Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalid | Structured version Visualization version GIF version |
Description: The evaluation at a set of the identity function is that set. (General form of ndxarg 16825.) The restriction to a set 𝑉 is necessary since the argument of the function Slot 𝐴 (like that of any function) has to be a set for the evaluation to be meaningful. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
bj-evalid | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7735 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑉) ∈ V) | |
2 | bj-evalval 35173 | . . 3 ⊢ (( I ↾ 𝑉) ∈ V → (Slot 𝐴‘( I ↾ 𝑉)) = (( I ↾ 𝑉)‘𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Slot 𝐴‘( I ↾ 𝑉)) = (( I ↾ 𝑉)‘𝐴)) |
4 | fvresi 7027 | . 2 ⊢ (𝐴 ∈ 𝑉 → (( I ↾ 𝑉)‘𝐴) = 𝐴) | |
5 | 3, 4 | sylan9eq 2799 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 I cid 5479 ↾ cres 5582 ‘cfv 6418 Slot cslot 16810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-slot 16811 |
This theorem is referenced by: bj-ndxarg 35175 bj-evalidval 35176 |
Copyright terms: Public domain | W3C validator |