![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvmptunsn1 | Structured version Visualization version GIF version |
Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fvmptunsn.un | ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) |
bj-fvmptunsn.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
bj-fvmptunsn1.ex1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
bj-fvmptunsn1.ex2 | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
bj-fvmptunsn1 | ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvmptunsn.un | . 2 ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) | |
2 | bj-fvmptunsn.nel | . . 3 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
3 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | dmmptss 6229 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
5 | 4 | sseli 3974 | . . 3 ⊢ (𝐶 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝐶 ∈ 𝐴) |
6 | 2, 5 | nsyl 140 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
7 | bj-fvmptunsn1.ex1 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
8 | bj-fvmptunsn1.ex2 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
9 | 1, 6, 7, 8 | bj-fununsn2 35939 | 1 ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∪ cun 3942 {csn 4622 〈cop 4628 ↦ cmpt 5224 dom cdm 5669 ‘cfv 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fv 6540 |
This theorem is referenced by: bj-iomnnom 35944 |
Copyright terms: Public domain | W3C validator |