MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Visualization version   GIF version

Theorem aspval2 21836
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a 𝐴 = (AlgSpanβ€˜π‘Š)
aspval2.c 𝐢 = (algScβ€˜π‘Š)
aspval2.r 𝑅 = (mrClsβ€˜(SubRingβ€˜π‘Š))
aspval2.v 𝑉 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
aspval2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)))

Proof of Theorem aspval2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 elin 3961 . . . . . . . . 9 (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (LSubSpβ€˜π‘Š)))
21anbi1i 622 . . . . . . . 8 ((π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ ((π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯))
3 anass 467 . . . . . . . 8 (((π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯)))
42, 3bitri 274 . . . . . . 7 ((π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯)))
5 aspval2.c . . . . . . . . . . 11 𝐢 = (algScβ€˜π‘Š)
6 eqid 2725 . . . . . . . . . . 11 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
75, 6issubassa2 21830 . . . . . . . . . 10 ((π‘Š ∈ AssAlg ∧ π‘₯ ∈ (SubRingβ€˜π‘Š)) β†’ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ↔ ran 𝐢 βŠ† π‘₯))
87anbi1d 629 . . . . . . . . 9 ((π‘Š ∈ AssAlg ∧ π‘₯ ∈ (SubRingβ€˜π‘Š)) β†’ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯) ↔ (ran 𝐢 βŠ† π‘₯ ∧ 𝑆 βŠ† π‘₯)))
9 unss 4183 . . . . . . . . 9 ((ran 𝐢 βŠ† π‘₯ ∧ 𝑆 βŠ† π‘₯) ↔ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)
108, 9bitrdi 286 . . . . . . . 8 ((π‘Š ∈ AssAlg ∧ π‘₯ ∈ (SubRingβ€˜π‘Š)) β†’ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯) ↔ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯))
1110pm5.32da 577 . . . . . . 7 (π‘Š ∈ AssAlg β†’ ((π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑆 βŠ† π‘₯)) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)))
124, 11bitrid 282 . . . . . 6 (π‘Š ∈ AssAlg β†’ ((π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯) ↔ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)))
1312abbidv 2794 . . . . 5 (π‘Š ∈ AssAlg β†’ {π‘₯ ∣ (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯)} = {π‘₯ ∣ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)})
1413adantr 479 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ {π‘₯ ∣ (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯)} = {π‘₯ ∣ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)})
15 df-rab 3420 . . . 4 {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯} = {π‘₯ ∣ (π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∧ 𝑆 βŠ† π‘₯)}
16 df-rab 3420 . . . 4 {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯} = {π‘₯ ∣ (π‘₯ ∈ (SubRingβ€˜π‘Š) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯)}
1714, 15, 163eqtr4g 2790 . . 3 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯} = {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
1817inteqd 4954 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ ∩ {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯} = ∩ {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
19 aspval2.a . . 3 𝐴 = (AlgSpanβ€˜π‘Š)
20 aspval2.v . . 3 𝑉 = (Baseβ€˜π‘Š)
2119, 20, 6aspval 21811 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = ∩ {π‘₯ ∈ ((SubRingβ€˜π‘Š) ∩ (LSubSpβ€˜π‘Š)) ∣ 𝑆 βŠ† π‘₯})
22 assaring 21800 . . . 4 (π‘Š ∈ AssAlg β†’ π‘Š ∈ Ring)
2320subrgmre 20541 . . . 4 (π‘Š ∈ Ring β†’ (SubRingβ€˜π‘Š) ∈ (Mooreβ€˜π‘‰))
2422, 23syl 17 . . 3 (π‘Š ∈ AssAlg β†’ (SubRingβ€˜π‘Š) ∈ (Mooreβ€˜π‘‰))
25 eqid 2725 . . . . . . 7 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
26 assalmod 21799 . . . . . . 7 (π‘Š ∈ AssAlg β†’ π‘Š ∈ LMod)
27 eqid 2725 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
285, 25, 22, 26, 27, 20asclf 21820 . . . . . 6 (π‘Š ∈ AssAlg β†’ 𝐢:(Baseβ€˜(Scalarβ€˜π‘Š))βŸΆπ‘‰)
2928frnd 6729 . . . . 5 (π‘Š ∈ AssAlg β†’ ran 𝐢 βŠ† 𝑉)
3029adantr 479 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ ran 𝐢 βŠ† 𝑉)
31 simpr 483 . . . 4 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ 𝑆 βŠ† 𝑉)
3230, 31unssd 4185 . . 3 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (ran 𝐢 βˆͺ 𝑆) βŠ† 𝑉)
33 aspval2.r . . . 4 𝑅 = (mrClsβ€˜(SubRingβ€˜π‘Š))
3433mrcval 17590 . . 3 (((SubRingβ€˜π‘Š) ∈ (Mooreβ€˜π‘‰) ∧ (ran 𝐢 βˆͺ 𝑆) βŠ† 𝑉) β†’ (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)) = ∩ {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
3524, 32, 34syl2an2r 683 . 2 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)) = ∩ {π‘₯ ∈ (SubRingβ€˜π‘Š) ∣ (ran 𝐢 βˆͺ 𝑆) βŠ† π‘₯})
3618, 21, 353eqtr4d 2775 1 ((π‘Š ∈ AssAlg ∧ 𝑆 βŠ† 𝑉) β†’ (π΄β€˜π‘†) = (π‘…β€˜(ran 𝐢 βˆͺ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {cab 2702  {crab 3419   βˆͺ cun 3943   ∩ cin 3944   βŠ† wss 3945  βˆ© cint 4949  ran crn 5678  β€˜cfv 6547  Basecbs 17180  Scalarcsca 17236  Moorecmre 17562  mrClscmrc 17563  Ringcrg 20178  SubRingcsubrg 20511  LSubSpclss 20820  AssAlgcasa 21789  AlgSpancasp 21790  algSccascl 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-0g 17423  df-mre 17566  df-mrc 17567  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18898  df-minusg 18899  df-sbg 18900  df-subg 19083  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-subrng 20488  df-subrg 20513  df-lmod 20750  df-lss 20821  df-lsp 20861  df-assa 21792  df-asp 21793  df-ascl 21794
This theorem is referenced by:  evlseu  22037
  Copyright terms: Public domain W3C validator