Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eldiag Structured version   Visualization version   GIF version

Theorem bj-eldiag 37134
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 37128. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-eldiag (𝐴𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵))))

Proof of Theorem bj-eldiag
StepHypRef Expression
1 bj-diagval2 37133 . . 3 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
21eleq2d 2830 . 2 (𝐴𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ 𝐵 ∈ ( I ∩ (𝐴 × 𝐴))))
3 elin 3992 . . 3 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)))
4 ancom 460 . . 3 ((𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ))
5 bj-elid4 37126 . . . 4 (𝐵 ∈ (𝐴 × 𝐴) → (𝐵 ∈ I ↔ (1st𝐵) = (2nd𝐵)))
65pm5.32i 574 . . 3 ((𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵)))
73, 4, 63bitri 297 . 2 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵)))
82, 7bitrdi 287 1 (𝐴𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975   I cid 5592   × cxp 5693  cfv 6568  1st c1st 8022  2nd c2nd 8023  Idcdiag2 37130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-iota 6520  df-fun 6570  df-fv 6576  df-1st 8024  df-2nd 8025  df-bj-diag 37131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator