Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalidval | Structured version Visualization version GIF version |
Description: Closed general form of strndxid 16996. Both sides are equal to (𝐹‘𝐴) by bj-evalid 35352 and bj-evalval 35351 respectively, but bj-evalidval 35354 adds something to bj-evalid 35352 and bj-evalval 35351 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
bj-evalidval | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-evalid 35352 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) | |
2 | 1 | fveq2d 6829 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
3 | 2 | 3adant3 1131 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹‘𝐴)) |
4 | bj-evalval 35351 | . . . 4 ⊢ (𝐹 ∈ 𝑈 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | |
5 | 4 | eqcomd 2742 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
6 | 5 | 3ad2ant3 1134 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘𝐴) = (Slot 𝐴‘𝐹)) |
7 | 3, 6 | eqtrd 2776 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 I cid 5517 ↾ cres 5622 ‘cfv 6479 Slot cslot 16979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-res 5632 df-iota 6431 df-fun 6481 df-fv 6487 df-slot 16980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |