Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op1stg | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4804 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveq2d 6778 | . . 3 ⊢ (𝑥 = 𝐴 → (1st ‘〈𝑥, 𝑦〉) = (1st ‘〈𝐴, 𝑦〉)) |
3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2754 | . 2 ⊢ (𝑥 = 𝐴 → ((1st ‘〈𝑥, 𝑦〉) = 𝑥 ↔ (1st ‘〈𝐴, 𝑦〉) = 𝐴)) |
5 | opeq2 4805 | . . 3 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
6 | 5 | fveqeq2d 6782 | . 2 ⊢ (𝑦 = 𝐵 → ((1st ‘〈𝐴, 𝑦〉) = 𝐴 ↔ (1st ‘〈𝐴, 𝐵〉) = 𝐴)) |
7 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3436 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | op1st 7839 | . 2 ⊢ (1st ‘〈𝑥, 𝑦〉) = 𝑥 |
10 | 4, 6, 9 | vtocl2g 3510 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 ‘cfv 6433 1st c1st 7829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 |
This theorem is referenced by: ot1stg 7845 ot2ndg 7846 br1steqg 7853 1stconst 7940 mposn 7943 curry2 7947 opco1 7964 mpoxopn0yelv 8029 mpoxopoveq 8035 xpmapenlem 8931 1stinl 9685 1stinr 9687 fpwwe 10402 addpipq 10693 mulpipq 10696 ordpipq 10698 swrdval 14356 ruclem1 15940 qnumdenbi 16448 setsstruct 16877 oppccofval 17426 funcf2 17583 cofuval2 17602 resfval2 17608 resf1st 17609 isnat 17663 fucco 17680 homadm 17755 setcco 17798 estrcco 17846 xpcco 17900 xpchom2 17903 xpcco2 17904 evlf2 17936 curfval 17941 curf1cl 17946 uncf1 17954 uncf2 17955 diag11 17961 diag12 17962 diag2 17963 hof2fval 17973 yonedalem21 17991 yonedalem22 17996 mvmulfval 21691 imasdsf1olem 23526 ovolicc1 24680 ioombl1lem3 24724 ioombl1lem4 24725 addsqnreup 26591 brcgr 27268 opvtxfv 27374 fgreu 31009 fsuppcurry2 31061 sategoelfvb 33381 prv1n 33393 addsval 34126 fvtransport 34334 bj-inftyexpiinv 35379 bj-finsumval0 35456 poimirlem17 35794 poimirlem24 35801 poimirlem27 35804 rngoablo2 36067 dvhopvadd 39107 dvhopvsca 39116 dvhopaddN 39128 dvhopspN 39129 etransclem44 43819 ovnsubaddlem1 44108 ovnlecvr2 44148 ovolval5lem2 44191 rngccoALTV 45546 ringccoALTV 45609 |
Copyright terms: Public domain | W3C validator |