![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinj | Structured version Visualization version GIF version |
Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 36089 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-inftyexpiinj | ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . 2 ⊢ (𝐴 = 𝐵 → (+∞ei‘𝐴) = (+∞ei‘𝐵)) | |
2 | fveq2 6892 | . . 3 ⊢ ((+∞ei‘𝐴) = (+∞ei‘𝐵) → (1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵))) | |
3 | bj-inftyexpiinv 36089 | . . . . . . 7 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) | |
4 | 3 | adantr 482 | . . . . . 6 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
5 | 4 | eqeq1d 2735 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
6 | 5 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
7 | bj-inftyexpiinv 36089 | . . . . . 6 ⊢ (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐵)) = 𝐵) | |
8 | 7 | adantl 483 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐵)) = 𝐵) |
9 | 8 | eqeq2d 2744 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = 𝐵)) |
10 | 6, 9 | sylibd 238 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = 𝐵)) |
11 | 2, 10 | syl5 34 | . 2 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei‘𝐴) = (+∞ei‘𝐵) → 𝐴 = 𝐵)) |
12 | 1, 11 | impbid2 225 | 1 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 1st c1st 7973 -cneg 11445 (,]cioc 13325 πcpi 16010 +∞eicinftyexpi 36087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 df-bj-inftyexpi 36088 |
This theorem is referenced by: bj-pinftynminfty 36108 |
Copyright terms: Public domain | W3C validator |