MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopfv Structured version   Visualization version   GIF version

Theorem funopfv 6910
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 5108 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
2 funbrfv 6909 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
31, 2biimtrrid 243 1 (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by:  fvopab3ig  6964  fvsng  7154  fveqf1o  7277  ovidig  7531  ovigg  7534  funfv1st2nd  8025  funelss  8026  f1o2ndf1  8101  fundmen  9002  dif1en  9124  dif1enOLD  9126  uzrdg0i  13924  uzrdgsuci  13925  strfvd  17170  strfv2d  17171  imasaddvallem  17492  imasvscafn  17500  noseqrdg0  28201  noseqrdgsuc  28202  adjeq  31864  bnj1379  34820  bnj97  34856  bnj553  34888  bnj966  34934  bnj1442  35039  satfv0fvfmla0  35400  satfv1fvfmla1  35410  nregmodellem  45006
  Copyright terms: Public domain W3C validator