| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvmptunsn1 | Structured version Visualization version GIF version | ||
| Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn.un | ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) |
| bj-fvmptunsn.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| bj-fvmptunsn1.ex1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| bj-fvmptunsn1.ex2 | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn1 | ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fvmptunsn.un | . 2 ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) | |
| 2 | bj-fvmptunsn.nel | . . 3 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | dmmptss 6185 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 5 | 4 | sseli 3928 | . . 3 ⊢ (𝐶 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝐶 ∈ 𝐴) |
| 6 | 2, 5 | nsyl 140 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 7 | bj-fvmptunsn1.ex1 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 8 | bj-fvmptunsn1.ex2 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 9 | 1, 6, 7, 8 | bj-fununsn2 37267 | 1 ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 {csn 4574 〈cop 4580 ↦ cmpt 5170 dom cdm 5614 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 |
| This theorem is referenced by: bj-iomnnom 37272 |
| Copyright terms: Public domain | W3C validator |