Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ascldimul | Structured version Visualization version GIF version |
Description: The algebra scalars function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015.) (Proof shortened by SN, 5-Nov-2023.) |
Ref | Expression |
---|---|
ascldimul.a | ⊢ 𝐴 = (algSc‘𝑊) |
ascldimul.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ascldimul.k | ⊢ 𝐾 = (Base‘𝐹) |
ascldimul.t | ⊢ × = (.r‘𝑊) |
ascldimul.s | ⊢ · = (.r‘𝐹) |
Ref | Expression |
---|---|
ascldimul | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assalmod 20977 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
2 | 1 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ LMod) |
3 | simp2 1135 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑅 ∈ 𝐾) | |
4 | simp3 1136 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑆 ∈ 𝐾) | |
5 | assaring 20978 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
6 | 5 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ Ring) |
7 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
8 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
9 | 7, 8 | ringidcl 19722 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (1r‘𝑊) ∈ (Base‘𝑊)) |
11 | ascldimul.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
12 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
13 | ascldimul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
14 | ascldimul.s | . . . 4 ⊢ · = (.r‘𝐹) | |
15 | 7, 11, 12, 13, 14 | lmodvsass 20063 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
16 | 2, 3, 4, 10, 15 | syl13anc 1370 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
17 | 11 | lmodring 20046 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
19 | 13, 14 | ringcl 19715 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
20 | 18, 19 | syl3an1 1161 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
21 | ascldimul.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
22 | 21, 11, 13, 12, 8 | asclval 20994 | . . 3 ⊢ ((𝑅 · 𝑆) ∈ 𝐾 → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
23 | 20, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
24 | 21, 11, 5, 1, 13, 7 | asclf 20996 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐴:𝐾⟶(Base‘𝑊)) |
25 | 24 | ffvelrnda 6943 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
26 | 25 | 3adant2 1129 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
27 | ascldimul.t | . . . . 5 ⊢ × = (.r‘𝑊) | |
28 | 21, 11, 13, 7, 27, 12 | asclmul1 21000 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ (𝐴‘𝑆) ∈ (Base‘𝑊)) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
29 | 26, 28 | syld3an3 1407 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
30 | 21, 11, 13, 12, 8 | asclval 20994 | . . . . 5 ⊢ (𝑆 ∈ 𝐾 → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
31 | 30 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
32 | 31 | oveq2d 7271 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
33 | 29, 32 | eqtrd 2778 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
34 | 16, 23, 33 | 3eqtr4d 2788 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 1rcur 19652 Ringcrg 19698 LModclmod 20038 AssAlgcasa 20967 algSccascl 20969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-assa 20970 df-ascl 20972 |
This theorem is referenced by: asclrhm 21004 |
Copyright terms: Public domain | W3C validator |