Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eldiag | Structured version Visualization version GIF version |
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 35341. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-eldiag | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-diagval2 35346 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ 𝐵 ∈ ( I ∩ (𝐴 × 𝐴)))) |
3 | elin 3903 | . . 3 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴))) | |
4 | ancom 461 | . . 3 ⊢ ((𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I )) | |
5 | bj-elid4 35339 | . . . 4 ⊢ (𝐵 ∈ (𝐴 × 𝐴) → (𝐵 ∈ I ↔ (1st ‘𝐵) = (2nd ‘𝐵))) | |
6 | 5 | pm5.32i 575 | . . 3 ⊢ ((𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) |
7 | 3, 4, 6 | 3bitri 297 | . 2 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) |
8 | 2, 7 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 I cid 5488 × cxp 5587 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 Idcdiag2 35343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-2nd 7832 df-bj-diag 35344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |