![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4897 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveq2d 6924 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2756 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
5 | opeq2 4898 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
6 | 5 | fveqeq2d 6928 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
7 | vex 3492 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3492 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | op1st 8038 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
10 | 4, 6, 9 | vtocl2g 3586 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 ‘cfv 6573 1st c1st 8028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 |
This theorem is referenced by: ot1stg 8044 ot2ndg 8045 br1steqg 8052 1stconst 8141 mposn 8144 curry2 8148 opco1 8164 mpoxopn0yelv 8254 mpoxopoveq 8260 xpmapenlem 9210 1stinl 9996 1stinr 9998 fpwwe 10715 addpipq 11006 mulpipq 11009 ordpipq 11011 swrdval 14691 ruclem1 16279 qnumdenbi 16791 setsstruct 17223 oppccofval 17775 funcf2 17932 cofuval2 17951 resfval2 17957 resf1st 17958 isnat 18015 fucco 18032 homadm 18107 setcco 18150 estrcco 18198 xpcco 18252 xpchom2 18255 xpcco2 18256 evlf2 18288 curfval 18293 curf1cl 18298 uncf1 18306 uncf2 18307 diag11 18313 diag12 18314 diag2 18315 hof2fval 18325 yonedalem21 18343 yonedalem22 18348 mvmulfval 22569 imasdsf1olem 24404 ovolicc1 25570 ioombl1lem3 25614 ioombl1lem4 25615 addsqnreup 27505 addsval 28013 mulsval 28153 brcgr 28933 opvtxfv 29039 fgreu 32690 fsuppcurry2 32740 erlbrd 33235 rlocaddval 33240 rlocmulval 33241 fracerl 33273 sategoelfvb 35387 prv1n 35399 fvtransport 35996 bj-inftyexpiinv 37174 bj-finsumval0 37251 poimirlem17 37597 poimirlem24 37604 poimirlem27 37607 rngoablo2 37869 dvhopvadd 41050 dvhopvsca 41059 dvhopaddN 41071 dvhopspN 41072 etransclem44 46199 ovnsubaddlem1 46491 ovnlecvr2 46531 ovolval5lem2 46574 rngccoALTV 47994 ringccoALTV 48028 |
Copyright terms: Public domain | W3C validator |