| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4824 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 6826 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
| 3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
| 5 | opeq2 4825 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 6 | 5 | fveqeq2d 6830 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
| 7 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op1st 7932 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 10 | 4, 6, 9 | vtocl2g 3529 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 ‘cfv 6482 1st c1st 7922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-1st 7924 |
| This theorem is referenced by: ot1stg 7938 ot2ndg 7939 br1steqg 7946 1stconst 8033 mposn 8036 curry2 8040 opco1 8056 mpoxopn0yelv 8146 mpoxopoveq 8152 xpmapenlem 9061 1stinl 9823 1stinr 9825 fpwwe 10540 addpipq 10831 mulpipq 10834 ordpipq 10836 swrdval 14550 ruclem1 16140 qnumdenbi 16655 setsstruct 17087 oppccofval 17622 funcf2 17775 cofuval2 17794 resfval2 17800 resf1st 17801 isnat 17857 fucco 17872 homadm 17947 setcco 17990 estrcco 18036 xpcco 18089 xpchom2 18092 xpcco2 18093 evlf2 18124 curfval 18129 curf1cl 18134 uncf1 18142 uncf2 18143 diag11 18149 diag12 18150 diag2 18151 hof2fval 18161 yonedalem21 18179 yonedalem22 18184 mvmulfval 22427 imasdsf1olem 24259 ovolicc1 25415 ioombl1lem3 25459 ioombl1lem4 25460 addsqnreup 27352 addsval 27876 mulsval 28019 brcgr 28849 opvtxfv 28953 fgreu 32623 fsuppcurry2 32677 erlbrd 33212 rlocaddval 33217 rlocmulval 33218 fracerl 33254 sategoelfvb 35412 prv1n 35424 fvtransport 36026 bj-inftyexpiinv 37202 bj-finsumval0 37279 poimirlem17 37637 poimirlem24 37644 poimirlem27 37647 rngoablo2 37909 dvhopvadd 41092 dvhopvsca 41101 dvhopaddN 41113 dvhopspN 41114 etransclem44 46279 ovnsubaddlem1 46571 ovnlecvr2 46611 ovolval5lem2 46654 gpgedgiov 48069 gpgedg2ov 48070 gpgedg2iv 48071 rngccoALTV 48275 ringccoALTV 48309 func1st 49082 oppf1st2nd 49136 upfval3 49183 swapf1val 49272 fucofval 49324 fuco111 49335 fuco21 49341 fucoid 49353 precofval3 49376 prcofvala 49382 prcofval 49383 lanfval 49618 ranfval 49619 |
| Copyright terms: Public domain | W3C validator |