MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval2 Structured version   Visualization version   GIF version

Theorem aspval2 21828
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
aspval2.a 𝐴 = (AlgSpan‘𝑊)
aspval2.c 𝐶 = (algSc‘𝑊)
aspval2.r 𝑅 = (mrCls‘(SubRing‘𝑊))
aspval2.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
aspval2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = (𝑅‘(ran 𝐶𝑆)))

Proof of Theorem aspval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3916 . . . . . . . . 9 (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)))
21anbi1i 624 . . . . . . . 8 ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆𝑥))
3 anass 468 . . . . . . . 8 (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)))
42, 3bitri 275 . . . . . . 7 ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)))
5 aspval2.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑊)
6 eqid 2730 . . . . . . . . . . 11 (LSubSp‘𝑊) = (LSubSp‘𝑊)
75, 6issubassa2 21822 . . . . . . . . . 10 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶𝑥))
87anbi1d 631 . . . . . . . . 9 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥) ↔ (ran 𝐶𝑥𝑆𝑥)))
9 unss 4138 . . . . . . . . 9 ((ran 𝐶𝑥𝑆𝑥) ↔ (ran 𝐶𝑆) ⊆ 𝑥)
108, 9bitrdi 287 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥) ↔ (ran 𝐶𝑆) ⊆ 𝑥))
1110pm5.32da 579 . . . . . . 7 (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)))
124, 11bitrid 283 . . . . . 6 (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)))
1312abbidv 2796 . . . . 5 (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)})
1413adantr 480 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)})
15 df-rab 3394 . . . 4 {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆𝑥)}
16 df-rab 3394 . . . 4 {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶𝑆) ⊆ 𝑥)}
1714, 15, 163eqtr4g 2790 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
1817inteqd 4900 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
19 aspval2.a . . 3 𝐴 = (AlgSpan‘𝑊)
20 aspval2.v . . 3 𝑉 = (Base‘𝑊)
2119, 20, 6aspval 21803 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑥})
22 assaring 21791 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2320subrgmre 20505 . . . 4 (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉))
2422, 23syl 17 . . 3 (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉))
25 eqid 2730 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
26 assalmod 21790 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
27 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
285, 25, 22, 26, 27, 20asclf 21812 . . . . . 6 (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉)
2928frnd 6655 . . . . 5 (𝑊 ∈ AssAlg → ran 𝐶𝑉)
3029adantr 480 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ran 𝐶𝑉)
31 simpr 484 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
3230, 31unssd 4140 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (ran 𝐶𝑆) ⊆ 𝑉)
33 aspval2.r . . . 4 𝑅 = (mrCls‘(SubRing‘𝑊))
3433mrcval 17508 . . 3 (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶𝑆)) = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
3524, 32, 34syl2an2r 685 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝑅‘(ran 𝐶𝑆)) = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶𝑆) ⊆ 𝑥})
3618, 21, 353eqtr4d 2775 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = (𝑅‘(ran 𝐶𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  {cab 2708  {crab 3393  cun 3898  cin 3899  wss 3900   cint 4895  ran crn 5615  cfv 6477  Basecbs 17112  Scalarcsca 17156  Moorecmre 17476  mrClscmrc 17477  Ringcrg 20144  SubRingcsubrg 20477  LSubSpclss 20857  AssAlgcasa 21780  AlgSpancasp 21781  algSccascl 21782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-0g 17337  df-mre 17480  df-mrc 17481  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-lsp 20898  df-assa 21783  df-asp 21784  df-ascl 21785
This theorem is referenced by:  evlseu  22011
  Copyright terms: Public domain W3C validator