| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ascldimul | Structured version Visualization version GIF version | ||
| Description: The algebra scalar lifting function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015.) (Proof shortened by SN, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| ascldimul.a | ⊢ 𝐴 = (algSc‘𝑊) |
| ascldimul.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ascldimul.k | ⊢ 𝐾 = (Base‘𝐹) |
| ascldimul.t | ⊢ × = (.r‘𝑊) |
| ascldimul.s | ⊢ · = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| ascldimul | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assalmod 21745 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ LMod) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑅 ∈ 𝐾) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑆 ∈ 𝐾) | |
| 5 | assaring 21746 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ Ring) |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 9 | 7, 8 | ringidcl 20150 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 11 | ascldimul.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 12 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 13 | ascldimul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 14 | ascldimul.s | . . . 4 ⊢ · = (.r‘𝐹) | |
| 15 | 7, 11, 12, 13, 14 | lmodvsass 20769 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 16 | 2, 3, 4, 10, 15 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 17 | 11 | lmodring 20750 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
| 19 | 13, 14 | ringcl 20135 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
| 20 | 18, 19 | syl3an1 1163 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
| 21 | ascldimul.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
| 22 | 21, 11, 13, 12, 8 | asclval 21765 | . . 3 ⊢ ((𝑅 · 𝑆) ∈ 𝐾 → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 23 | 20, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 24 | 21, 11, 5, 1, 13, 7 | asclf 21767 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐴:𝐾⟶(Base‘𝑊)) |
| 25 | 24 | ffvelcdmda 7038 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
| 26 | 25 | 3adant2 1131 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
| 27 | ascldimul.t | . . . . 5 ⊢ × = (.r‘𝑊) | |
| 28 | 21, 11, 13, 7, 27, 12 | asclmul1 21771 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ (𝐴‘𝑆) ∈ (Base‘𝑊)) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
| 29 | 26, 28 | syld3an3 1411 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
| 30 | 21, 11, 13, 12, 8 | asclval 21765 | . . . . 5 ⊢ (𝑆 ∈ 𝐾 → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 31 | 30 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 32 | 31 | oveq2d 7385 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 33 | 29, 32 | eqtrd 2764 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 34 | 16, 23, 33 | 3eqtr4d 2774 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 1rcur 20066 Ringcrg 20118 LModclmod 20742 AssAlgcasa 21735 algSccascl 21737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20744 df-assa 21738 df-ascl 21740 |
| This theorem is referenced by: asclrhm 21775 asclcom 48970 |
| Copyright terms: Public domain | W3C validator |