Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopfv Structured version   Visualization version   GIF version

Theorem funopfv 6710
 Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 5058 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
2 funbrfv 6709 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
31, 2syl5bir 245 1 (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1530   ∈ wcel 2107  ⟨cop 4565   class class class wbr 5057  Fun wfun 6342  ‘cfv 6348 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356 This theorem is referenced by:  fvopab3ig  6757  fvsng  6935  fveqf1o  7050  ovidig  7284  ovigg  7287  funfv1st2nd  7737  funelss  7738  f1o2ndf1  7810  fundmen  8575  uzrdg0i  13319  uzrdgsuci  13320  strfvd  16520  strfv2d  16521  imasaddvallem  16794  imasvscafn  16802  adjeq  29704  bnj1379  32090  bnj97  32126  bnj553  32158  bnj966  32204  bnj1442  32309  satfv0fvfmla0  32648  satfv1fvfmla1  32658
 Copyright terms: Public domain W3C validator