![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalidval | Structured version Visualization version GIF version |
Description: Closed general form of strndxid 17136. Both sides are equal to (𝐹‘𝐴) by bj-evalid 36261 and bj-evalval 36260 respectively, but bj-evalidval 36263 adds something to bj-evalid 36261 and bj-evalval 36260 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
bj-evalidval | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-evalid 36261 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) | |
2 | 1 | fveq2d 6896 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
3 | 2 | 3adant3 1131 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
4 | bj-evalval 36260 | . . . 4 ⊢ (𝐹 ∈ 𝑈 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | |
5 | 4 | eqcomd 2737 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
6 | 5 | 3ad2ant3 1134 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
7 | 3, 6 | eqtrd 2771 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 I cid 5574 ↾ cres 5679 ‘cfv 6544 Slot cslot 17119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6496 df-fun 6546 df-fv 6552 df-slot 17120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |