MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa Structured version   Visualization version   GIF version

Theorem issubassa 21809
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
issubassa.s 𝑆 = (𝑊s 𝐴)
issubassa.l 𝐿 = (LSubSp‘𝑊)
issubassa.v 𝑉 = (Base‘𝑊)
issubassa.o 1 = (1r𝑊)
Assertion
Ref Expression
issubassa ((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)))

Proof of Theorem issubassa
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ AssAlg)
2 assaring 21803 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
31, 2syl 17 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ Ring)
4 issubassa.s . . . . 5 𝑆 = (𝑊s 𝐴)
5 assaring 21803 . . . . . 6 (𝑆 ∈ AssAlg → 𝑆 ∈ Ring)
65adantl 481 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ Ring)
74, 6eqeltrrid 2833 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝑊s 𝐴) ∈ Ring)
8 simpl3 1194 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴𝑉)
9 simpl2 1193 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 1𝐴)
108, 9jca 511 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴𝑉1𝐴))
11 issubassa.v . . . . 5 𝑉 = (Base‘𝑊)
12 issubassa.o . . . . 5 1 = (1r𝑊)
1311, 12issubrg 20491 . . . 4 (𝐴 ∈ (SubRing‘𝑊) ↔ ((𝑊 ∈ Ring ∧ (𝑊s 𝐴) ∈ Ring) ∧ (𝐴𝑉1𝐴)))
143, 7, 10, 13syl21anbrc 1345 . . 3 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ (SubRing‘𝑊))
15 assalmod 21802 . . . . 5 (𝑆 ∈ AssAlg → 𝑆 ∈ LMod)
1615adantl 481 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ LMod)
17 assalmod 21802 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
18 issubassa.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
194, 11, 18islss3 20897 . . . . 5 (𝑊 ∈ LMod → (𝐴𝐿 ↔ (𝐴𝑉𝑆 ∈ LMod)))
201, 17, 193syl 18 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴𝐿 ↔ (𝐴𝑉𝑆 ∈ LMod)))
218, 16, 20mpbir2and 713 . . 3 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴𝐿)
2214, 21jca 511 . 2 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿))
234, 18issubassa3 21808 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)
24233ad2antl1 1186 . 2 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)
2522, 24impbida 800 1 ((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  1rcur 20101  Ringcrg 20153  SubRingcsubrg 20489  LModclmod 20798  LSubSpclss 20869  AssAlgcasa 21792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-mgp 20061  df-ur 20102  df-ring 20155  df-subrg 20490  df-lmod 20800  df-lss 20870  df-assa 21795
This theorem is referenced by:  mplassa  21964  ply1assa  22117
  Copyright terms: Public domain W3C validator