| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funopfv | Structured version Visualization version GIF version | ||
| Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| funopfv | ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . 2 ⊢ (𝐴𝐹𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹) | |
| 2 | funbrfv 6870 | . 2 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) | |
| 3 | 1, 2 | biimtrrid 243 | 1 ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: fvopab3ig 6925 fvsng 7114 fveqf1o 7236 ovidig 7488 ovigg 7491 funfv1st2nd 7978 funelss 7979 f1o2ndf1 8052 fundmen 8953 dif1en 9071 uzrdg0i 13866 uzrdgsuci 13867 strfvd 17111 strfv2d 17112 imasaddvallem 17433 imasvscafn 17441 noseqrdg0 28237 noseqrdgsuc 28238 adjeq 31915 bnj1379 34842 bnj97 34878 bnj553 34910 bnj966 34956 bnj1442 35061 satfv0fvfmla0 35457 satfv1fvfmla1 35467 nregmodellem 45119 |
| Copyright terms: Public domain | W3C validator |