Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issubassa | Structured version Visualization version GIF version |
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
issubassa.s | ⊢ 𝑆 = (𝑊 ↾s 𝐴) |
issubassa.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
issubassa.v | ⊢ 𝑉 = (Base‘𝑊) |
issubassa.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
issubassa | ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ AssAlg) | |
2 | assaring 20978 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ Ring) |
4 | issubassa.s | . . . . 5 ⊢ 𝑆 = (𝑊 ↾s 𝐴) | |
5 | assaring 20978 | . . . . . 6 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ Ring) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ Ring) |
7 | 4, 6 | eqeltrrid 2844 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝑊 ↾s 𝐴) ∈ Ring) |
8 | simpl3 1191 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ⊆ 𝑉) | |
9 | simpl2 1190 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 1 ∈ 𝐴) | |
10 | 8, 9 | jca 511 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴)) |
11 | issubassa.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
12 | issubassa.o | . . . . 5 ⊢ 1 = (1r‘𝑊) | |
13 | 11, 12 | issubrg 19939 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑊) ↔ ((𝑊 ∈ Ring ∧ (𝑊 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴))) |
14 | 3, 7, 10, 13 | syl21anbrc 1342 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ (SubRing‘𝑊)) |
15 | assalmod 20977 | . . . . 5 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ LMod) | |
16 | 15 | adantl 481 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ LMod) |
17 | assalmod 20977 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
18 | issubassa.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
19 | 4, 11, 18 | islss3 20136 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
20 | 1, 17, 19 | 3syl 18 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
21 | 8, 16, 20 | mpbir2and 709 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ 𝐿) |
22 | 14, 21 | jca 511 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) |
23 | 4, 18 | issubassa3 20982 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
24 | 23 | 3ad2antl1 1183 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
25 | 22, 24 | impbida 797 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 1rcur 19652 Ringcrg 19698 SubRingcsubrg 19935 LModclmod 20038 LSubSpclss 20108 AssAlgcasa 20967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-assa 20970 |
This theorem is referenced by: mplassa 21137 ply1assa 21280 |
Copyright terms: Public domain | W3C validator |