| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eldiag | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 37221. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-eldiag | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-diagval2 37226 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ 𝐵 ∈ ( I ∩ (𝐴 × 𝐴)))) |
| 3 | elin 3913 | . . 3 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴))) | |
| 4 | ancom 460 | . . 3 ⊢ ((𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I )) | |
| 5 | bj-elid4 37219 | . . . 4 ⊢ (𝐵 ∈ (𝐴 × 𝐴) → (𝐵 ∈ I ↔ (1st ‘𝐵) = (2nd ‘𝐵))) | |
| 6 | 5 | pm5.32i 574 | . . 3 ⊢ ((𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) |
| 7 | 3, 4, 6 | 3bitri 297 | . 2 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) |
| 8 | 2, 7 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 I cid 5513 × cxp 5617 ‘cfv 6487 1st c1st 7925 2nd c2nd 7926 Idcdiag2 37223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6443 df-fun 6489 df-fv 6495 df-1st 7927 df-2nd 7928 df-bj-diag 37224 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |