Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issubassa | Structured version Visualization version GIF version |
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
issubassa.s | ⊢ 𝑆 = (𝑊 ↾s 𝐴) |
issubassa.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
issubassa.v | ⊢ 𝑉 = (Base‘𝑊) |
issubassa.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
issubassa | ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ AssAlg) | |
2 | assaring 20641 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ Ring) |
4 | issubassa.s | . . . . 5 ⊢ 𝑆 = (𝑊 ↾s 𝐴) | |
5 | assaring 20641 | . . . . . 6 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ Ring) | |
6 | 5 | adantl 485 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ Ring) |
7 | 4, 6 | eqeltrrid 2858 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝑊 ↾s 𝐴) ∈ Ring) |
8 | simpl3 1191 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ⊆ 𝑉) | |
9 | simpl2 1190 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 1 ∈ 𝐴) | |
10 | 8, 9 | jca 515 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴)) |
11 | issubassa.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
12 | issubassa.o | . . . . 5 ⊢ 1 = (1r‘𝑊) | |
13 | 11, 12 | issubrg 19618 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑊) ↔ ((𝑊 ∈ Ring ∧ (𝑊 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴))) |
14 | 3, 7, 10, 13 | syl21anbrc 1342 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ (SubRing‘𝑊)) |
15 | assalmod 20640 | . . . . 5 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ LMod) | |
16 | 15 | adantl 485 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ LMod) |
17 | assalmod 20640 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
18 | issubassa.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
19 | 4, 11, 18 | islss3 19814 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
20 | 1, 17, 19 | 3syl 18 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
21 | 8, 16, 20 | mpbir2and 712 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ 𝐿) |
22 | 14, 21 | jca 515 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) |
23 | 4, 18 | issubassa3 20645 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
24 | 23 | 3ad2antl1 1183 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
25 | 22, 24 | impbida 800 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ⊆ wss 3861 ‘cfv 6341 (class class class)co 7157 Basecbs 16556 ↾s cress 16557 1rcur 19334 Ringcrg 19380 SubRingcsubrg 19614 LModclmod 19717 LSubSpclss 19786 AssAlgcasa 20630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-sca 16654 df-vsca 16655 df-0g 16788 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-grp 18187 df-minusg 18188 df-sbg 18189 df-subg 18358 df-mgp 19323 df-ur 19335 df-ring 19382 df-subrg 19616 df-lmod 19719 df-lss 19787 df-assa 20633 |
This theorem is referenced by: mplassa 20801 ply1assa 20938 |
Copyright terms: Public domain | W3C validator |