![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinv | Structured version Visualization version GIF version |
Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-inftyexpiinv | ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4878 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, ℂ〉 = 〈𝐴, ℂ〉) | |
2 | df-bj-inftyexpi 37190 | . . . 4 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
3 | opex 5475 | . . . 4 ⊢ 〈𝐴, ℂ〉 ∈ V | |
4 | 1, 2, 3 | fvmpt 7016 | . . 3 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) = 〈𝐴, ℂ〉) |
5 | 4 | fveq2d 6911 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = (1st ‘〈𝐴, ℂ〉)) |
6 | cnex 11234 | . . 3 ⊢ ℂ ∈ V | |
7 | op1stg 8025 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘〈𝐴, ℂ〉) = 𝐴) | |
8 | 6, 7 | mpan2 691 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘〈𝐴, ℂ〉) = 𝐴) |
9 | 5, 8 | eqtrd 2775 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 ℂcc 11151 -cneg 11491 (,]cioc 13385 πcpi 16099 +∞eicinftyexpi 37189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 df-bj-inftyexpi 37190 |
This theorem is referenced by: bj-inftyexpiinj 37192 |
Copyright terms: Public domain | W3C validator |