![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinv | Structured version Visualization version GIF version |
Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-inftyexpiinv | ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4897 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, ℂ〉 = 〈𝐴, ℂ〉) | |
2 | df-bj-inftyexpi 37173 | . . . 4 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
3 | opex 5484 | . . . 4 ⊢ 〈𝐴, ℂ〉 ∈ V | |
4 | 1, 2, 3 | fvmpt 7029 | . . 3 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) = 〈𝐴, ℂ〉) |
5 | 4 | fveq2d 6924 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = (1st ‘〈𝐴, ℂ〉)) |
6 | cnex 11265 | . . 3 ⊢ ℂ ∈ V | |
7 | op1stg 8042 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘〈𝐴, ℂ〉) = 𝐴) | |
8 | 6, 7 | mpan2 690 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘〈𝐴, ℂ〉) = 𝐴) |
9 | 5, 8 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 ℂcc 11182 -cneg 11521 (,]cioc 13408 πcpi 16114 +∞eicinftyexpi 37172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-bj-inftyexpi 37173 |
This theorem is referenced by: bj-inftyexpiinj 37175 |
Copyright terms: Public domain | W3C validator |