| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinv | Structured version Visualization version GIF version | ||
| Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inftyexpiinv | ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4824 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, ℂ〉 = 〈𝐴, ℂ〉) | |
| 2 | df-bj-inftyexpi 37272 | . . . 4 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
| 3 | opex 5407 | . . . 4 ⊢ 〈𝐴, ℂ〉 ∈ V | |
| 4 | 1, 2, 3 | fvmpt 6935 | . . 3 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) = 〈𝐴, ℂ〉) |
| 5 | 4 | fveq2d 6832 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = (1st ‘〈𝐴, ℂ〉)) |
| 6 | cnex 11094 | . . 3 ⊢ ℂ ∈ V | |
| 7 | op1stg 7939 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘〈𝐴, ℂ〉) = 𝐴) | |
| 8 | 6, 7 | mpan2 691 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘〈𝐴, ℂ〉) = 𝐴) |
| 9 | 5, 8 | eqtrd 2768 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 ℂcc 11011 -cneg 11352 (,]cioc 13248 πcpi 15975 +∞eicinftyexpi 37271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7927 df-bj-inftyexpi 37272 |
| This theorem is referenced by: bj-inftyexpiinj 37274 |
| Copyright terms: Public domain | W3C validator |