Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinv Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinv 36623
Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpiinv (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)

Proof of Theorem bj-inftyexpiinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4869 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 36622 . . . 4 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 5460 . . . 4 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6999 . . 3 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
54fveq2d 6895 . 2 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = (1st ‘⟨𝐴, ℂ⟩))
6 cnex 11211 . . 3 ℂ ∈ V
7 op1stg 7999 . . 3 ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴)
86, 7mpan2 690 . 2 (𝐴 ∈ (-π(,]π) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴)
95, 8eqtrd 2767 1 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  cop 4630  cfv 6542  (class class class)co 7414  1st c1st 7985  cc 11128  -cneg 11467  (,]cioc 13349  πcpi 16034  +∞eicinftyexpi 36621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734  ax-cnex 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fv 6550  df-1st 7987  df-bj-inftyexpi 36622
This theorem is referenced by:  bj-inftyexpiinj  36624
  Copyright terms: Public domain W3C validator