MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Visualization version   GIF version

Theorem aspval2 20121
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a 𝐴 = (AlgSpan‘𝑊)
aspval2.c 𝐶 = (algSc‘𝑊)
aspval2.r 𝑅 = (mrCls‘(SubRing‘𝑊))
aspval2.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
aspval2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = (𝑅‘(ran 𝐶𝑆)))

Proof of Theorem aspval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 4168 . . . . . . . . 9 (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)))
21anbi1i 625 . . . . . . . 8 ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆𝑥))
3 anass 471 . . . . . . . 8 (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)))
42, 3bitri 277 . . . . . . 7 ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)))
5 aspval2.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑊)
6 eqid 2821 . . . . . . . . . . 11 (LSubSp‘𝑊) = (LSubSp‘𝑊)
75, 6issubassa2 20115 . . . . . . . . . 10 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶𝑥))
87anbi1d 631 . . . . . . . . 9 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥) ↔ (ran 𝐶𝑥𝑆𝑥)))
9 unss 4159 . . . . . . . . 9 ((ran 𝐶𝑥𝑆𝑥) ↔ (ran 𝐶𝑆) ⊆ 𝑥)
108, 9syl6bb 289 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥) ↔ (ran 𝐶𝑆) ⊆ 𝑥))
1110pm5.32da 581 . . . . . . 7 (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)))
124, 11syl5bb 285 . . . . . 6 (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)))
1312abbidv 2885 . . . . 5 (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)})
1413adantr 483 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)})
15 df-rab 3147 . . . 4 {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)}
16 df-rab 3147 . . . 4 {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)}
1714, 15, 163eqtr4g 2881 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
1817inteqd 4873 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
19 aspval2.a . . 3 𝐴 = (AlgSpan‘𝑊)
20 aspval2.v . . 3 𝑉 = (Base‘𝑊)
2119, 20, 6aspval 20096 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥})
22 assaring 20087 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2320subrgmre 19553 . . . 4 (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉))
2422, 23syl 17 . . 3 (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉))
25 eqid 2821 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
26 assalmod 20086 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
27 eqid 2821 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
285, 25, 22, 26, 27, 20asclf 20105 . . . . . 6 (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉)
2928frnd 6515 . . . . 5 (𝑊 ∈ AssAlg → ran 𝐶𝑉)
3029adantr 483 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ran 𝐶𝑉)
31 simpr 487 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
3230, 31unssd 4161 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (ran 𝐶𝑆) ⊆ 𝑉)
33 aspval2.r . . . 4 𝑅 = (mrCls‘(SubRing‘𝑊))
3433mrcval 16875 . . 3 (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶𝑆)) = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
3524, 32, 34syl2an2r 683 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝑅‘(ran 𝐶𝑆)) = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
3618, 21, 353eqtr4d 2866 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = (𝑅‘(ran 𝐶𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  {crab 3142  cun 3933  cin 3934  wss 3935   cint 4868  ran crn 5550  cfv 6349  Basecbs 16477  Scalarcsca 16562  Moorecmre 16847  mrClscmrc 16848  Ringcrg 19291  SubRingcsubrg 19525  LSubSpclss 19697  AssAlgcasa 20076  AlgSpancasp 20077  algSccascl 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mre 16851  df-mrc 16852  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-mgp 19234  df-ur 19246  df-ring 19293  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-assa 20079  df-asp 20080  df-ascl 20081
This theorem is referenced by:  evlseu  20290
  Copyright terms: Public domain W3C validator