| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubassa | Structured version Visualization version GIF version | ||
| Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| issubassa.s | ⊢ 𝑆 = (𝑊 ↾s 𝐴) |
| issubassa.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| issubassa.v | ⊢ 𝑉 = (Base‘𝑊) |
| issubassa.o | ⊢ 1 = (1r‘𝑊) |
| Ref | Expression |
|---|---|
| issubassa | ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ AssAlg) | |
| 2 | assaring 21798 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ Ring) |
| 4 | issubassa.s | . . . . 5 ⊢ 𝑆 = (𝑊 ↾s 𝐴) | |
| 5 | assaring 21798 | . . . . . 6 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ Ring) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ Ring) |
| 7 | 4, 6 | eqeltrrid 2836 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝑊 ↾s 𝐴) ∈ Ring) |
| 8 | simpl3 1194 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ⊆ 𝑉) | |
| 9 | simpl2 1193 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 1 ∈ 𝐴) | |
| 10 | 8, 9 | jca 511 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴)) |
| 11 | issubassa.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 12 | issubassa.o | . . . . 5 ⊢ 1 = (1r‘𝑊) | |
| 13 | 11, 12 | issubrg 20486 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑊) ↔ ((𝑊 ∈ Ring ∧ (𝑊 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴))) |
| 14 | 3, 7, 10, 13 | syl21anbrc 1345 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ (SubRing‘𝑊)) |
| 15 | assalmod 21797 | . . . . 5 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ LMod) | |
| 16 | 15 | adantl 481 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ LMod) |
| 17 | assalmod 21797 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 18 | issubassa.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 19 | 4, 11, 18 | islss3 20892 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
| 20 | 1, 17, 19 | 3syl 18 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
| 21 | 8, 16, 20 | mpbir2and 713 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ 𝐿) |
| 22 | 14, 21 | jca 511 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) |
| 23 | 4, 18 | issubassa3 21803 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
| 24 | 23 | 3ad2antl1 1186 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
| 25 | 22, 24 | impbida 800 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 1rcur 20099 Ringcrg 20151 SubRingcsubrg 20484 LModclmod 20793 LSubSpclss 20864 AssAlgcasa 21787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-mgp 20059 df-ur 20100 df-ring 20153 df-subrg 20485 df-lmod 20795 df-lss 20865 df-assa 21790 |
| This theorem is referenced by: mplassa 21959 ply1assa 22112 |
| Copyright terms: Public domain | W3C validator |