Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvmptunsn1 Structured version   Visualization version   GIF version

Theorem bj-fvmptunsn1 37252
Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fvmptunsn.un (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
bj-fvmptunsn.nel (𝜑 → ¬ 𝐶𝐴)
bj-fvmptunsn1.ex1 (𝜑𝐶𝑉)
bj-fvmptunsn1.ex2 (𝜑𝐷𝑊)
Assertion
Ref Expression
bj-fvmptunsn1 (𝜑 → (𝐹𝐶) = 𝐷)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem bj-fvmptunsn1
StepHypRef Expression
1 bj-fvmptunsn.un . 2 (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
2 bj-fvmptunsn.nel . . 3 (𝜑 → ¬ 𝐶𝐴)
3 eqid 2730 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmptss 6217 . . . 4 dom (𝑥𝐴𝐵) ⊆ 𝐴
54sseli 3945 . . 3 (𝐶 ∈ dom (𝑥𝐴𝐵) → 𝐶𝐴)
62, 5nsyl 140 . 2 (𝜑 → ¬ 𝐶 ∈ dom (𝑥𝐴𝐵))
7 bj-fvmptunsn1.ex1 . 2 (𝜑𝐶𝑉)
8 bj-fvmptunsn1.ex2 . 2 (𝜑𝐷𝑊)
91, 6, 7, 8bj-fununsn2 37249 1 (𝜑 → (𝐹𝐶) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3915  {csn 4592  cop 4598  cmpt 5191  dom cdm 5641  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  bj-iomnnom  37254
  Copyright terms: Public domain W3C validator