Step | Hyp | Ref
| Expression |
1 | | assalmod 21635 |
. . . 4
β’ (π β AssAlg β π β LMod) |
2 | 1 | 3ad2ant1 1132 |
. . 3
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β π β LMod) |
3 | | simp2 1136 |
. . 3
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β π
β πΎ) |
4 | | simp3 1137 |
. . 3
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β π β πΎ) |
5 | | assaring 21636 |
. . . . 5
β’ (π β AssAlg β π β Ring) |
6 | 5 | 3ad2ant1 1132 |
. . . 4
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β π β Ring) |
7 | | eqid 2731 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
8 | | eqid 2731 |
. . . . 5
β’
(1rβπ) = (1rβπ) |
9 | 7, 8 | ringidcl 20155 |
. . . 4
β’ (π β Ring β
(1rβπ)
β (Baseβπ)) |
10 | 6, 9 | syl 17 |
. . 3
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β (1rβπ) β (Baseβπ)) |
11 | | ascldimul.f |
. . . 4
β’ πΉ = (Scalarβπ) |
12 | | eqid 2731 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
13 | | ascldimul.k |
. . . 4
β’ πΎ = (BaseβπΉ) |
14 | | ascldimul.s |
. . . 4
β’ Β· =
(.rβπΉ) |
15 | 7, 11, 12, 13, 14 | lmodvsass 20642 |
. . 3
β’ ((π β LMod β§ (π
β πΎ β§ π β πΎ β§ (1rβπ) β (Baseβπ))) β ((π
Β· π)( Β·π
βπ)(1rβπ)) = (π
( Β·π
βπ)(π( Β·π
βπ)(1rβπ)))) |
16 | 2, 3, 4, 10, 15 | syl13anc 1371 |
. 2
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β ((π
Β· π)( Β·π
βπ)(1rβπ)) = (π
( Β·π
βπ)(π( Β·π
βπ)(1rβπ)))) |
17 | 11 | lmodring 20623 |
. . . . 5
β’ (π β LMod β πΉ β Ring) |
18 | 1, 17 | syl 17 |
. . . 4
β’ (π β AssAlg β πΉ β Ring) |
19 | 13, 14 | ringcl 20145 |
. . . 4
β’ ((πΉ β Ring β§ π
β πΎ β§ π β πΎ) β (π
Β· π) β πΎ) |
20 | 18, 19 | syl3an1 1162 |
. . 3
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β (π
Β· π) β πΎ) |
21 | | ascldimul.a |
. . . 4
β’ π΄ = (algScβπ) |
22 | 21, 11, 13, 12, 8 | asclval 21654 |
. . 3
β’ ((π
Β· π) β πΎ β (π΄β(π
Β· π)) = ((π
Β· π)( Β·π
βπ)(1rβπ))) |
23 | 20, 22 | syl 17 |
. 2
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β (π΄β(π
Β· π)) = ((π
Β· π)( Β·π
βπ)(1rβπ))) |
24 | 21, 11, 5, 1, 13, 7 | asclf 21656 |
. . . . . 6
β’ (π β AssAlg β π΄:πΎβΆ(Baseβπ)) |
25 | 24 | ffvelcdmda 7086 |
. . . . 5
β’ ((π β AssAlg β§ π β πΎ) β (π΄βπ) β (Baseβπ)) |
26 | 25 | 3adant2 1130 |
. . . 4
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β (π΄βπ) β (Baseβπ)) |
27 | | ascldimul.t |
. . . . 5
β’ Γ =
(.rβπ) |
28 | 21, 11, 13, 7, 27, 12 | asclmul1 21660 |
. . . 4
β’ ((π β AssAlg β§ π
β πΎ β§ (π΄βπ) β (Baseβπ)) β ((π΄βπ
) Γ (π΄βπ)) = (π
( Β·π
βπ)(π΄βπ))) |
29 | 26, 28 | syld3an3 1408 |
. . 3
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β ((π΄βπ
) Γ (π΄βπ)) = (π
( Β·π
βπ)(π΄βπ))) |
30 | 21, 11, 13, 12, 8 | asclval 21654 |
. . . . 5
β’ (π β πΎ β (π΄βπ) = (π( Β·π
βπ)(1rβπ))) |
31 | 30 | 3ad2ant3 1134 |
. . . 4
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β (π΄βπ) = (π( Β·π
βπ)(1rβπ))) |
32 | 31 | oveq2d 7428 |
. . 3
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β (π
( Β·π
βπ)(π΄βπ)) = (π
( Β·π
βπ)(π( Β·π
βπ)(1rβπ)))) |
33 | 29, 32 | eqtrd 2771 |
. 2
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β ((π΄βπ
) Γ (π΄βπ)) = (π
( Β·π
βπ)(π( Β·π
βπ)(1rβπ)))) |
34 | 16, 23, 33 | 3eqtr4d 2781 |
1
β’ ((π β AssAlg β§ π
β πΎ β§ π β πΎ) β (π΄β(π
Β· π)) = ((π΄βπ
) Γ (π΄βπ))) |