![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubassa | Structured version Visualization version GIF version |
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
issubassa.s | β’ π = (π βΎs π΄) |
issubassa.l | β’ πΏ = (LSubSpβπ) |
issubassa.v | β’ π = (Baseβπ) |
issubassa.o | β’ 1 = (1rβπ) |
Ref | Expression |
---|---|
issubassa | β’ ((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β (π β AssAlg β (π΄ β (SubRingβπ) β§ π΄ β πΏ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . . . . 5 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β π β AssAlg) | |
2 | assaring 21797 | . . . . 5 β’ (π β AssAlg β π β Ring) | |
3 | 1, 2 | syl 17 | . . . 4 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β π β Ring) |
4 | issubassa.s | . . . . 5 β’ π = (π βΎs π΄) | |
5 | assaring 21797 | . . . . . 6 β’ (π β AssAlg β π β Ring) | |
6 | 5 | adantl 480 | . . . . 5 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β π β Ring) |
7 | 4, 6 | eqeltrrid 2830 | . . . 4 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β (π βΎs π΄) β Ring) |
8 | simpl3 1190 | . . . . 5 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β π΄ β π) | |
9 | simpl2 1189 | . . . . 5 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β 1 β π΄) | |
10 | 8, 9 | jca 510 | . . . 4 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β (π΄ β π β§ 1 β π΄)) |
11 | issubassa.v | . . . . 5 β’ π = (Baseβπ) | |
12 | issubassa.o | . . . . 5 β’ 1 = (1rβπ) | |
13 | 11, 12 | issubrg 20512 | . . . 4 β’ (π΄ β (SubRingβπ) β ((π β Ring β§ (π βΎs π΄) β Ring) β§ (π΄ β π β§ 1 β π΄))) |
14 | 3, 7, 10, 13 | syl21anbrc 1341 | . . 3 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β π΄ β (SubRingβπ)) |
15 | assalmod 21796 | . . . . 5 β’ (π β AssAlg β π β LMod) | |
16 | 15 | adantl 480 | . . . 4 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β π β LMod) |
17 | assalmod 21796 | . . . . 5 β’ (π β AssAlg β π β LMod) | |
18 | issubassa.l | . . . . . 6 β’ πΏ = (LSubSpβπ) | |
19 | 4, 11, 18 | islss3 20845 | . . . . 5 β’ (π β LMod β (π΄ β πΏ β (π΄ β π β§ π β LMod))) |
20 | 1, 17, 19 | 3syl 18 | . . . 4 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β (π΄ β πΏ β (π΄ β π β§ π β LMod))) |
21 | 8, 16, 20 | mpbir2and 711 | . . 3 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β π΄ β πΏ) |
22 | 14, 21 | jca 510 | . 2 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ π β AssAlg) β (π΄ β (SubRingβπ) β§ π΄ β πΏ)) |
23 | 4, 18 | issubassa3 21801 | . . 3 β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β π β AssAlg) |
24 | 23 | 3ad2antl1 1182 | . 2 β’ (((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β π β AssAlg) |
25 | 22, 24 | impbida 799 | 1 β’ ((π β AssAlg β§ 1 β π΄ β§ π΄ β π) β (π β AssAlg β (π΄ β (SubRingβπ) β§ π΄ β πΏ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3940 βcfv 6542 (class class class)co 7415 Basecbs 17177 βΎs cress 17206 1rcur 20123 Ringcrg 20175 SubRingcsubrg 20508 LModclmod 20745 LSubSpclss 20817 AssAlgcasa 21786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-mgp 20077 df-ur 20124 df-ring 20177 df-subrg 20510 df-lmod 20747 df-lss 20818 df-assa 21789 |
This theorem is referenced by: mplassa 21969 ply1assa 22125 |
Copyright terms: Public domain | W3C validator |