![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnascl | Structured version Visualization version GIF version |
Description: The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
rnascl.a | ⊢ 𝐴 = (algSc‘𝑊) |
rnascl.o | ⊢ 1 = (1r‘𝑊) |
rnascl.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
rnascl | ⊢ (𝑊 ∈ AssAlg → ran 𝐴 = (𝑁‘{ 1 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assalmod 19642 | . . 3 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
2 | assaring 19643 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
3 | eqid 2799 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | rnascl.o | . . . . 5 ⊢ 1 = (1r‘𝑊) | |
5 | 3, 4 | ringidcl 18884 | . . . 4 ⊢ (𝑊 ∈ Ring → 1 ∈ (Base‘𝑊)) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑊 ∈ AssAlg → 1 ∈ (Base‘𝑊)) |
7 | eqid 2799 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | eqid 2799 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
9 | eqid 2799 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
10 | rnascl.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
11 | 7, 8, 3, 9, 10 | lspsn 19323 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 1 ∈ (Base‘𝑊)) → (𝑁‘{ 1 }) = {𝑥 ∣ ∃𝑦 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑦( ·𝑠 ‘𝑊) 1 )}) |
12 | 1, 6, 11 | syl2anc 580 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑁‘{ 1 }) = {𝑥 ∣ ∃𝑦 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑦( ·𝑠 ‘𝑊) 1 )}) |
13 | rnascl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
14 | 13, 7, 8, 9, 4 | asclfval 19657 | . . 3 ⊢ 𝐴 = (𝑦 ∈ (Base‘(Scalar‘𝑊)) ↦ (𝑦( ·𝑠 ‘𝑊) 1 )) |
15 | 14 | rnmpt 5575 | . 2 ⊢ ran 𝐴 = {𝑥 ∣ ∃𝑦 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑦( ·𝑠 ‘𝑊) 1 )} |
16 | 12, 15 | syl6reqr 2852 | 1 ⊢ (𝑊 ∈ AssAlg → ran 𝐴 = (𝑁‘{ 1 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {cab 2785 ∃wrex 3090 {csn 4368 ran crn 5313 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 Scalarcsca 16270 ·𝑠 cvsca 16271 1rcur 18817 Ringcrg 18863 LModclmod 19181 LSpanclspn 19292 AssAlgcasa 19632 algSccascl 19634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-plusg 16280 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mgp 18806 df-ur 18818 df-ring 18865 df-lmod 19183 df-lss 19251 df-lsp 19293 df-assa 19635 df-ascl 19637 |
This theorem is referenced by: issubassa2 19668 |
Copyright terms: Public domain | W3C validator |