Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinv Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinv 35306
Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpiinv (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)

Proof of Theorem bj-inftyexpiinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4801 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 35305 . . . 4 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 5373 . . . 4 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6857 . . 3 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
54fveq2d 6760 . 2 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = (1st ‘⟨𝐴, ℂ⟩))
6 cnex 10883 . . 3 ℂ ∈ V
7 op1stg 7816 . . 3 ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴)
86, 7mpan2 687 . 2 (𝐴 ∈ (-π(,]π) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴)
95, 8eqtrd 2778 1 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cfv 6418  (class class class)co 7255  1st c1st 7802  cc 10800  -cneg 11136  (,]cioc 13009  πcpi 15704  +∞eicinftyexpi 35304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-bj-inftyexpi 35305
This theorem is referenced by:  bj-inftyexpiinj  35307
  Copyright terms: Public domain W3C validator