| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalidval | Structured version Visualization version GIF version | ||
| Description: Closed general form of strndxid 17109. Both sides are equal to (𝐹‘𝐴) by bj-evalid 37120 and bj-evalval 37119 respectively, but bj-evalidval 37122 adds something to bj-evalid 37120 and bj-evalval 37119 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-evalidval | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-evalid 37120 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) | |
| 2 | 1 | fveq2d 6826 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
| 4 | bj-evalval 37119 | . . . 4 ⊢ (𝐹 ∈ 𝑈 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | |
| 5 | 4 | eqcomd 2737 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
| 6 | 5 | 3ad2ant3 1135 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
| 7 | 3, 6 | eqtrd 2766 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 I cid 5508 ↾ cres 5616 ‘cfv 6481 Slot cslot 17092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-slot 17093 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |