| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubassa | Structured version Visualization version GIF version | ||
| Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| issubassa.s | ⊢ 𝑆 = (𝑊 ↾s 𝐴) |
| issubassa.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| issubassa.v | ⊢ 𝑉 = (Base‘𝑊) |
| issubassa.o | ⊢ 1 = (1r‘𝑊) |
| Ref | Expression |
|---|---|
| issubassa | ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ AssAlg) | |
| 2 | assaring 21770 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑊 ∈ Ring) |
| 4 | issubassa.s | . . . . 5 ⊢ 𝑆 = (𝑊 ↾s 𝐴) | |
| 5 | assaring 21770 | . . . . . 6 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ Ring) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ Ring) |
| 7 | 4, 6 | eqeltrrid 2833 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝑊 ↾s 𝐴) ∈ Ring) |
| 8 | simpl3 1194 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ⊆ 𝑉) | |
| 9 | simpl2 1193 | . . . . 5 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 1 ∈ 𝐴) | |
| 10 | 8, 9 | jca 511 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴)) |
| 11 | issubassa.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 12 | issubassa.o | . . . . 5 ⊢ 1 = (1r‘𝑊) | |
| 13 | 11, 12 | issubrg 20480 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑊) ↔ ((𝑊 ∈ Ring ∧ (𝑊 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴))) |
| 14 | 3, 7, 10, 13 | syl21anbrc 1345 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ (SubRing‘𝑊)) |
| 15 | assalmod 21769 | . . . . 5 ⊢ (𝑆 ∈ AssAlg → 𝑆 ∈ LMod) | |
| 16 | 15 | adantl 481 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝑆 ∈ LMod) |
| 17 | assalmod 21769 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 18 | issubassa.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 19 | 4, 11, 18 | islss3 20865 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
| 20 | 1, 17, 19 | 3syl 18 | . . . 4 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ 𝐿 ↔ (𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod))) |
| 21 | 8, 16, 20 | mpbir2and 713 | . . 3 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → 𝐴 ∈ 𝐿) |
| 22 | 14, 21 | jca 511 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ 𝑆 ∈ AssAlg) → (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) |
| 23 | 4, 18 | issubassa3 21775 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
| 24 | 23 | 3ad2antl1 1186 | . 2 ⊢ (((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |
| 25 | 22, 24 | impbida 800 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 LModclmod 20766 LSubSpclss 20837 AssAlgcasa 21759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-mgp 20050 df-ur 20091 df-ring 20144 df-subrg 20479 df-lmod 20768 df-lss 20838 df-assa 21762 |
| This theorem is referenced by: mplassa 21931 ply1assa 22084 |
| Copyright terms: Public domain | W3C validator |