Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-evalidval Structured version   Visualization version   GIF version

Theorem bj-evalidval 37056
Description: Closed general form of strndxid 17109. Both sides are equal to (𝐹𝐴) by bj-evalid 37054 and bj-evalval 37053 respectively, but bj-evalidval 37056 adds something to bj-evalid 37054 and bj-evalval 37053 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
bj-evalidval ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))

Proof of Theorem bj-evalidval
StepHypRef Expression
1 bj-evalid 37054 . . . 4 ((𝑉𝑊𝐴𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴)
21fveq2d 6826 . . 3 ((𝑉𝑊𝐴𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
323adant3 1132 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
4 bj-evalval 37053 . . . 4 (𝐹𝑈 → (Slot 𝐴𝐹) = (𝐹𝐴))
54eqcomd 2735 . . 3 (𝐹𝑈 → (𝐹𝐴) = (Slot 𝐴𝐹))
653ad2ant3 1135 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹𝐴) = (Slot 𝐴𝐹))
73, 6eqtrd 2764 1 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   I cid 5513  cres 5621  cfv 6482  Slot cslot 17092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-slot 17093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator