Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpiinj Structured version   Visualization version   GIF version

Theorem bj-inftyexpiinj 37274
Description: Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 37273 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-inftyexpiinj ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))

Proof of Theorem bj-inftyexpiinj
StepHypRef Expression
1 fveq2 6828 . 2 (𝐴 = 𝐵 → (+∞ei𝐴) = (+∞ei𝐵))
2 fveq2 6828 . . 3 ((+∞ei𝐴) = (+∞ei𝐵) → (1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)))
3 bj-inftyexpiinv 37273 . . . . . . 7 (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei𝐴)) = 𝐴)
43adantr 480 . . . . . 6 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐴)) = 𝐴)
54eqeq1d 2735 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = (1st ‘(+∞ei𝐵))))
65biimpd 229 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = (1st ‘(+∞ei𝐵))))
7 bj-inftyexpiinv 37273 . . . . . 6 (𝐵 ∈ (-π(,]π) → (1st ‘(+∞ei𝐵)) = 𝐵)
87adantl 481 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (1st ‘(+∞ei𝐵)) = 𝐵)
98eqeq2d 2744 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = (1st ‘(+∞ei𝐵)) ↔ 𝐴 = 𝐵))
106, 9sylibd 239 . . 3 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((1st ‘(+∞ei𝐴)) = (1st ‘(+∞ei𝐵)) → 𝐴 = 𝐵))
112, 10syl5 34 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → ((+∞ei𝐴) = (+∞ei𝐵) → 𝐴 = 𝐵))
121, 11impbid2 226 1 ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei𝐴) = (+∞ei𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  1st c1st 7925  -cneg 11352  (,]cioc 13248  πcpi 15975  +∞eicinftyexpi 37271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-cnex 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7927  df-bj-inftyexpi 37272
This theorem is referenced by:  bj-pinftynminfty  37292
  Copyright terms: Public domain W3C validator