![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eldiag | Structured version Visualization version GIF version |
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 36039. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-eldiag | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-diagval2 36044 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | |
2 | 1 | eleq2d 2819 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ 𝐵 ∈ ( I ∩ (𝐴 × 𝐴)))) |
3 | elin 3963 | . . 3 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴))) | |
4 | ancom 461 | . . 3 ⊢ ((𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I )) | |
5 | bj-elid4 36037 | . . . 4 ⊢ (𝐵 ∈ (𝐴 × 𝐴) → (𝐵 ∈ I ↔ (1st ‘𝐵) = (2nd ‘𝐵))) | |
6 | 5 | pm5.32i 575 | . . 3 ⊢ ((𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) |
7 | 3, 4, 6 | 3bitri 296 | . 2 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) |
8 | 2, 7 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 I cid 5572 × cxp 5673 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 Idcdiag2 36041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 df-1st 7971 df-2nd 7972 df-bj-diag 36042 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |