| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvmptunsn1 | Structured version Visualization version GIF version | ||
| Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn.un | ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) |
| bj-fvmptunsn.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| bj-fvmptunsn1.ex1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| bj-fvmptunsn1.ex2 | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn1 | ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fvmptunsn.un | . 2 ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) | |
| 2 | bj-fvmptunsn.nel | . . 3 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | dmmptss 6230 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 5 | 4 | sseli 3954 | . . 3 ⊢ (𝐶 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝐶 ∈ 𝐴) |
| 6 | 2, 5 | nsyl 140 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 7 | bj-fvmptunsn1.ex1 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 8 | bj-fvmptunsn1.ex2 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 9 | 1, 6, 7, 8 | bj-fununsn2 37272 | 1 ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 〈cop 4607 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: bj-iomnnom 37277 |
| Copyright terms: Public domain | W3C validator |