Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ascldimul | Structured version Visualization version GIF version |
Description: The algebra scalars function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015.) (Proof shortened by SN, 5-Nov-2023.) |
Ref | Expression |
---|---|
ascldimul.a | ⊢ 𝐴 = (algSc‘𝑊) |
ascldimul.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ascldimul.k | ⊢ 𝐾 = (Base‘𝐹) |
ascldimul.t | ⊢ × = (.r‘𝑊) |
ascldimul.s | ⊢ · = (.r‘𝐹) |
Ref | Expression |
---|---|
ascldimul | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assalmod 20626 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
2 | 1 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ LMod) |
3 | simp2 1135 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑅 ∈ 𝐾) | |
4 | simp3 1136 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑆 ∈ 𝐾) | |
5 | assaring 20627 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
6 | 5 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → 𝑊 ∈ Ring) |
7 | eqid 2759 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
8 | eqid 2759 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
9 | 7, 8 | ringidcl 19390 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (1r‘𝑊) ∈ (Base‘𝑊)) |
11 | ascldimul.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
12 | eqid 2759 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
13 | ascldimul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
14 | ascldimul.s | . . . 4 ⊢ · = (.r‘𝐹) | |
15 | 7, 11, 12, 13, 14 | lmodvsass 19728 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
16 | 2, 3, 4, 10, 15 | syl13anc 1370 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
17 | 11 | lmodring 19711 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
19 | 13, 14 | ringcl 19383 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
20 | 18, 19 | syl3an1 1161 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅 · 𝑆) ∈ 𝐾) |
21 | ascldimul.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
22 | 21, 11, 13, 12, 8 | asclval 20643 | . . 3 ⊢ ((𝑅 · 𝑆) ∈ 𝐾 → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
23 | 20, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
24 | 21, 11, 5, 1, 13, 7 | asclf 20645 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐴:𝐾⟶(Base‘𝑊)) |
25 | 24 | ffvelrnda 6843 | . . . . 5 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
26 | 25 | 3adant2 1129 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ (Base‘𝑊)) |
27 | ascldimul.t | . . . . 5 ⊢ × = (.r‘𝑊) | |
28 | 21, 11, 13, 7, 27, 12 | asclmul1 20649 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ (𝐴‘𝑆) ∈ (Base‘𝑊)) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
29 | 26, 28 | syld3an3 1407 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆))) |
30 | 21, 11, 13, 12, 8 | asclval 20643 | . . . . 5 ⊢ (𝑆 ∈ 𝐾 → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
31 | 30 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) = (𝑆( ·𝑠 ‘𝑊)(1r‘𝑊))) |
32 | 31 | oveq2d 7167 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝑅( ·𝑠 ‘𝑊)(𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
33 | 29, 32 | eqtrd 2794 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → ((𝐴‘𝑅) × (𝐴‘𝑆)) = (𝑅( ·𝑠 ‘𝑊)(𝑆( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
34 | 16, 23, 33 | 3eqtr4d 2804 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ‘cfv 6336 (class class class)co 7151 Basecbs 16542 .rcmulr 16625 Scalarcsca 16627 ·𝑠 cvsca 16628 1rcur 19320 Ringcrg 19366 LModclmod 19703 AssAlgcasa 20616 algSccascl 20618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-plusg 16637 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-mgp 19309 df-ur 19321 df-ring 19368 df-lmod 19705 df-assa 20619 df-ascl 20621 |
This theorem is referenced by: asclrhm 20654 |
Copyright terms: Public domain | W3C validator |