Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinv Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinv 37273
Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpiinv (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)

Proof of Theorem bj-inftyexpiinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4824 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 37272 . . . 4 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 5407 . . . 4 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6935 . . 3 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
54fveq2d 6832 . 2 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = (1st ‘⟨𝐴, ℂ⟩))
6 cnex 11094 . . 3 ℂ ∈ V
7 op1stg 7939 . . 3 ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴)
86, 7mpan2 691 . 2 (𝐴 ∈ (-π(,]π) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴)
95, 8eqtrd 2768 1 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cfv 6486  (class class class)co 7352  1st c1st 7925  cc 11011  -cneg 11352  (,]cioc 13248  πcpi 15975  +∞eicinftyexpi 37271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-cnex 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7927  df-bj-inftyexpi 37272
This theorem is referenced by:  bj-inftyexpiinj  37274
  Copyright terms: Public domain W3C validator