![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funopfv | Structured version Visualization version GIF version |
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
funopfv | ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝐴𝐹𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹) | |
2 | funbrfv 6958 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) | |
3 | 1, 2 | biimtrrid 243 | 1 ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: fvopab3ig 7012 fvsng 7200 fveqf1o 7322 ovidig 7575 ovigg 7578 funfv1st2nd 8070 funelss 8071 f1o2ndf1 8146 fundmen 9070 dif1en 9199 dif1enOLD 9201 uzrdg0i 13997 uzrdgsuci 13998 strfvd 17235 strfv2d 17236 imasaddvallem 17576 imasvscafn 17584 noseqrdg0 28328 noseqrdgsuc 28329 adjeq 31964 bnj1379 34823 bnj97 34859 bnj553 34891 bnj966 34937 bnj1442 35042 satfv0fvfmla0 35398 satfv1fvfmla1 35408 |
Copyright terms: Public domain | W3C validator |