![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinv | Structured version Visualization version GIF version |
Description: Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-inftyexpiinv | ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4869 | . . . 4 ⊢ (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩) | |
2 | df-bj-inftyexpi 36622 | . . . 4 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩) | |
3 | opex 5460 | . . . 4 ⊢ ⟨𝐴, ℂ⟩ ∈ V | |
4 | 1, 2, 3 | fvmpt 6999 | . . 3 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) = ⟨𝐴, ℂ⟩) |
5 | 4 | fveq2d 6895 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = (1st ‘⟨𝐴, ℂ⟩)) |
6 | cnex 11211 | . . 3 ⊢ ℂ ∈ V | |
7 | op1stg 7999 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ ℂ ∈ V) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴) | |
8 | 6, 7 | mpan2 690 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘⟨𝐴, ℂ⟩) = 𝐴) |
9 | 5, 8 | eqtrd 2767 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ⟨cop 4630 ‘cfv 6542 (class class class)co 7414 1st c1st 7985 ℂcc 11128 -cneg 11467 (,]cioc 13349 πcpi 16034 +∞eicinftyexpi 36621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 ax-cnex 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fv 6550 df-1st 7987 df-bj-inftyexpi 36622 |
This theorem is referenced by: bj-inftyexpiinj 36624 |
Copyright terms: Public domain | W3C validator |