| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ascldimul | Structured version Visualization version GIF version | ||
| Description: The algebra scalar lifting function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015.) (Proof shortened by SN, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| ascldimul.a | ⊢ 𝐴 = (algSc‘𝑊) |
| ascldimul.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ascldimul.k | ⊢ 𝐾 = (Base‘𝐹) |
| ascldimul.t | ⊢ × = (.r‘𝑊) |
| ascldimul.s | ⊢ · = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| ascldimul | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assalmod 21797 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ LMod) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑅 ∈ 𝐾) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑆 ∈ 𝐾) | |
| 5 | assaring 21798 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ Ring) |
| 7 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 9 | 7, 8 | ringidcl 20183 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 11 | ascldimul.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 12 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 13 | ascldimul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 14 | ascldimul.s | . . . 4 ⊢ · = (.r‘𝐹) | |
| 15 | 7, 11, 12, 13, 14 | lmodvsass 20820 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 16 | 2, 3, 4, 10, 15 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 17 | 11 | lmodring 20801 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
| 19 | 13, 14 | ringcl 20168 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
| 20 | 18, 19 | syl3an1 1163 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
| 21 | ascldimul.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
| 22 | 21, 11, 13, 12, 8 | asclval 21817 | . . 3 ⊢ ((𝑅 · 𝑆) ∈ 𝐾 → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 23 | 20, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 24 | 21, 11, 5, 1, 13, 7 | asclf 21819 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐴:𝐾⟶(Base‘𝑊)) |
| 25 | 24 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
| 26 | 25 | 3adant2 1131 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
| 27 | ascldimul.t | . . . . 5 ⊢ × = (.r‘𝑊) | |
| 28 | 21, 11, 13, 7, 27, 12 | asclmul1 21823 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ (𝐴‘𝑆) ∈ (Base‘𝑊)) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
| 29 | 26, 28 | syld3an3 1411 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
| 30 | 21, 11, 13, 12, 8 | asclval 21817 | . . . . 5 ⊢ (𝑆 ∈ 𝐾 → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 31 | 30 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 32 | 31 | oveq2d 7362 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 33 | 29, 32 | eqtrd 2766 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 34 | 16, 23, 33 | 3eqtr4d 2776 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 1rcur 20099 Ringcrg 20151 LModclmod 20793 AssAlgcasa 21787 algSccascl 21789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mgp 20059 df-ur 20100 df-ring 20153 df-lmod 20795 df-assa 21790 df-ascl 21792 |
| This theorem is referenced by: asclrhm 21827 asclcom 49048 |
| Copyright terms: Public domain | W3C validator |