MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Visualization version   GIF version

Theorem aspval2 21895
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a 𝐴 = (AlgSpan‘𝑊)
aspval2.c 𝐶 = (algSc‘𝑊)
aspval2.r 𝑅 = (mrCls‘(SubRing‘𝑊))
aspval2.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
aspval2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = (𝑅‘(ran 𝐶𝑆)))

Proof of Theorem aspval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3963 . . . . . . . . 9 (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)))
21anbi1i 622 . . . . . . . 8 ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆𝑥))
3 anass 467 . . . . . . . 8 (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)))
42, 3bitri 274 . . . . . . 7 ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)))
5 aspval2.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑊)
6 eqid 2726 . . . . . . . . . . 11 (LSubSp‘𝑊) = (LSubSp‘𝑊)
75, 6issubassa2 21889 . . . . . . . . . 10 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶𝑥))
87anbi1d 629 . . . . . . . . 9 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥) ↔ (ran 𝐶𝑥𝑆𝑥)))
9 unss 4185 . . . . . . . . 9 ((ran 𝐶𝑥𝑆𝑥) ↔ (ran 𝐶𝑆) ⊆ 𝑥)
108, 9bitrdi 286 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥) ↔ (ran 𝐶𝑆) ⊆ 𝑥))
1110pm5.32da 577 . . . . . . 7 (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)))
124, 11bitrid 282 . . . . . 6 (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)))
1312abbidv 2795 . . . . 5 (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)})
1413adantr 479 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)})
15 df-rab 3420 . . . 4 {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)}
16 df-rab 3420 . . . 4 {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)}
1714, 15, 163eqtr4g 2791 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
1817inteqd 4959 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
19 aspval2.a . . 3 𝐴 = (AlgSpan‘𝑊)
20 aspval2.v . . 3 𝑉 = (Base‘𝑊)
2119, 20, 6aspval 21870 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥})
22 assaring 21859 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2320subrgmre 20581 . . . 4 (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉))
2422, 23syl 17 . . 3 (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉))
25 eqid 2726 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
26 assalmod 21858 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
27 eqid 2726 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
285, 25, 22, 26, 27, 20asclf 21879 . . . . . 6 (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉)
2928frnd 6736 . . . . 5 (𝑊 ∈ AssAlg → ran 𝐶𝑉)
3029adantr 479 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ran 𝐶𝑉)
31 simpr 483 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
3230, 31unssd 4187 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (ran 𝐶𝑆) ⊆ 𝑉)
33 aspval2.r . . . 4 𝑅 = (mrCls‘(SubRing‘𝑊))
3433mrcval 17623 . . 3 (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶𝑆)) = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
3524, 32, 34syl2an2r 683 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝑅‘(ran 𝐶𝑆)) = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
3618, 21, 353eqtr4d 2776 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = (𝑅‘(ran 𝐶𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {cab 2703  {crab 3419  cun 3945  cin 3946  wss 3947   cint 4954  ran crn 5683  cfv 6554  Basecbs 17213  Scalarcsca 17269  Moorecmre 17595  mrClscmrc 17596  Ringcrg 20216  SubRingcsubrg 20551  LSubSpclss 20908  AssAlgcasa 21848  AlgSpancasp 21849  algSccascl 21850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-mre 17599  df-mrc 17600  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-subrng 20528  df-subrg 20553  df-lmod 20838  df-lss 20909  df-lsp 20949  df-assa 21851  df-asp 21852  df-ascl 21853
This theorem is referenced by:  evlseu  22098
  Copyright terms: Public domain W3C validator