MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1stg Structured version   Visualization version   GIF version

Theorem op1stg 8042
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op1stg ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)

Proof of Theorem op1stg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4897 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21fveq2d 6924 . . 3 (𝑥 = 𝐴 → (1st ‘⟨𝑥, 𝑦⟩) = (1st ‘⟨𝐴, 𝑦⟩))
3 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2756 . 2 (𝑥 = 𝐴 → ((1st ‘⟨𝑥, 𝑦⟩) = 𝑥 ↔ (1st ‘⟨𝐴, 𝑦⟩) = 𝐴))
5 opeq2 4898 . . 3 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
65fveqeq2d 6928 . 2 (𝑦 = 𝐵 → ((1st ‘⟨𝐴, 𝑦⟩) = 𝐴 ↔ (1st ‘⟨𝐴, 𝐵⟩) = 𝐴))
7 vex 3492 . . 3 𝑥 ∈ V
8 vex 3492 . . 3 𝑦 ∈ V
97, 8op1st 8038 . 2 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
104, 6, 9vtocl2g 3586 1 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cop 4654  cfv 6573  1st c1st 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030
This theorem is referenced by:  ot1stg  8044  ot2ndg  8045  br1steqg  8052  1stconst  8141  mposn  8144  curry2  8148  opco1  8164  mpoxopn0yelv  8254  mpoxopoveq  8260  xpmapenlem  9210  1stinl  9996  1stinr  9998  fpwwe  10715  addpipq  11006  mulpipq  11009  ordpipq  11011  swrdval  14691  ruclem1  16279  qnumdenbi  16791  setsstruct  17223  oppccofval  17775  funcf2  17932  cofuval2  17951  resfval2  17957  resf1st  17958  isnat  18015  fucco  18032  homadm  18107  setcco  18150  estrcco  18198  xpcco  18252  xpchom2  18255  xpcco2  18256  evlf2  18288  curfval  18293  curf1cl  18298  uncf1  18306  uncf2  18307  diag11  18313  diag12  18314  diag2  18315  hof2fval  18325  yonedalem21  18343  yonedalem22  18348  mvmulfval  22569  imasdsf1olem  24404  ovolicc1  25570  ioombl1lem3  25614  ioombl1lem4  25615  addsqnreup  27505  addsval  28013  mulsval  28153  brcgr  28933  opvtxfv  29039  fgreu  32690  fsuppcurry2  32740  erlbrd  33235  rlocaddval  33240  rlocmulval  33241  fracerl  33273  sategoelfvb  35387  prv1n  35399  fvtransport  35996  bj-inftyexpiinv  37174  bj-finsumval0  37251  poimirlem17  37597  poimirlem24  37604  poimirlem27  37607  rngoablo2  37869  dvhopvadd  41050  dvhopvsca  41059  dvhopaddN  41071  dvhopspN  41072  etransclem44  46199  ovnsubaddlem1  46491  ovnlecvr2  46531  ovolval5lem2  46574  rngccoALTV  47994  ringccoALTV  48028
  Copyright terms: Public domain W3C validator