Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalidval | Structured version Visualization version GIF version |
Description: Closed general form of strndxid 16880. Both sides are equal to (𝐹‘𝐴) by bj-evalid 35226 and bj-evalval 35225 respectively, but bj-evalidval 35228 adds something to bj-evalid 35226 and bj-evalval 35225 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
bj-evalidval | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-evalid 35226 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) | |
2 | 1 | fveq2d 6772 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
3 | 2 | 3adant3 1130 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
4 | bj-evalval 35225 | . . . 4 ⊢ (𝐹 ∈ 𝑈 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | |
5 | 4 | eqcomd 2745 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
6 | 5 | 3ad2ant3 1133 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
7 | 3, 6 | eqtrd 2779 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 I cid 5487 ↾ cres 5590 ‘cfv 6430 Slot cslot 16863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-res 5600 df-iota 6388 df-fun 6432 df-fv 6438 df-slot 16864 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |