| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4833 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 6844 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
| 3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
| 5 | opeq2 4834 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 6 | 5 | fveqeq2d 6848 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
| 7 | vex 3448 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3448 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op1st 7955 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 10 | 4, 6, 9 | vtocl2g 3537 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 ‘cfv 6499 1st c1st 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 |
| This theorem is referenced by: ot1stg 7961 ot2ndg 7962 br1steqg 7969 1stconst 8056 mposn 8059 curry2 8063 opco1 8079 mpoxopn0yelv 8169 mpoxopoveq 8175 xpmapenlem 9085 1stinl 9856 1stinr 9858 fpwwe 10575 addpipq 10866 mulpipq 10869 ordpipq 10871 swrdval 14584 ruclem1 16175 qnumdenbi 16690 setsstruct 17122 oppccofval 17657 funcf2 17810 cofuval2 17829 resfval2 17835 resf1st 17836 isnat 17892 fucco 17907 homadm 17982 setcco 18025 estrcco 18071 xpcco 18124 xpchom2 18127 xpcco2 18128 evlf2 18159 curfval 18164 curf1cl 18169 uncf1 18177 uncf2 18178 diag11 18184 diag12 18185 diag2 18186 hof2fval 18196 yonedalem21 18214 yonedalem22 18219 mvmulfval 22462 imasdsf1olem 24294 ovolicc1 25450 ioombl1lem3 25494 ioombl1lem4 25495 addsqnreup 27387 addsval 27909 mulsval 28052 brcgr 28880 opvtxfv 28984 fgreu 32646 fsuppcurry2 32699 erlbrd 33230 rlocaddval 33235 rlocmulval 33236 fracerl 33272 sategoelfvb 35399 prv1n 35411 fvtransport 36013 bj-inftyexpiinv 37189 bj-finsumval0 37266 poimirlem17 37624 poimirlem24 37631 poimirlem27 37634 rngoablo2 37896 dvhopvadd 41080 dvhopvsca 41089 dvhopaddN 41101 dvhopspN 41102 etransclem44 46269 ovnsubaddlem1 46561 ovnlecvr2 46601 ovolval5lem2 46644 gpgedgiov 48049 gpgedg2ov 48050 gpgedg2iv 48051 rngccoALTV 48252 ringccoALTV 48286 func1st 49059 oppf1st2nd 49113 upfval3 49160 swapf1val 49249 fucofval 49301 fuco111 49312 fuco21 49318 fucoid 49330 precofval3 49353 prcofvala 49359 prcofval 49360 lanfval 49595 ranfval 49596 |
| Copyright terms: Public domain | W3C validator |