Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalid | Structured version Visualization version GIF version |
Description: The evaluation at a set of the identity function is that set. (General form of ndxarg 16897.) The restriction to a set 𝑉 is necessary since the argument of the function Slot 𝐴 (like that of any function) has to be a set for the evaluation to be meaningful. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
bj-evalid | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7761 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑉) ∈ V) | |
2 | bj-evalval 35246 | . . 3 ⊢ (( I ↾ 𝑉) ∈ V → (Slot 𝐴‘( I ↾ 𝑉)) = (( I ↾ 𝑉)‘𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Slot 𝐴‘( I ↾ 𝑉)) = (( I ↾ 𝑉)‘𝐴)) |
4 | fvresi 7045 | . 2 ⊢ (𝐴 ∈ 𝑉 → (( I ↾ 𝑉)‘𝐴) = 𝐴) | |
5 | 3, 4 | sylan9eq 2798 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 I cid 5488 ↾ cres 5591 ‘cfv 6433 Slot cslot 16882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-slot 16883 |
This theorem is referenced by: bj-ndxarg 35248 bj-evalidval 35249 |
Copyright terms: Public domain | W3C validator |