑ = (.g‘𝐺) | 
| assamulgscm.h | ⊢ 𝐻 = (mulGrp‘𝑊) | 
| assamulgscm.e | ⊢ 𝐸 = (.g‘𝐻) | 
| Ref | Expression | 
|---|---|
| assamulgscmlem1 | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | assalmod 21881 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 2 | assaring 21882 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 3 | assamulgscm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 5 | 3, 4 | ringidcl 20263 | . . . . 5 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) | 
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) ∈ 𝑉) | 
| 7 | assamulgscm.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | assamulgscm.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | eqid 2736 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 10 | 3, 7, 8, 9 | lmodvs1 20889 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → ((1r‘𝐹) · (1r‘𝑊)) = (1r‘𝑊)) | 
| 11 | 10 | eqcomd 2742 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ 𝑉) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) | 
| 12 | 1, 6, 11 | syl2anc 584 | . . 3 ⊢ (𝑊 ∈ AssAlg → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) | 
| 13 | 12 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (1r‘𝑊) = ((1r‘𝐹) · (1r‘𝑊))) | 
| 14 | 1 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod) | 
| 15 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ 𝐵) | |
| 16 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋 ∈ 𝑉) | |
| 17 | assamulgscm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 18 | 3, 7, 8, 17 | lmodvscl 20877 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) | 
| 19 | 14, 15, 16, 18 | syl3anc 1372 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉) | 
| 20 | assamulgscm.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑊) | |
| 21 | 20, 3 | mgpbas 20143 | . . . 4 ⊢ 𝑉 = (Base‘𝐻) | 
| 22 | 20, 4 | ringidval 20181 | . . . 4 ⊢ (1r‘𝑊) = (0g‘𝐻) | 
| 23 | assamulgscm.e | . . . 4 ⊢ 𝐸 = (.g‘𝐻) | |
| 24 | 21, 22, 23 | mulg0 19093 | . . 3 ⊢ ((𝐴 · 𝑋) ∈ 𝑉 → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) | 
| 25 | 19, 24 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = (1r‘𝑊)) | 
| 26 | assamulgscm.g | . . . . . 6 ⊢ 𝐺 = (mulGrp‘𝐹) | |
| 27 | 26, 17 | mgpbas 20143 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | 
| 28 | 26, 9 | ringidval 20181 | . . . . 5 ⊢ (1r‘𝐹) = (0g‘𝐺) | 
| 29 | assamulgscm.p | . . . . 5 ⊢ ↑ = (.g‘𝐺) | |
| 30 | 27, 28, 29 | mulg0 19093 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (0 ↑ 𝐴) = (1r‘𝐹)) | 
| 31 | 15, 30 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0 ↑ 𝐴) = (1r‘𝐹)) | 
| 32 | 21, 22, 23 | mulg0 19093 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (0𝐸𝑋) = (1r‘𝑊)) | 
| 33 | 16, 32 | syl 17 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸𝑋) = (1r‘𝑊)) | 
| 34 | 31, 33 | oveq12d 7450 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → ((0 ↑ 𝐴) · (0𝐸𝑋)) = ((1r‘𝐹) · (1r‘𝑊))) | 
| 35 | 13, 25, 34 | 3eqtr4d 2786 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 ↑ 𝐴) · (0𝐸𝑋))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 0cc0 11156 Basecbs 17248 Scalarcsca 17301 ·𝑠 cvsca 17302 .gcmg 19086 mulGrpcmgp 20138 1rcur 20179 Ringcrg 20231 LModclmod 20859 AssAlgcasa 21871 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-seq 14044 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mulg 19087 df-mgp 20139 df-ur 20180 df-ring 20233 df-lmod 20861 df-assa 21874 | 
| This theorem is referenced by: assamulgscm 21922 | 
| Copyright terms: Public domain | W3C validator |