| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4822 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 6826 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
| 3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2747 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
| 5 | opeq2 4823 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 6 | 5 | fveqeq2d 6830 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
| 7 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op1st 7929 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 10 | 4, 6, 9 | vtocl2g 3525 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 ‘cfv 6481 1st c1st 7919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 |
| This theorem is referenced by: ot1stg 7935 ot2ndg 7936 br1steqg 7943 1stconst 8030 mposn 8033 curry2 8037 opco1 8053 mpoxopn0yelv 8143 mpoxopoveq 8149 xpmapenlem 9057 1stinl 9820 1stinr 9822 fpwwe 10537 addpipq 10828 mulpipq 10831 ordpipq 10833 swrdval 14551 ruclem1 16140 qnumdenbi 16655 setsstruct 17087 oppccofval 17622 funcf2 17775 cofuval2 17794 resfval2 17800 resf1st 17801 isnat 17857 fucco 17872 homadm 17947 setcco 17990 estrcco 18036 xpcco 18089 xpchom2 18092 xpcco2 18093 evlf2 18124 curfval 18129 curf1cl 18134 uncf1 18142 uncf2 18143 diag11 18149 diag12 18150 diag2 18151 hof2fval 18161 yonedalem21 18179 yonedalem22 18184 mvmulfval 22457 imasdsf1olem 24288 ovolicc1 25444 ioombl1lem3 25488 ioombl1lem4 25489 addsqnreup 27381 addsval 27905 mulsval 28048 brcgr 28878 opvtxfv 28982 fgreu 32654 fsuppcurry2 32708 erlbrd 33230 rlocaddval 33235 rlocmulval 33236 fracerl 33272 sategoelfvb 35463 prv1n 35475 fvtransport 36076 bj-inftyexpiinv 37252 bj-finsumval0 37329 poimirlem17 37676 poimirlem24 37683 poimirlem27 37686 rngoablo2 37948 dvhopvadd 41191 dvhopvsca 41200 dvhopaddN 41212 dvhopspN 41213 etransclem44 46375 ovnsubaddlem1 46667 ovnlecvr2 46707 ovolval5lem2 46750 gpgedgiov 48164 gpgedg2ov 48165 gpgedg2iv 48166 rngccoALTV 48370 ringccoALTV 48404 func1st 49177 oppf1st2nd 49231 upfval3 49278 swapf1val 49367 fucofval 49419 fuco111 49430 fuco21 49436 fucoid 49448 precofval3 49471 prcofvala 49477 prcofval 49478 lanfval 49713 ranfval 49714 |
| Copyright terms: Public domain | W3C validator |