Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinj Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinj 37242
Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 37241 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-inftyexpiinj ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))

Proof of Theorem bj-inftyexpiinj
StepHypRef Expression
1 fveq2 6822 . 2 (𝐴 = 𝐵 → (+∞ei𝐴) = (+∞ei𝐵))
2 fveq2 6822 . . 3 ((+∞ei𝐴) = (+∞ei𝐵) → (1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)))
3 bj-inftyexpiinv 37241 . . . . . . 7 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)
43adantr 480 . . . . . 6 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐴)) = 𝐴)
54eqeq1d 2733 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = (1st ‘(+∞ei𝐵))))
65biimpd 229 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = (1st ‘(+∞ei𝐵))))
7 bj-inftyexpiinv 37241 . . . . . 6 (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei𝐵)) = 𝐵)
87adantl 481 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐵)) = 𝐵)
98eqeq2d 2742 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = 𝐵))
106, 9sylibd 239 . . 3 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = 𝐵))
112, 10syl5 34 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei𝐴) = (+∞ei𝐵) → 𝐴 = 𝐵))
121, 11impbid2 226 1 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  1st c1st 7919  -cneg 11342  (,]cioc 13243  πcpi 15970  +∞eicinftyexpi 37239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-cnex 11059
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-bj-inftyexpi 37240
This theorem is referenced by:  bj-pinftynminfty  37260
  Copyright terms: Public domain W3C validator