MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa Structured version   Visualization version   GIF version

Theorem issubassa 19786
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
issubassa.s 𝑆 = (𝑊s 𝐴)
issubassa.l 𝐿 = (LSubSp‘𝑊)
issubassa.v 𝑉 = (Base‘𝑊)
issubassa.o 1 = (1r𝑊)
Assertion
Ref Expression
issubassa ((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)))

Proof of Theorem issubassa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1184 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ AssAlg)
2 assaring 19782 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
31, 2syl 17 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ Ring)
4 issubassa.s . . . . 5 𝑆 = (𝑊s 𝐴)
5 assaring 19782 . . . . . 6 (𝑆 ∈ AssAlg → 𝑆 ∈ Ring)
65adantl 482 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ Ring)
74, 6syl5eqelr 2888 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝑊s 𝐴) ∈ Ring)
8 simpl3 1186 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴𝑉)
9 simpl2 1185 . . . . 5 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 1𝐴)
108, 9jca 512 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴𝑉1𝐴))
11 issubassa.v . . . . 5 𝑉 = (Base‘𝑊)
12 issubassa.o . . . . 5 1 = (1r𝑊)
1311, 12issubrg 19225 . . . 4 (𝐴 ∈ (SubRing‘𝑊) ↔ ((𝑊 ∈ Ring ∧ (𝑊s 𝐴) ∈ Ring) ∧ (𝐴𝑉1𝐴)))
143, 7, 10, 13syl21anbrc 1337 . . 3 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ (SubRing‘𝑊))
15 assalmod 19781 . . . . 5 (𝑆 ∈ AssAlg → 𝑆 ∈ LMod)
1615adantl 482 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ LMod)
17 assalmod 19781 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
18 issubassa.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
194, 11, 18islss3 19421 . . . . 5 (𝑊 ∈ LMod → (𝐴𝐿 ↔ (𝐴𝑉𝑆 ∈ LMod)))
201, 17, 193syl 18 . . . 4 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴𝐿 ↔ (𝐴𝑉𝑆 ∈ LMod)))
218, 16, 20mpbir2and 709 . . 3 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴𝐿)
2214, 21jca 512 . 2 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿))
2311subrgss 19226 . . . . . 6 (𝐴 ∈ (SubRing‘𝑊) → 𝐴𝑉)
2423ad2antrl 724 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝐴𝑉)
254, 11ressbas2 16384 . . . . 5 (𝐴𝑉𝐴 = (Base‘𝑆))
2624, 25syl 17 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝐴 = (Base‘𝑆))
27 eqid 2795 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
284, 27resssca 16479 . . . . 5 (𝐴 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑆))
2928ad2antrl 724 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Scalar‘𝑊) = (Scalar‘𝑆))
30 eqidd 2796 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
31 eqid 2795 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
324, 31ressvsca 16480 . . . . 5 (𝐴 ∈ (SubRing‘𝑊) → ( ·𝑠𝑊) = ( ·𝑠𝑆))
3332ad2antrl 724 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → ( ·𝑠𝑊) = ( ·𝑠𝑆))
34 eqid 2795 . . . . . 6 (.r𝑊) = (.r𝑊)
354, 34ressmulr 16454 . . . . 5 (𝐴 ∈ (SubRing‘𝑊) → (.r𝑊) = (.r𝑆))
3635ad2antrl 724 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (.r𝑊) = (.r𝑆))
37 simpr 485 . . . . 5 ((𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿) → 𝐴𝐿)
384, 18lsslmod 19422 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐿) → 𝑆 ∈ LMod)
3917, 37, 38syl2an 595 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ LMod)
404subrgring 19228 . . . . 5 (𝐴 ∈ (SubRing‘𝑊) → 𝑆 ∈ Ring)
4140ad2antrl 724 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ Ring)
4227assasca 19783 . . . . 5 (𝑊 ∈ AssAlg → (Scalar‘𝑊) ∈ CRing)
4342adantr 481 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Scalar‘𝑊) ∈ CRing)
44 simpll 763 . . . . 5 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → 𝑊 ∈ AssAlg)
45 simpr1 1187 . . . . 5 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
4624adantr 481 . . . . . 6 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → 𝐴𝑉)
47 simpr2 1188 . . . . . 6 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
4846, 47sseldd 3890 . . . . 5 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → 𝑦𝑉)
49 simpr3 1189 . . . . . 6 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
5046, 49sseldd 3890 . . . . 5 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → 𝑧𝑉)
51 eqid 2795 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5211, 27, 51, 31, 34assaass 19779 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
5344, 45, 48, 50, 52syl13anc 1365 . . . 4 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
5411, 27, 51, 31, 34assaassr 19780 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉𝑧𝑉)) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
5544, 45, 48, 50, 54syl13anc 1365 . . . 4 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
5626, 29, 30, 33, 36, 39, 41, 43, 53, 55isassad 19785 . . 3 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)
57563ad2antl1 1178 . 2 (((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)
5822, 57impbida 797 1 ((𝑊 ∈ AssAlg ∧ 1𝐴𝐴𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wss 3859  cfv 6225  (class class class)co 7016  Basecbs 16312  s cress 16313  .rcmulr 16395  Scalarcsca 16397   ·𝑠 cvsca 16398  1rcur 18941  Ringcrg 18987  CRingccrg 18988  SubRingcsubrg 19221  LModclmod 19324  LSubSpclss 19393  AssAlgcasa 19771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865  df-sbg 17866  df-subg 18030  df-mgp 18930  df-ur 18942  df-ring 18989  df-subrg 19223  df-lmod 19326  df-lss 19394  df-assa 19774
This theorem is referenced by:  rnasclassa  19811  mplassa  19922  ply1assa  20050
  Copyright terms: Public domain W3C validator