Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinj Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinj 35307
Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 35306 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-inftyexpiinj ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))

Proof of Theorem bj-inftyexpiinj
StepHypRef Expression
1 fveq2 6756 . 2 (𝐴 = 𝐵 → (+∞ei𝐴) = (+∞ei𝐵))
2 fveq2 6756 . . 3 ((+∞ei𝐴) = (+∞ei𝐵) → (1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)))
3 bj-inftyexpiinv 35306 . . . . . . 7 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)
43adantr 480 . . . . . 6 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐴)) = 𝐴)
54eqeq1d 2740 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = (1st ‘(+∞ei𝐵))))
65biimpd 228 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = (1st ‘(+∞ei𝐵))))
7 bj-inftyexpiinv 35306 . . . . . 6 (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei𝐵)) = 𝐵)
87adantl 481 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐵)) = 𝐵)
98eqeq2d 2749 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = 𝐵))
106, 9sylibd 238 . . 3 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = 𝐵))
112, 10syl5 34 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei𝐴) = (+∞ei𝐵) → 𝐴 = 𝐵))
121, 11impbid2 225 1 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  1st c1st 7802  -cneg 11136  (,]cioc 13009  πcpi 15704  +∞eicinftyexpi 35304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-bj-inftyexpi 35305
This theorem is referenced by:  bj-pinftynminfty  35325
  Copyright terms: Public domain W3C validator