Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-evalidval Structured version   Visualization version   GIF version

Theorem bj-evalidval 37122
Description: Closed general form of strndxid 17109. Both sides are equal to (𝐹𝐴) by bj-evalid 37120 and bj-evalval 37119 respectively, but bj-evalidval 37122 adds something to bj-evalid 37120 and bj-evalval 37119 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
bj-evalidval ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))

Proof of Theorem bj-evalidval
StepHypRef Expression
1 bj-evalid 37120 . . . 4 ((𝑉𝑊𝐴𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴)
21fveq2d 6826 . . 3 ((𝑉𝑊𝐴𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
323adant3 1132 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
4 bj-evalval 37119 . . . 4 (𝐹𝑈 → (Slot 𝐴𝐹) = (𝐹𝐴))
54eqcomd 2737 . . 3 (𝐹𝑈 → (𝐹𝐴) = (Slot 𝐴𝐹))
653ad2ant3 1135 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹𝐴) = (Slot 𝐴𝐹))
73, 6eqtrd 2766 1 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   I cid 5508  cres 5616  cfv 6481  Slot cslot 17092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-slot 17093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator