| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4833 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 6844 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
| 3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
| 5 | opeq2 4834 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 6 | 5 | fveqeq2d 6848 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
| 7 | vex 3448 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3448 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op1st 7955 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 10 | 4, 6, 9 | vtocl2g 3537 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 ‘cfv 6499 1st c1st 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 |
| This theorem is referenced by: ot1stg 7961 ot2ndg 7962 br1steqg 7969 1stconst 8056 mposn 8059 curry2 8063 opco1 8079 mpoxopn0yelv 8169 mpoxopoveq 8175 xpmapenlem 9085 1stinl 9858 1stinr 9860 fpwwe 10577 addpipq 10868 mulpipq 10871 ordpipq 10873 swrdval 14586 ruclem1 16176 qnumdenbi 16691 setsstruct 17123 oppccofval 17658 funcf2 17811 cofuval2 17830 resfval2 17836 resf1st 17837 isnat 17893 fucco 17908 homadm 17983 setcco 18026 estrcco 18072 xpcco 18125 xpchom2 18128 xpcco2 18129 evlf2 18160 curfval 18165 curf1cl 18170 uncf1 18178 uncf2 18179 diag11 18185 diag12 18186 diag2 18187 hof2fval 18197 yonedalem21 18215 yonedalem22 18220 mvmulfval 22463 imasdsf1olem 24295 ovolicc1 25451 ioombl1lem3 25495 ioombl1lem4 25496 addsqnreup 27388 addsval 27910 mulsval 28053 brcgr 28881 opvtxfv 28985 fgreu 32647 fsuppcurry2 32700 erlbrd 33231 rlocaddval 33236 rlocmulval 33237 fracerl 33273 sategoelfvb 35400 prv1n 35412 fvtransport 36014 bj-inftyexpiinv 37190 bj-finsumval0 37267 poimirlem17 37625 poimirlem24 37632 poimirlem27 37635 rngoablo2 37897 dvhopvadd 41081 dvhopvsca 41090 dvhopaddN 41102 dvhopspN 41103 etransclem44 46270 ovnsubaddlem1 46562 ovnlecvr2 46602 ovolval5lem2 46645 gpgedgiov 48050 gpgedg2ov 48051 gpgedg2iv 48052 rngccoALTV 48253 ringccoALTV 48287 func1st 49060 oppf1st2nd 49114 upfval3 49161 swapf1val 49250 fucofval 49302 fuco111 49313 fuco21 49319 fucoid 49331 precofval3 49354 prcofvala 49360 prcofval 49361 lanfval 49596 ranfval 49597 |
| Copyright terms: Public domain | W3C validator |