| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4849 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveq2d 6879 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
| 3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2751 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
| 5 | opeq2 4850 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 6 | 5 | fveqeq2d 6883 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
| 7 | vex 3463 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3463 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op1st 7994 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 10 | 4, 6, 9 | vtocl2g 3553 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 ‘cfv 6530 1st c1st 7984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fv 6538 df-1st 7986 |
| This theorem is referenced by: ot1stg 8000 ot2ndg 8001 br1steqg 8008 1stconst 8097 mposn 8100 curry2 8104 opco1 8120 mpoxopn0yelv 8210 mpoxopoveq 8216 xpmapenlem 9156 1stinl 9939 1stinr 9941 fpwwe 10658 addpipq 10949 mulpipq 10952 ordpipq 10954 swrdval 14659 ruclem1 16247 qnumdenbi 16761 setsstruct 17193 oppccofval 17726 funcf2 17879 cofuval2 17898 resfval2 17904 resf1st 17905 isnat 17961 fucco 17976 homadm 18051 setcco 18094 estrcco 18140 xpcco 18193 xpchom2 18196 xpcco2 18197 evlf2 18228 curfval 18233 curf1cl 18238 uncf1 18246 uncf2 18247 diag11 18253 diag12 18254 diag2 18255 hof2fval 18265 yonedalem21 18283 yonedalem22 18288 mvmulfval 22478 imasdsf1olem 24310 ovolicc1 25467 ioombl1lem3 25511 ioombl1lem4 25512 addsqnreup 27404 addsval 27912 mulsval 28052 brcgr 28825 opvtxfv 28929 fgreu 32596 fsuppcurry2 32649 erlbrd 33204 rlocaddval 33209 rlocmulval 33210 fracerl 33246 sategoelfvb 35387 prv1n 35399 fvtransport 35996 bj-inftyexpiinv 37172 bj-finsumval0 37249 poimirlem17 37607 poimirlem24 37614 poimirlem27 37617 rngoablo2 37879 dvhopvadd 41058 dvhopvsca 41067 dvhopaddN 41079 dvhopspN 41080 etransclem44 46255 ovnsubaddlem1 46547 ovnlecvr2 46587 ovolval5lem2 46630 rngccoALTV 48194 ringccoALTV 48228 oppf1st2nd 49027 upfval3 49061 swapf1val 49132 fucofval 49178 fuco111 49189 fuco21 49195 fucoid 49207 precofval3 49230 prcofvala 49236 prcofval 49237 lanfval 49438 ranfval 49439 |
| Copyright terms: Public domain | W3C validator |