| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aspval2 | Structured version Visualization version GIF version | ||
| Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| aspval2.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
| aspval2.c | ⊢ 𝐶 = (algSc‘𝑊) |
| aspval2.r | ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) |
| aspval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| aspval2 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3932 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊))) | |
| 2 | 1 | anbi1i 624 | . . . . . . . 8 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)) |
| 3 | anass 468 | . . . . . . . 8 ⊢ (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) | |
| 4 | 2, 3 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) |
| 5 | aspval2.c | . . . . . . . . . . 11 ⊢ 𝐶 = (algSc‘𝑊) | |
| 6 | eqid 2730 | . . . . . . . . . . 11 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 7 | 5, 6 | issubassa2 21807 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶 ⊆ 𝑥)) |
| 8 | 7 | anbi1d 631 | . . . . . . . . 9 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥))) |
| 9 | unss 4155 | . . . . . . . . 9 ⊢ ((ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥) | |
| 10 | 8, 9 | bitrdi 287 | . . . . . . . 8 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)) |
| 11 | 10 | pm5.32da 579 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 12 | 4, 11 | bitrid 283 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 13 | 12 | abbidv 2796 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 15 | df-rab 3409 | . . . 4 ⊢ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} | |
| 16 | df-rab 3409 | . . . 4 ⊢ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)} | |
| 17 | 14, 15, 16 | 3eqtr4g 2790 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 18 | 17 | inteqd 4917 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 19 | aspval2.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
| 20 | aspval2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 21 | 19, 20, 6 | aspval 21788 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥}) |
| 22 | assaring 21776 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 23 | 20 | subrgmre 20512 | . . . 4 ⊢ (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 25 | eqid 2730 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 26 | assalmod 21775 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 27 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 28 | 5, 25, 22, 26, 27, 20 | asclf 21797 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉) |
| 29 | 28 | frnd 6698 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ran 𝐶 ⊆ 𝑉) |
| 31 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 32 | 30, 31 | unssd 4157 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) |
| 33 | aspval2.r | . . . 4 ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) | |
| 34 | 33 | mrcval 17577 | . . 3 ⊢ (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 35 | 24, 32, 34 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 36 | 18, 21, 35 | 3eqtr4d 2775 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 ∪ cun 3914 ∩ cin 3915 ⊆ wss 3916 ∩ cint 4912 ran crn 5641 ‘cfv 6513 Basecbs 17185 Scalarcsca 17229 Moorecmre 17549 mrClscmrc 17550 Ringcrg 20148 SubRingcsubrg 20484 LSubSpclss 20843 AssAlgcasa 21765 AlgSpancasp 21766 algSccascl 21767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-mre 17553 df-mrc 17554 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-lsp 20884 df-assa 21768 df-asp 21769 df-ascl 21770 |
| This theorem is referenced by: evlseu 21996 |
| Copyright terms: Public domain | W3C validator |