MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Visualization version   GIF version

Theorem aspval2 21818
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a 𝐴 = (AlgSpanβ€˜π‘Š)
aspval2.c 𝐢 = (algScβ€˜π‘Š)
aspval2.r 𝑅 = (mrClsβ€˜(SubRingβ€˜π‘Š))
aspval2.v 𝑉 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
aspval2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)))

Proof of Theorem aspval2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 elin 3960 . . . . . . . . 9 (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (LSubSpβ€˜π‘Š)))
21anbi1i 623 . . . . . . . 8 ((π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ ((π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯))
3 anass 468 . . . . . . . 8 (((π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯)))
42, 3bitri 275 . . . . . . 7 ((π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯)))
5 aspval2.c . . . . . . . . . . 11 𝐢 = (algScβ€˜π‘Š)
6 eqid 2727 . . . . . . . . . . 11 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
75, 6issubassa2 21812 . . . . . . . . . 10 ((π‘Š ∈ AssAlg ∧ π‘₯ ∈ (SubRingβ€˜π‘Š)) β†’ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ↔ ran 𝐢 βŠ† π‘₯))
87anbi1d 629 . . . . . . . . 9 ((π‘Š ∈ AssAlg ∧ π‘₯ ∈ (SubRingβ€˜π‘Š)) β†’ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯) ↔ (ran 𝐢 βŠ† π‘₯ ∧ 𝑆 βŠ† π‘₯)))
9 unss 4180 . . . . . . . . 9 ((ran 𝐢 βŠ† π‘₯ ∧ 𝑆 βŠ† π‘₯) ↔ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)
108, 9bitrdi 287 . . . . . . . 8 ((π‘Š ∈ AssAlg ∧ π‘₯ ∈ (SubRingβ€˜π‘Š)) β†’ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯) ↔ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯))
1110pm5.32da 578 . . . . . . 7 (π‘Š ∈ AssAlg β†’ ((π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯)) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)))
124, 11bitrid 283 . . . . . 6 (π‘Š ∈ AssAlg β†’ ((π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)))
1312abbidv 2796 . . . . 5 (π‘Š ∈ AssAlg β†’ {π‘₯ ∣ (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯)} = {π‘₯ ∣ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)})
1413adantr 480 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ {π‘₯ ∣ (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯)} = {π‘₯ ∣ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)})
15 df-rab 3428 . . . 4 {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯} = {π‘₯ ∣ (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯)}
16 df-rab 3428 . . . 4 {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯} = {π‘₯ ∣ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)}
1714, 15, 163eqtr4g 2792 . . 3 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯} = {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
1817inteqd 4949 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ ∩ {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯} = ∩ {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
19 aspval2.a . . 3 𝐴 = (AlgSpanβ€˜π‘Š)
20 aspval2.v . . 3 𝑉 = (Baseβ€˜π‘Š)
2119, 20, 6aspval 21793 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = ∩ {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯})
22 assaring 21782 . . . 4 (π‘Š ∈ AssAlg β†’ π‘Š ∈ Ring)
2320subrgmre 20525 . . . 4 (π‘Š ∈ Ring β†’ (SubRingβ€˜π‘Š) ∈ (Mooreβ€˜π‘‰))
2422, 23syl 17 . . 3 (π‘Š ∈ AssAlg β†’ (SubRingβ€˜π‘Š) ∈ (Mooreβ€˜π‘‰))
25 eqid 2727 . . . . . . 7 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
26 assalmod 21781 . . . . . . 7 (π‘Š ∈ AssAlg β†’ π‘Š ∈ LMod)
27 eqid 2727 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
285, 25, 22, 26, 27, 20asclf 21802 . . . . . 6 (π‘Š ∈ AssAlg β†’ 𝐢:(Baseβ€˜(Scalarβ€˜π‘Š))βŸΆπ‘‰)
2928frnd 6724 . . . . 5 (π‘Š ∈ AssAlg β†’ ran 𝐢 βŠ† 𝑉)
3029adantr 480 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ ran 𝐢 βŠ† 𝑉)
31 simpr 484 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ 𝑆 βŠ† 𝑉)
3230, 31unssd 4182 . . 3 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (ran 𝐢 βˆͺ 𝑆) βŠ† 𝑉)
33 aspval2.r . . . 4 𝑅 = (mrClsβ€˜(SubRingβ€˜π‘Š))
3433mrcval 17581 . . 3 (((SubRingβ€˜π‘Š) ∈ (Mooreβ€˜π‘‰) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† 𝑉) β†’ (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)) = ∩ {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
3524, 32, 34syl2an2r 684 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)) = ∩ {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
3618, 21, 353eqtr4d 2777 1 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {cab 2704  {crab 3427   βˆͺ cun 3942   ∩ cin 3943   βŠ† wss 3944  βˆ© cint 4944  ran crn 5673  β€˜cfv 6542  Basecbs 17171  Scalarcsca 17227  Moorecmre 17553  mrClscmrc 17554  Ringcrg 20164  SubRingcsubrg 20495  LSubSpclss 20804  AssAlgcasa 21771  AlgSpancasp 21772  algSccascl 21773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-0g 17414  df-mre 17557  df-mrc 17558  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-minusg 18885  df-sbg 18886  df-subg 19069  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-lsp 20845  df-assa 21774  df-asp 21775  df-ascl 21776
This theorem is referenced by:  evlseu  22016
  Copyright terms: Public domain W3C validator