| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpiinj | Structured version Visualization version GIF version | ||
| Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 37241 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-inftyexpiinj | ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . 2 ⊢ (𝐴 = 𝐵 → (+∞ei‘𝐴) = (+∞ei‘𝐵)) | |
| 2 | fveq2 6822 | . . 3 ⊢ ((+∞ei‘𝐴) = (+∞ei‘𝐵) → (1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵))) | |
| 3 | bj-inftyexpiinv 37241 | . . . . . . 7 ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐴)) = 𝐴) |
| 5 | 4 | eqeq1d 2733 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
| 6 | 5 | biimpd 229 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = (1st ‘(+∞ei‘𝐵)))) |
| 7 | bj-inftyexpiinv 37241 | . . . . . 6 ⊢ (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐵)) = 𝐵) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei‘𝐵)) = 𝐵) |
| 9 | 8 | eqeq2d 2742 | . . . 4 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei‘𝐵)) ↔ 𝐴 = 𝐵)) |
| 10 | 6, 9 | sylibd 239 | . . 3 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei‘𝐴)) = (1st ‘(+∞ei‘𝐵)) → 𝐴 = 𝐵)) |
| 11 | 2, 10 | syl5 34 | . 2 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei‘𝐴) = (+∞ei‘𝐵) → 𝐴 = 𝐵)) |
| 12 | 1, 11 | impbid2 226 | 1 ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 -cneg 11342 (,]cioc 13243 πcpi 15970 +∞eicinftyexpi 37239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-bj-inftyexpi 37240 |
| This theorem is referenced by: bj-pinftynminfty 37260 |
| Copyright terms: Public domain | W3C validator |