| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aspval2 | Structured version Visualization version GIF version | ||
| Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| aspval2.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
| aspval2.c | ⊢ 𝐶 = (algSc‘𝑊) |
| aspval2.r | ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) |
| aspval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| aspval2 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊))) | |
| 2 | 1 | anbi1i 624 | . . . . . . . 8 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)) |
| 3 | anass 468 | . . . . . . . 8 ⊢ (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) | |
| 4 | 2, 3 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) |
| 5 | aspval2.c | . . . . . . . . . . 11 ⊢ 𝐶 = (algSc‘𝑊) | |
| 6 | eqid 2731 | . . . . . . . . . . 11 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 7 | 5, 6 | issubassa2 21835 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶 ⊆ 𝑥)) |
| 8 | 7 | anbi1d 631 | . . . . . . . . 9 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥))) |
| 9 | unss 4139 | . . . . . . . . 9 ⊢ ((ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥) | |
| 10 | 8, 9 | bitrdi 287 | . . . . . . . 8 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)) |
| 11 | 10 | pm5.32da 579 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 12 | 4, 11 | bitrid 283 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 13 | 12 | abbidv 2797 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 15 | df-rab 3396 | . . . 4 ⊢ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} | |
| 16 | df-rab 3396 | . . . 4 ⊢ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)} | |
| 17 | 14, 15, 16 | 3eqtr4g 2791 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 18 | 17 | inteqd 4902 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 19 | aspval2.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
| 20 | aspval2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 21 | 19, 20, 6 | aspval 21816 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥}) |
| 22 | assaring 21804 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 23 | 20 | subrgmre 20518 | . . . 4 ⊢ (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 25 | eqid 2731 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 26 | assalmod 21803 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 27 | eqid 2731 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 28 | 5, 25, 22, 26, 27, 20 | asclf 21825 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉) |
| 29 | 28 | frnd 6665 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ran 𝐶 ⊆ 𝑉) |
| 31 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 32 | 30, 31 | unssd 4141 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) |
| 33 | aspval2.r | . . . 4 ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) | |
| 34 | 33 | mrcval 17522 | . . 3 ⊢ (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 35 | 24, 32, 34 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 36 | 18, 21, 35 | 3eqtr4d 2776 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∩ cint 4897 ran crn 5620 ‘cfv 6487 Basecbs 17126 Scalarcsca 17170 Moorecmre 17490 mrClscmrc 17491 Ringcrg 20157 SubRingcsubrg 20490 LSubSpclss 20870 AssAlgcasa 21793 AlgSpancasp 21794 algSccascl 21795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-0g 17351 df-mre 17494 df-mrc 17495 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-lsp 20911 df-assa 21796 df-asp 21797 df-ascl 21798 |
| This theorem is referenced by: evlseu 22024 |
| Copyright terms: Public domain | W3C validator |