Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-evalidval Structured version   Visualization version   GIF version

Theorem bj-evalidval 34493
Description: Closed general form of strndxid 16502. Both sides are equal to (𝐹𝐴) by bj-evalid 34491 and bj-evalval 34490 respectively, but bj-evalidval 34493 adds something to bj-evalid 34491 and bj-evalval 34490 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
bj-evalidval ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))

Proof of Theorem bj-evalidval
StepHypRef Expression
1 bj-evalid 34491 . . . 4 ((𝑉𝑊𝐴𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴)
21fveq2d 6649 . . 3 ((𝑉𝑊𝐴𝑉) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
323adant3 1129 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (𝐹𝐴))
4 bj-evalval 34490 . . . 4 (𝐹𝑈 → (Slot 𝐴𝐹) = (𝐹𝐴))
54eqcomd 2804 . . 3 (𝐹𝑈 → (𝐹𝐴) = (Slot 𝐴𝐹))
653ad2ant3 1132 . 2 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹𝐴) = (Slot 𝐴𝐹))
73, 6eqtrd 2833 1 ((𝑉𝑊𝐴𝑉𝐹𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111   I cid 5424  cres 5521  cfv 6324  Slot cslot 16474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-res 5531  df-iota 6283  df-fun 6326  df-fv 6332  df-slot 16479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator