Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eldiag Structured version   Visualization version   GIF version

Theorem bj-eldiag 36045
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 36039. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-eldiag (𝐴𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵))))

Proof of Theorem bj-eldiag
StepHypRef Expression
1 bj-diagval2 36044 . . 3 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
21eleq2d 2819 . 2 (𝐴𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ 𝐵 ∈ ( I ∩ (𝐴 × 𝐴))))
3 elin 3963 . . 3 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)))
4 ancom 461 . . 3 ((𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ))
5 bj-elid4 36037 . . . 4 (𝐵 ∈ (𝐴 × 𝐴) → (𝐵 ∈ I ↔ (1st𝐵) = (2nd𝐵)))
65pm5.32i 575 . . 3 ((𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵)))
73, 4, 63bitri 296 . 2 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵)))
82, 7bitrdi 286 1 (𝐴𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cin 3946   I cid 5572   × cxp 5673  cfv 6540  1st c1st 7969  2nd c2nd 7970  Idcdiag2 36041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fv 6548  df-1st 7971  df-2nd 7972  df-bj-diag 36042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator