Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-evalidval Structured version   Visualization version   GIF version

Theorem bj-evalidval 36263
Description: Closed general form of strndxid 17136. Both sides are equal to (𝐹𝐴) by bj-evalid 36261 and bj-evalval 36260 respectively, but bj-evalidval 36263 adds something to bj-evalid 36261 and bj-evalval 36260 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
bj-evalidval ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))

Proof of Theorem bj-evalidval
StepHypRef Expression
1 bj-evalid 36261 . . . 4 ((𝑉𝑊𝐴𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴)
21fveq2d 6896 . . 3 ((𝑉𝑊𝐴𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
323adant3 1131 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
4 bj-evalval 36260 . . . 4 (𝐹𝑈 → (Slot 𝐴𝐹) = (𝐹𝐴))
54eqcomd 2737 . . 3 (𝐹𝑈 → (𝐹𝐴) = (Slot 𝐴𝐹))
653ad2ant3 1134 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹𝐴) = (Slot 𝐴𝐹))
73, 6eqtrd 2771 1 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105   I cid 5574  cres 5679  cfv 6544  Slot cslot 17119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-slot 17120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator