| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinv | Structured version Visualization version GIF version | ||
| Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inftyexpiinv | ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4825 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, ℂ〉 = 〈𝐴, ℂ〉) | |
| 2 | df-bj-inftyexpi 37240 | . . . 4 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
| 3 | opex 5404 | . . . 4 ⊢ 〈𝐴, ℂ〉 ∈ V | |
| 4 | 1, 2, 3 | fvmpt 6929 | . . 3 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) = 〈𝐴, ℂ〉) |
| 5 | 4 | fveq2d 6826 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = (1st ‘〈𝐴, ℂ〉)) |
| 6 | cnex 11084 | . . 3 ⊢ ℂ ∈ V | |
| 7 | op1stg 7933 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘〈𝐴, ℂ〉) = 𝐴) | |
| 8 | 6, 7 | mpan2 691 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘〈𝐴, ℂ〉) = 𝐴) |
| 9 | 5, 8 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 ℂcc 11001 -cneg 11342 (,]cioc 13243 πcpi 15970 +∞eicinftyexpi 37239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-bj-inftyexpi 37240 |
| This theorem is referenced by: bj-inftyexpiinj 37242 |
| Copyright terms: Public domain | W3C validator |