| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funopfv | Structured version Visualization version GIF version | ||
| Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| funopfv | ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5093 | . 2 ⊢ (𝐴𝐹𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹) | |
| 2 | funbrfv 6871 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) | |
| 3 | 1, 2 | biimtrrid 243 | 1 ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 Fun wfun 6476 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 |
| This theorem is referenced by: fvopab3ig 6926 fvsng 7116 fveqf1o 7239 ovidig 7491 ovigg 7494 funfv1st2nd 7981 funelss 7982 f1o2ndf1 8055 fundmen 8956 dif1en 9075 uzrdg0i 13866 uzrdgsuci 13867 strfvd 17111 strfv2d 17112 imasaddvallem 17433 imasvscafn 17441 noseqrdg0 28206 noseqrdgsuc 28207 adjeq 31879 bnj1379 34797 bnj97 34833 bnj553 34865 bnj966 34911 bnj1442 35016 satfv0fvfmla0 35390 satfv1fvfmla1 35400 nregmodellem 44994 |
| Copyright terms: Public domain | W3C validator |