| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinj | Structured version Visualization version GIF version | ||
| Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 37210 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-inftyexpiinj | ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6905 | . 2 ⊢ (𝐴 = 𝐵 → (+∞ei‘𝐴) = (+∞ei‘𝐵)) | |
| 2 | fveq2 6905 | . . 3 ⊢ ((+∞ei‘𝐴) = (+∞ei‘𝐵) → (1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵))) | |
| 3 | bj-inftyexpiinv 37210 | . . . . . . 7 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| 5 | 4 | eqeq1d 2738 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
| 6 | 5 | biimpd 229 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
| 7 | bj-inftyexpiinv 37210 | . . . . . 6 ⊢ (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐵)) = 𝐵) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐵)) = 𝐵) |
| 9 | 8 | eqeq2d 2747 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = 𝐵)) |
| 10 | 6, 9 | sylibd 239 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = 𝐵)) |
| 11 | 2, 10 | syl5 34 | . 2 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei‘𝐴) = (+∞ei‘𝐵) → 𝐴 = 𝐵)) |
| 12 | 1, 11 | impbid2 226 | 1 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 -cneg 11494 (,]cioc 13389 πcpi 16103 +∞eicinftyexpi 37208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 ax-cnex 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fv 6568 df-1st 8015 df-bj-inftyexpi 37209 |
| This theorem is referenced by: bj-pinftynminfty 37229 |
| Copyright terms: Public domain | W3C validator |