| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aspval2 | Structured version Visualization version GIF version | ||
| Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| aspval2.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
| aspval2.c | ⊢ 𝐶 = (algSc‘𝑊) |
| aspval2.r | ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) |
| aspval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| aspval2 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3947 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊))) | |
| 2 | 1 | anbi1i 624 | . . . . . . . 8 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)) |
| 3 | anass 468 | . . . . . . . 8 ⊢ (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) | |
| 4 | 2, 3 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) |
| 5 | aspval2.c | . . . . . . . . . . 11 ⊢ 𝐶 = (algSc‘𝑊) | |
| 6 | eqid 2736 | . . . . . . . . . . 11 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 7 | 5, 6 | issubassa2 21857 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶 ⊆ 𝑥)) |
| 8 | 7 | anbi1d 631 | . . . . . . . . 9 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥))) |
| 9 | unss 4170 | . . . . . . . . 9 ⊢ ((ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥) | |
| 10 | 8, 9 | bitrdi 287 | . . . . . . . 8 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)) |
| 11 | 10 | pm5.32da 579 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 12 | 4, 11 | bitrid 283 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 13 | 12 | abbidv 2802 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 15 | df-rab 3421 | . . . 4 ⊢ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} | |
| 16 | df-rab 3421 | . . . 4 ⊢ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)} | |
| 17 | 14, 15, 16 | 3eqtr4g 2796 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 18 | 17 | inteqd 4932 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 19 | aspval2.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
| 20 | aspval2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 21 | 19, 20, 6 | aspval 21838 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥}) |
| 22 | assaring 21826 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 23 | 20 | subrgmre 20562 | . . . 4 ⊢ (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 25 | eqid 2736 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 26 | assalmod 21825 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 27 | eqid 2736 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 28 | 5, 25, 22, 26, 27, 20 | asclf 21847 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉) |
| 29 | 28 | frnd 6719 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ran 𝐶 ⊆ 𝑉) |
| 31 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 32 | 30, 31 | unssd 4172 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) |
| 33 | aspval2.r | . . . 4 ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) | |
| 34 | 33 | mrcval 17627 | . . 3 ⊢ (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 35 | 24, 32, 34 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 36 | 18, 21, 35 | 3eqtr4d 2781 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∩ cint 4927 ran crn 5660 ‘cfv 6536 Basecbs 17233 Scalarcsca 17279 Moorecmre 17599 mrClscmrc 17600 Ringcrg 20198 SubRingcsubrg 20534 LSubSpclss 20893 AssAlgcasa 21815 AlgSpancasp 21816 algSccascl 21817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mre 17603 df-mrc 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-assa 21818 df-asp 21819 df-ascl 21820 |
| This theorem is referenced by: evlseu 22046 |
| Copyright terms: Public domain | W3C validator |