![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aspval2 | Structured version Visualization version GIF version |
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
aspval2.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
aspval2.c | ⊢ 𝐶 = (algSc‘𝑊) |
aspval2.r | ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) |
aspval2.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
aspval2 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊))) | |
2 | 1 | anbi1i 622 | . . . . . . . 8 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)) |
3 | anass 467 | . . . . . . . 8 ⊢ (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) | |
4 | 2, 3 | bitri 274 | . . . . . . 7 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) |
5 | aspval2.c | . . . . . . . . . . 11 ⊢ 𝐶 = (algSc‘𝑊) | |
6 | eqid 2726 | . . . . . . . . . . 11 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
7 | 5, 6 | issubassa2 21889 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶 ⊆ 𝑥)) |
8 | 7 | anbi1d 629 | . . . . . . . . 9 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥))) |
9 | unss 4185 | . . . . . . . . 9 ⊢ ((ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥) | |
10 | 8, 9 | bitrdi 286 | . . . . . . . 8 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)) |
11 | 10 | pm5.32da 577 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
12 | 4, 11 | bitrid 282 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
13 | 12 | abbidv 2795 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
14 | 13 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
15 | df-rab 3420 | . . . 4 ⊢ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} | |
16 | df-rab 3420 | . . . 4 ⊢ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)} | |
17 | 14, 15, 16 | 3eqtr4g 2791 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
18 | 17 | inteqd 4959 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
19 | aspval2.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
20 | aspval2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
21 | 19, 20, 6 | aspval 21870 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥}) |
22 | assaring 21859 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
23 | 20 | subrgmre 20581 | . . . 4 ⊢ (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
24 | 22, 23 | syl 17 | . . 3 ⊢ (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
25 | eqid 2726 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
26 | assalmod 21858 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
27 | eqid 2726 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
28 | 5, 25, 22, 26, 27, 20 | asclf 21879 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉) |
29 | 28 | frnd 6736 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉) |
30 | 29 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ran 𝐶 ⊆ 𝑉) |
31 | simpr 483 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
32 | 30, 31 | unssd 4187 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) |
33 | aspval2.r | . . . 4 ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) | |
34 | 33 | mrcval 17623 | . . 3 ⊢ (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
35 | 24, 32, 34 | syl2an2r 683 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
36 | 18, 21, 35 | 3eqtr4d 2776 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 {crab 3419 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∩ cint 4954 ran crn 5683 ‘cfv 6554 Basecbs 17213 Scalarcsca 17269 Moorecmre 17595 mrClscmrc 17596 Ringcrg 20216 SubRingcsubrg 20551 LSubSpclss 20908 AssAlgcasa 21848 AlgSpancasp 21849 algSccascl 21850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-0g 17456 df-mre 17599 df-mrc 17600 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-subrng 20528 df-subrg 20553 df-lmod 20838 df-lss 20909 df-lsp 20949 df-assa 21851 df-asp 21852 df-ascl 21853 |
This theorem is referenced by: evlseu 22098 |
Copyright terms: Public domain | W3C validator |