| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ascldimul | Structured version Visualization version GIF version | ||
| Description: The algebra scalar lifting function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015.) (Proof shortened by SN, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| ascldimul.a | ⊢ 𝐴 = (algSc‘𝑊) |
| ascldimul.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ascldimul.k | ⊢ 𝐾 = (Base‘𝐹) |
| ascldimul.t | ⊢ × = (.r‘𝑊) |
| ascldimul.s | ⊢ · = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| ascldimul | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assalmod 21769 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ LMod) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑅 ∈ 𝐾) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑆 ∈ 𝐾) | |
| 5 | assaring 21770 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ Ring) |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 9 | 7, 8 | ringidcl 20174 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 11 | ascldimul.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 12 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 13 | ascldimul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 14 | ascldimul.s | . . . 4 ⊢ · = (.r‘𝐹) | |
| 15 | 7, 11, 12, 13, 14 | lmodvsass 20793 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 16 | 2, 3, 4, 10, 15 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 17 | 11 | lmodring 20774 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
| 19 | 13, 14 | ringcl 20159 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
| 20 | 18, 19 | syl3an1 1163 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
| 21 | ascldimul.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
| 22 | 21, 11, 13, 12, 8 | asclval 21789 | . . 3 ⊢ ((𝑅 · 𝑆) ∈ 𝐾 → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 23 | 20, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 24 | 21, 11, 5, 1, 13, 7 | asclf 21791 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐴:𝐾⟶(Base‘𝑊)) |
| 25 | 24 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
| 26 | 25 | 3adant2 1131 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
| 27 | ascldimul.t | . . . . 5 ⊢ × = (.r‘𝑊) | |
| 28 | 21, 11, 13, 7, 27, 12 | asclmul1 21795 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ (𝐴‘𝑆) ∈ (Base‘𝑊)) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
| 29 | 26, 28 | syld3an3 1411 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
| 30 | 21, 11, 13, 12, 8 | asclval 21789 | . . . . 5 ⊢ (𝑆 ∈ 𝐾 → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 31 | 30 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 32 | 31 | oveq2d 7403 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 33 | 29, 32 | eqtrd 2764 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 34 | 16, 23, 33 | 3eqtr4d 2774 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 1rcur 20090 Ringcrg 20142 LModclmod 20766 AssAlgcasa 21759 algSccascl 21761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 df-assa 21762 df-ascl 21764 |
| This theorem is referenced by: asclrhm 21799 asclcom 48997 |
| Copyright terms: Public domain | W3C validator |