| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aspval2 | Structured version Visualization version GIF version | ||
| Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars. EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| aspval2.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
| aspval2.c | ⊢ 𝐶 = (algSc‘𝑊) |
| aspval2.r | ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) |
| aspval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| aspval2 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3921 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊))) | |
| 2 | 1 | anbi1i 624 | . . . . . . . 8 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ ((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)) |
| 3 | anass 468 | . . . . . . . 8 ⊢ (((𝑥 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) | |
| 4 | 2, 3 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥))) |
| 5 | aspval2.c | . . . . . . . . . . 11 ⊢ 𝐶 = (algSc‘𝑊) | |
| 6 | eqid 2729 | . . . . . . . . . . 11 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 7 | 5, 6 | issubassa2 21817 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → (𝑥 ∈ (LSubSp‘𝑊) ↔ ran 𝐶 ⊆ 𝑥)) |
| 8 | 7 | anbi1d 631 | . . . . . . . . 9 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥))) |
| 9 | unss 4143 | . . . . . . . . 9 ⊢ ((ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥) | |
| 10 | 8, 9 | bitrdi 287 | . . . . . . . 8 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (SubRing‘𝑊)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥) ↔ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)) |
| 11 | 10 | pm5.32da 579 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ 𝑥)) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 12 | 4, 11 | bitrid 283 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → ((𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥) ↔ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥))) |
| 13 | 12 | abbidv 2795 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)}) |
| 15 | df-rab 3397 | . . . 4 ⊢ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∧ 𝑆 ⊆ 𝑥)} | |
| 16 | df-rab 3397 | . . . 4 ⊢ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥} = {𝑥 ∣ (𝑥 ∈ (SubRing‘𝑊) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥)} | |
| 17 | 14, 15, 16 | 3eqtr4g 2789 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 18 | 17 | inteqd 4904 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥} = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 19 | aspval2.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
| 20 | aspval2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 21 | 19, 20, 6 | aspval 21798 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑥 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆 ⊆ 𝑥}) |
| 22 | assaring 21786 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 23 | 20 | subrgmre 20500 | . . . 4 ⊢ (𝑊 ∈ Ring → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ (𝑊 ∈ AssAlg → (SubRing‘𝑊) ∈ (Moore‘𝑉)) |
| 25 | eqid 2729 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 26 | assalmod 21785 | . . . . . . 7 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 28 | 5, 25, 22, 26, 27, 20 | asclf 21807 | . . . . . 6 ⊢ (𝑊 ∈ AssAlg → 𝐶:(Base‘(Scalar‘𝑊))⟶𝑉) |
| 29 | 28 | frnd 6664 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ran 𝐶 ⊆ 𝑉) |
| 31 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 32 | 30, 31 | unssd 4145 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) |
| 33 | aspval2.r | . . . 4 ⊢ 𝑅 = (mrCls‘(SubRing‘𝑊)) | |
| 34 | 33 | mrcval 17534 | . . 3 ⊢ (((SubRing‘𝑊) ∈ (Moore‘𝑉) ∧ (ran 𝐶 ∪ 𝑆) ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 35 | 24, 32, 34 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝑅‘(ran 𝐶 ∪ 𝑆)) = ∩ {𝑥 ∈ (SubRing‘𝑊) ∣ (ran 𝐶 ∪ 𝑆) ⊆ 𝑥}) |
| 36 | 18, 21, 35 | 3eqtr4d 2774 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = (𝑅‘(ran 𝐶 ∪ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3396 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∩ cint 4899 ran crn 5624 ‘cfv 6486 Basecbs 17138 Scalarcsca 17182 Moorecmre 17502 mrClscmrc 17503 Ringcrg 20136 SubRingcsubrg 20472 LSubSpclss 20852 AssAlgcasa 21775 AlgSpancasp 21776 algSccascl 21777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mre 17506 df-mrc 17507 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-assa 21778 df-asp 21779 df-ascl 21780 |
| This theorem is referenced by: evlseu 22006 |
| Copyright terms: Public domain | W3C validator |