Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinj | Structured version Visualization version GIF version |
Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 34989 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-inftyexpiinj | ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6668 | . 2 ⊢ (𝐴 = 𝐵 → (+∞ei‘𝐴) = (+∞ei‘𝐵)) | |
2 | fveq2 6668 | . . 3 ⊢ ((+∞ei‘𝐴) = (+∞ei‘𝐵) → (1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵))) | |
3 | bj-inftyexpiinv 34989 | . . . . . . 7 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) | |
4 | 3 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
5 | 4 | eqeq1d 2740 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
6 | 5 | biimpd 232 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
7 | bj-inftyexpiinv 34989 | . . . . . 6 ⊢ (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐵)) = 𝐵) | |
8 | 7 | adantl 485 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐵)) = 𝐵) |
9 | 8 | eqeq2d 2749 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = 𝐵)) |
10 | 6, 9 | sylibd 242 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = 𝐵)) |
11 | 2, 10 | syl5 34 | . 2 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei‘𝐴) = (+∞ei‘𝐵) → 𝐴 = 𝐵)) |
12 | 1, 11 | impbid2 229 | 1 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ‘cfv 6333 (class class class)co 7164 1st c1st 7705 -cneg 10942 (,]cioc 12815 πcpi 15505 +∞eicinftyexpi 34987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 ax-cnex 10664 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-iota 6291 df-fun 6335 df-fv 6341 df-1st 7707 df-bj-inftyexpi 34988 |
This theorem is referenced by: bj-pinftynminfty 35008 |
Copyright terms: Public domain | W3C validator |