| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funopfv | Structured version Visualization version GIF version | ||
| Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| funopfv | ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5103 | . 2 ⊢ (𝐴𝐹𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹) | |
| 2 | funbrfv 6891 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) | |
| 3 | 1, 2 | biimtrrid 243 | 1 ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 Fun wfun 6493 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 |
| This theorem is referenced by: fvopab3ig 6946 fvsng 7136 fveqf1o 7259 ovidig 7511 ovigg 7514 funfv1st2nd 8004 funelss 8005 f1o2ndf1 8078 fundmen 8979 dif1en 9101 dif1enOLD 9103 uzrdg0i 13900 uzrdgsuci 13901 strfvd 17146 strfv2d 17147 imasaddvallem 17468 imasvscafn 17476 noseqrdg0 28177 noseqrdgsuc 28178 adjeq 31837 bnj1379 34793 bnj97 34829 bnj553 34861 bnj966 34907 bnj1442 35012 satfv0fvfmla0 35373 satfv1fvfmla1 35383 nregmodellem 44979 |
| Copyright terms: Public domain | W3C validator |