| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4840 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 6865 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
| 3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2746 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
| 5 | opeq2 4841 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 6 | 5 | fveqeq2d 6869 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
| 7 | vex 3454 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3454 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op1st 7979 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 10 | 4, 6, 9 | vtocl2g 3543 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 ‘cfv 6514 1st c1st 7969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 |
| This theorem is referenced by: ot1stg 7985 ot2ndg 7986 br1steqg 7993 1stconst 8082 mposn 8085 curry2 8089 opco1 8105 mpoxopn0yelv 8195 mpoxopoveq 8201 xpmapenlem 9114 1stinl 9887 1stinr 9889 fpwwe 10606 addpipq 10897 mulpipq 10900 ordpipq 10902 swrdval 14615 ruclem1 16206 qnumdenbi 16721 setsstruct 17153 oppccofval 17684 funcf2 17837 cofuval2 17856 resfval2 17862 resf1st 17863 isnat 17919 fucco 17934 homadm 18009 setcco 18052 estrcco 18098 xpcco 18151 xpchom2 18154 xpcco2 18155 evlf2 18186 curfval 18191 curf1cl 18196 uncf1 18204 uncf2 18205 diag11 18211 diag12 18212 diag2 18213 hof2fval 18223 yonedalem21 18241 yonedalem22 18246 mvmulfval 22436 imasdsf1olem 24268 ovolicc1 25424 ioombl1lem3 25468 ioombl1lem4 25469 addsqnreup 27361 addsval 27876 mulsval 28019 brcgr 28834 opvtxfv 28938 fgreu 32603 fsuppcurry2 32656 erlbrd 33221 rlocaddval 33226 rlocmulval 33227 fracerl 33263 sategoelfvb 35413 prv1n 35425 fvtransport 36027 bj-inftyexpiinv 37203 bj-finsumval0 37280 poimirlem17 37638 poimirlem24 37645 poimirlem27 37648 rngoablo2 37910 dvhopvadd 41094 dvhopvsca 41103 dvhopaddN 41115 dvhopspN 41116 etransclem44 46283 ovnsubaddlem1 46575 ovnlecvr2 46615 ovolval5lem2 46658 gpgedgiov 48060 gpgedg2ov 48061 gpgedg2iv 48062 rngccoALTV 48263 ringccoALTV 48297 func1st 49070 oppf1st2nd 49124 upfval3 49171 swapf1val 49260 fucofval 49312 fuco111 49323 fuco21 49329 fucoid 49341 precofval3 49364 prcofvala 49370 prcofval 49371 lanfval 49606 ranfval 49607 |
| Copyright terms: Public domain | W3C validator |