Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinj | Structured version Visualization version GIF version |
Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 35306 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-inftyexpiinj | ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . 2 ⊢ (𝐴 = 𝐵 → (+∞ei‘𝐴) = (+∞ei‘𝐵)) | |
2 | fveq2 6756 | . . 3 ⊢ ((+∞ei‘𝐴) = (+∞ei‘𝐵) → (1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵))) | |
3 | bj-inftyexpiinv 35306 | . . . . . . 7 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
5 | 4 | eqeq1d 2740 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
6 | 5 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
7 | bj-inftyexpiinv 35306 | . . . . . 6 ⊢ (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐵)) = 𝐵) | |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐵)) = 𝐵) |
9 | 8 | eqeq2d 2749 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = 𝐵)) |
10 | 6, 9 | sylibd 238 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = 𝐵)) |
11 | 2, 10 | syl5 34 | . 2 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei‘𝐴) = (+∞ei‘𝐵) → 𝐴 = 𝐵)) |
12 | 1, 11 | impbid2 225 | 1 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 -cneg 11136 (,]cioc 13009 πcpi 15704 +∞eicinftyexpi 35304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-bj-inftyexpi 35305 |
This theorem is referenced by: bj-pinftynminfty 35325 |
Copyright terms: Public domain | W3C validator |