Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinj Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinj 37211
Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 37210 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-inftyexpiinj ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))

Proof of Theorem bj-inftyexpiinj
StepHypRef Expression
1 fveq2 6905 . 2 (𝐴 = 𝐵 → (+∞ei𝐴) = (+∞ei𝐵))
2 fveq2 6905 . . 3 ((+∞ei𝐴) = (+∞ei𝐵) → (1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)))
3 bj-inftyexpiinv 37210 . . . . . . 7 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)
43adantr 480 . . . . . 6 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐴)) = 𝐴)
54eqeq1d 2738 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = (1st ‘(+∞ei𝐵))))
65biimpd 229 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = (1st ‘(+∞ei𝐵))))
7 bj-inftyexpiinv 37210 . . . . . 6 (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei𝐵)) = 𝐵)
87adantl 481 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐵)) = 𝐵)
98eqeq2d 2747 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = 𝐵))
106, 9sylibd 239 . . 3 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = 𝐵))
112, 10syl5 34 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei𝐴) = (+∞ei𝐵) → 𝐴 = 𝐵))
121, 11impbid2 226 1 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  1st c1st 8013  -cneg 11494  (,]cioc 13389  πcpi 16103  +∞eicinftyexpi 37208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756  ax-cnex 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fv 6568  df-1st 8015  df-bj-inftyexpi 37209
This theorem is referenced by:  bj-pinftynminfty  37229
  Copyright terms: Public domain W3C validator