| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalidval | Structured version Visualization version GIF version | ||
| Description: Closed general form of strndxid 17168. Both sides are equal to (𝐹‘𝐴) by bj-evalid 37064 and bj-evalval 37063 respectively, but bj-evalidval 37066 adds something to bj-evalid 37064 and bj-evalval 37063 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-evalidval | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-evalid 37064 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) | |
| 2 | 1 | fveq2d 6862 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
| 4 | bj-evalval 37063 | . . . 4 ⊢ (𝐹 ∈ 𝑈 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | |
| 5 | 4 | eqcomd 2735 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
| 6 | 5 | 3ad2ant3 1135 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
| 7 | 3, 6 | eqtrd 2764 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 I cid 5532 ↾ cres 5640 ‘cfv 6511 Slot cslot 17151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-slot 17152 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |