MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopfv Structured version   Visualization version   GIF version

Theorem funopfv 6972
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 5167 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
2 funbrfv 6971 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
31, 2biimtrrid 243 1 (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  fvopab3ig  7025  fvsng  7214  fveqf1o  7338  ovidig  7592  ovigg  7595  funfv1st2nd  8087  funelss  8088  f1o2ndf1  8163  fundmen  9096  dif1en  9226  dif1enOLD  9228  uzrdg0i  14010  uzrdgsuci  14011  strfvd  17248  strfv2d  17249  imasaddvallem  17589  imasvscafn  17597  noseqrdg0  28331  noseqrdgsuc  28332  adjeq  31967  bnj1379  34806  bnj97  34842  bnj553  34874  bnj966  34920  bnj1442  35025  satfv0fvfmla0  35381  satfv1fvfmla1  35391
  Copyright terms: Public domain W3C validator