![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinv | Structured version Visualization version GIF version |
Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-inftyexpiinv | ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4874 | . . . 4 ⊢ (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩) | |
2 | df-bj-inftyexpi 36756 | . . . 4 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩) | |
3 | opex 5465 | . . . 4 ⊢ ⟨𝐴, ℂ⟩ ∈ V | |
4 | 1, 2, 3 | fvmpt 7002 | . . 3 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) = ⟨𝐴, ℂ⟩) |
5 | 4 | fveq2d 6898 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = (1st ‘⟨𝐴, ℂ⟩)) |
6 | cnex 11219 | . . 3 ⊢ ℂ ∈ V | |
7 | op1stg 8004 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴) | |
8 | 6, 7 | mpan2 689 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴) |
9 | 5, 8 | eqtrd 2765 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⟨cop 4635 ‘cfv 6547 (class class class)co 7417 1st c1st 7990 ℂcc 11136 -cneg 11475 (,]cioc 13357 πcpi 16042 +∞eicinftyexpi 36755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 ax-cnex 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6499 df-fun 6549 df-fv 6555 df-1st 7992 df-bj-inftyexpi 36756 |
This theorem is referenced by: bj-inftyexpiinj 36758 |
Copyright terms: Public domain | W3C validator |