| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinv | Structured version Visualization version GIF version | ||
| Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inftyexpiinv | ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4827 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, ℂ〉 = 〈𝐴, ℂ〉) | |
| 2 | df-bj-inftyexpi 37180 | . . . 4 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
| 3 | opex 5411 | . . . 4 ⊢ 〈𝐴, ℂ〉 ∈ V | |
| 4 | 1, 2, 3 | fvmpt 6934 | . . 3 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) = 〈𝐴, ℂ〉) |
| 5 | 4 | fveq2d 6830 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = (1st ‘〈𝐴, ℂ〉)) |
| 6 | cnex 11109 | . . 3 ⊢ ℂ ∈ V | |
| 7 | op1stg 7943 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘〈𝐴, ℂ〉) = 𝐴) | |
| 8 | 6, 7 | mpan2 691 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘〈𝐴, ℂ〉) = 𝐴) |
| 9 | 5, 8 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 ℂcc 11026 -cneg 11366 (,]cioc 13267 πcpi 15991 +∞eicinftyexpi 37179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7931 df-bj-inftyexpi 37180 |
| This theorem is referenced by: bj-inftyexpiinj 37182 |
| Copyright terms: Public domain | W3C validator |