Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4813 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveq2d 6813 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2753 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
5 | opeq2 4814 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
6 | 5 | fveqeq2d 6817 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
7 | vex 3445 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3445 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | op1st 7882 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
10 | 4, 6, 9 | vtocl2g 3519 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4575 ‘cfv 6463 1st c1st 7872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-iota 6415 df-fun 6465 df-fv 6471 df-1st 7874 |
This theorem is referenced by: ot1stg 7888 ot2ndg 7889 br1steqg 7896 1stconst 7983 mposn 7986 curry2 7990 opco1 8006 mpoxopn0yelv 8074 mpoxopoveq 8080 xpmapenlem 8984 1stinl 9753 1stinr 9755 fpwwe 10472 addpipq 10763 mulpipq 10766 ordpipq 10768 swrdval 14425 ruclem1 16009 qnumdenbi 16515 setsstruct 16944 oppccofval 17493 funcf2 17650 cofuval2 17669 resfval2 17675 resf1st 17676 isnat 17730 fucco 17747 homadm 17822 setcco 17865 estrcco 17913 xpcco 17967 xpchom2 17970 xpcco2 17971 evlf2 18003 curfval 18008 curf1cl 18013 uncf1 18021 uncf2 18022 diag11 18028 diag12 18029 diag2 18030 hof2fval 18040 yonedalem21 18058 yonedalem22 18063 mvmulfval 21762 imasdsf1olem 23597 ovolicc1 24751 ioombl1lem3 24795 ioombl1lem4 24796 addsqnreup 26662 brcgr 27376 opvtxfv 27482 fgreu 31117 fsuppcurry2 31169 sategoelfvb 33487 prv1n 33499 addsval 34187 fvtransport 34395 bj-inftyexpiinv 35439 bj-finsumval0 35516 poimirlem17 35854 poimirlem24 35861 poimirlem27 35864 rngoablo2 36127 dvhopvadd 39319 dvhopvsca 39328 dvhopaddN 39340 dvhopspN 39341 etransclem44 44063 ovnsubaddlem1 44353 ovnlecvr2 44393 ovolval5lem2 44436 rngccoALTV 45805 ringccoALTV 45868 |
Copyright terms: Public domain | W3C validator |