MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedainv Structured version   Visualization version   GIF version

Theorem yonedainv 18230
Description: The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y π‘Œ = (Yonβ€˜πΆ)
yoneda.b 𝐡 = (Baseβ€˜πΆ)
yoneda.1 1 = (Idβ€˜πΆ)
yoneda.o 𝑂 = (oppCatβ€˜πΆ)
yoneda.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoneda.t 𝑇 = (SetCatβ€˜π‘‰)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomFβ€˜π‘„)
yoneda.r 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (πœ‘ β†’ 𝐢 ∈ Cat)
yoneda.w (πœ‘ β†’ 𝑉 ∈ π‘Š)
yoneda.u (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoneda.v (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) ↦ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯))))
yonedainv.i 𝐼 = (Invβ€˜π‘…)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))))
Assertion
Ref Expression
yonedainv (πœ‘ β†’ 𝑀(𝑍𝐼𝐸)𝑁)
Distinct variable groups:   𝑓,π‘Ž,𝑔,π‘₯,𝑦, 1   𝑒,π‘Ž,𝑔,𝑦,𝐢,𝑓,π‘₯   𝐸,π‘Ž,𝑓,𝑔,𝑒,𝑦   𝐡,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑁,π‘Ž   𝑂,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑆,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑔,𝑀,𝑒,𝑦   𝑄,π‘Ž,𝑓,𝑔,𝑒,π‘₯   𝑇,𝑓,𝑔,𝑒,𝑦   πœ‘,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑒,𝑅   π‘Œ,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦   𝑍,π‘Ž,𝑓,𝑔,𝑒,π‘₯,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(π‘₯,𝑦,𝑓,𝑔,π‘Ž)   𝑇(π‘₯,π‘Ž)   π‘ˆ(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   1 (𝑒)   𝐸(π‘₯)   𝐻(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   𝐼(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   𝑀(π‘₯,𝑓,π‘Ž)   𝑁(π‘₯,𝑦,𝑒,𝑓,𝑔)   𝑉(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)   π‘Š(π‘₯,𝑦,𝑒,𝑓,𝑔,π‘Ž)

Proof of Theorem yonedainv
Dummy variables 𝑏 β„Ž π‘˜ 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.r . . 3 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
2 eqid 2732 . . . 4 (𝑄 Γ—c 𝑂) = (𝑄 Γ—c 𝑂)
3 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
43fucbas 17908 . . . 4 (𝑂 Func 𝑆) = (Baseβ€˜π‘„)
5 yoneda.o . . . . 5 𝑂 = (oppCatβ€˜πΆ)
6 yoneda.b . . . . 5 𝐡 = (Baseβ€˜πΆ)
75, 6oppcbas 17659 . . . 4 𝐡 = (Baseβ€˜π‘‚)
82, 4, 7xpcbas 18126 . . 3 ((𝑂 Func 𝑆) Γ— 𝐡) = (Baseβ€˜(𝑄 Γ—c 𝑂))
9 eqid 2732 . . 3 ((𝑄 Γ—c 𝑂) Nat 𝑇) = ((𝑄 Γ—c 𝑂) Nat 𝑇)
10 yoneda.y . . . . 5 π‘Œ = (Yonβ€˜πΆ)
11 yoneda.1 . . . . 5 1 = (Idβ€˜πΆ)
12 yoneda.s . . . . 5 𝑆 = (SetCatβ€˜π‘ˆ)
13 yoneda.t . . . . 5 𝑇 = (SetCatβ€˜π‘‰)
14 yoneda.h . . . . 5 𝐻 = (HomFβ€˜π‘„)
15 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
16 yoneda.z . . . . 5 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17 yoneda.c . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
18 yoneda.w . . . . 5 (πœ‘ β†’ 𝑉 ∈ π‘Š)
19 yoneda.u . . . . 5 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
20 yoneda.v . . . . 5 (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
2110, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20yonedalem1 18221 . . . 4 (πœ‘ β†’ (𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇)))
2221simpld 495 . . 3 (πœ‘ β†’ 𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇))
2321simprd 496 . . 3 (πœ‘ β†’ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇))
24 yonedainv.i . . 3 𝐼 = (Invβ€˜π‘…)
25 eqid 2732 . . 3 (Invβ€˜π‘‡) = (Invβ€˜π‘‡)
26 yoneda.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘₯)(𝑂 Nat 𝑆)𝑓) ↦ ((π‘Žβ€˜π‘₯)β€˜( 1 β€˜π‘₯))))
2710, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20, 26yonedalem3 18229 . . 3 (πœ‘ β†’ 𝑀 ∈ (𝑍((𝑄 Γ—c 𝑂) Nat 𝑇)𝐸))
2817adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ 𝐢 ∈ Cat)
2918adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ 𝑉 ∈ π‘Š)
3019adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
3120adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
32 simprl 769 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ β„Ž ∈ (𝑂 Func 𝑆))
33 simprr 771 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ 𝑀 ∈ 𝐡)
3410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33, 26yonedalem3a 18223 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘€π‘€) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€))) ∧ (β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀)))
3534simprd 496 . . . . . . . . 9 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀))
3628adantr 481 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ 𝐢 ∈ Cat)
3729adantr 481 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ 𝑉 ∈ π‘Š)
3830adantr 481 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
3931adantr 481 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
40 simplrl 775 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ β„Ž ∈ (𝑂 Func 𝑆))
41 simplrr 776 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ 𝑀 ∈ 𝐡)
42 yonedainv.n . . . . . . . . . . . 12 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), π‘₯ ∈ 𝐡 ↦ (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))))
43 simpr 485 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€))
4410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 36, 37, 38, 39, 40, 41, 42, 43yonedalem4c 18226 . . . . . . . . . . 11 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((β„Žπ‘π‘€)β€˜π‘) ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
4544fmpttd 7111 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ ((β„Žπ‘π‘€)β€˜π‘)):((1st β€˜β„Ž)β€˜π‘€)⟢(((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
466fvexi 6902 . . . . . . . . . . . . . . 15 𝐡 ∈ V
4746mptex 7221 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’))) ∈ V
48 eqid 2732 . . . . . . . . . . . . . 14 (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))) = (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’))))
4947, 48fnmpti 6690 . . . . . . . . . . . . 13 (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))) Fn ((1st β€˜β„Ž)β€˜π‘€)
50 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = β„Ž ∧ π‘₯ = 𝑀) β†’ 𝑓 = β„Ž)
5150fveq2d 6892 . . . . . . . . . . . . . . . . . 18 ((𝑓 = β„Ž ∧ π‘₯ = 𝑀) β†’ (1st β€˜π‘“) = (1st β€˜β„Ž))
52 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑓 = β„Ž ∧ π‘₯ = 𝑀) β†’ π‘₯ = 𝑀)
5351, 52fveq12d 6895 . . . . . . . . . . . . . . . . 17 ((𝑓 = β„Ž ∧ π‘₯ = 𝑀) β†’ ((1st β€˜π‘“)β€˜π‘₯) = ((1st β€˜β„Ž)β€˜π‘€))
54 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ π‘₯ = 𝑀)
5554oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ (𝑦(Hom β€˜πΆ)π‘₯) = (𝑦(Hom β€˜πΆ)𝑀))
56 simpll 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ 𝑓 = β„Ž)
5756fveq2d 6892 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ (2nd β€˜π‘“) = (2nd β€˜β„Ž))
58 eqidd 2733 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 = 𝑦)
5957, 54, 58oveq123d 7426 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯(2nd β€˜π‘“)𝑦) = (𝑀(2nd β€˜β„Ž)𝑦))
6059fveq1d 6890 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ ((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”) = ((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”))
6160fveq1d 6890 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’) = (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’))
6255, 61mpteq12dv 5238 . . . . . . . . . . . . . . . . . 18 (((𝑓 = β„Ž ∧ π‘₯ = 𝑀) ∧ 𝑦 ∈ 𝐡) β†’ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)) = (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))
6362mpteq2dva 5247 . . . . . . . . . . . . . . . . 17 ((𝑓 = β„Ž ∧ π‘₯ = 𝑀) β†’ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’))) = (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’))))
6453, 63mpteq12dv 5238 . . . . . . . . . . . . . . . 16 ((𝑓 = β„Ž ∧ π‘₯ = 𝑀) β†’ (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))) = (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))))
65 fvex 6901 . . . . . . . . . . . . . . . . 17 ((1st β€˜β„Ž)β€˜π‘€) ∈ V
6665mptex 7221 . . . . . . . . . . . . . . . 16 (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))) ∈ V
6764, 42, 66ovmpoa 7559 . . . . . . . . . . . . . . 15 ((β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡) β†’ (β„Žπ‘π‘€) = (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))))
6867adantl 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘π‘€) = (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))))
6968fneq1d 6639 . . . . . . . . . . . . 13 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘π‘€) Fn ((1st β€˜β„Ž)β€˜π‘€) ↔ (𝑒 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)𝑀) ↦ (((𝑀(2nd β€˜β„Ž)𝑦)β€˜π‘”)β€˜π‘’)))) Fn ((1st β€˜β„Ž)β€˜π‘€)))
7049, 69mpbiri 257 . . . . . . . . . . . 12 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘π‘€) Fn ((1st β€˜β„Ž)β€˜π‘€))
71 dffn5 6947 . . . . . . . . . . . 12 ((β„Žπ‘π‘€) Fn ((1st β€˜β„Ž)β€˜π‘€) ↔ (β„Žπ‘π‘€) = (𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ ((β„Žπ‘π‘€)β€˜π‘)))
7270, 71sylib 217 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘π‘€) = (𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ ((β„Žπ‘π‘€)β€˜π‘)))
735oppccat 17664 . . . . . . . . . . . . . 14 (𝐢 ∈ Cat β†’ 𝑂 ∈ Cat)
7417, 73syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑂 ∈ Cat)
7574adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ 𝑂 ∈ Cat)
7620unssbd 4187 . . . . . . . . . . . . . . 15 (πœ‘ β†’ π‘ˆ βŠ† 𝑉)
7718, 76ssexd 5323 . . . . . . . . . . . . . 14 (πœ‘ β†’ π‘ˆ ∈ V)
7812setccat 18031 . . . . . . . . . . . . . 14 (π‘ˆ ∈ V β†’ 𝑆 ∈ Cat)
7977, 78syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑆 ∈ Cat)
8079adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ 𝑆 ∈ Cat)
8115, 75, 80, 7, 32, 33evlf1 18169 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Ž(1st β€˜πΈ)𝑀) = ((1st β€˜β„Ž)β€˜π‘€))
8210, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33yonedalem21 18222 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Ž(1st β€˜π‘)𝑀) = (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
8372, 81, 82feq123d 6703 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘π‘€):(β„Ž(1st β€˜πΈ)𝑀)⟢(β„Ž(1st β€˜π‘)𝑀) ↔ (𝑏 ∈ ((1st β€˜β„Ž)β€˜π‘€) ↦ ((β„Žπ‘π‘€)β€˜π‘)):((1st β€˜β„Ž)β€˜π‘€)⟢(((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž)))
8445, 83mpbird 256 . . . . . . . . 9 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘π‘€):(β„Ž(1st β€˜πΈ)𝑀)⟢(β„Ž(1st β€˜π‘)𝑀))
85 fcompt 7127 . . . . . . . . . . 11 (((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀) ∧ (β„Žπ‘π‘€):(β„Ž(1st β€˜πΈ)𝑀)⟢(β„Ž(1st β€˜π‘)𝑀)) β†’ ((β„Žπ‘€π‘€) ∘ (β„Žπ‘π‘€)) = (π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀) ↦ ((β„Žπ‘€π‘€)β€˜((β„Žπ‘π‘€)β€˜π‘˜))))
8635, 84, 85syl2anc 584 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘€π‘€) ∘ (β„Žπ‘π‘€)) = (π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀) ↦ ((β„Žπ‘€π‘€)β€˜((β„Žπ‘π‘€)β€˜π‘˜))))
8781eleq2d 2819 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀) ↔ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)))
8887biimpa 477 . . . . . . . . . . . . 13 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀)) β†’ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€))
8928adantr 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ 𝐢 ∈ Cat)
9029adantr 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ 𝑉 ∈ π‘Š)
9130adantr 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
9231adantr 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
93 simplrl 775 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ β„Ž ∈ (𝑂 Func 𝑆))
94 simplrr 776 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ 𝑀 ∈ 𝐡)
9510, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 26yonedalem3a 18223 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((β„Žπ‘€π‘€) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€))) ∧ (β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀)))
9695simpld 495 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (β„Žπ‘€π‘€) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€))))
9796fveq1d 6890 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((β„Žπ‘€π‘€)β€˜((β„Žπ‘π‘€)β€˜π‘˜)) = ((π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)))β€˜((β„Žπ‘π‘€)β€˜π‘˜)))
9872, 44fmpt3d 7112 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘π‘€):((1st β€˜β„Ž)β€˜π‘€)⟢(((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
9998ffvelcdmda 7083 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((β„Žπ‘π‘€)β€˜π‘˜) ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
100 fveq1 6887 . . . . . . . . . . . . . . . . 17 (π‘Ž = ((β„Žπ‘π‘€)β€˜π‘˜) β†’ (π‘Žβ€˜π‘€) = (((β„Žπ‘π‘€)β€˜π‘˜)β€˜π‘€))
101100fveq1d 6890 . . . . . . . . . . . . . . . 16 (π‘Ž = ((β„Žπ‘π‘€)β€˜π‘˜) β†’ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)) = ((((β„Žπ‘π‘€)β€˜π‘˜)β€˜π‘€)β€˜( 1 β€˜π‘€)))
102 eqid 2732 . . . . . . . . . . . . . . . 16 (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€))) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)))
103 fvex 6901 . . . . . . . . . . . . . . . 16 ((((β„Žπ‘π‘€)β€˜π‘˜)β€˜π‘€)β€˜( 1 β€˜π‘€)) ∈ V
104101, 102, 103fvmpt 6995 . . . . . . . . . . . . . . 15 (((β„Žπ‘π‘€)β€˜π‘˜) ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) β†’ ((π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)))β€˜((β„Žπ‘π‘€)β€˜π‘˜)) = ((((β„Žπ‘π‘€)β€˜π‘˜)β€˜π‘€)β€˜( 1 β€˜π‘€)))
10599, 104syl 17 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)))β€˜((β„Žπ‘π‘€)β€˜π‘˜)) = ((((β„Žπ‘π‘€)β€˜π‘˜)β€˜π‘€)β€˜( 1 β€˜π‘€)))
106 simpr 485 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€))
107 eqid 2732 . . . . . . . . . . . . . . . . 17 (Hom β€˜πΆ) = (Hom β€˜πΆ)
1086, 107, 11, 89, 94catidcl 17622 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ( 1 β€˜π‘€) ∈ (𝑀(Hom β€˜πΆ)𝑀))
10910, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 42, 106, 94, 108yonedalem4b 18225 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((((β„Žπ‘π‘€)β€˜π‘˜)β€˜π‘€)β€˜( 1 β€˜π‘€)) = (((𝑀(2nd β€˜β„Ž)𝑀)β€˜( 1 β€˜π‘€))β€˜π‘˜))
110 eqid 2732 . . . . . . . . . . . . . . . . . 18 (Idβ€˜π‘‚) = (Idβ€˜π‘‚)
111 eqid 2732 . . . . . . . . . . . . . . . . . 18 (Idβ€˜π‘†) = (Idβ€˜π‘†)
112 relfunc 17808 . . . . . . . . . . . . . . . . . . 19 Rel (𝑂 Func 𝑆)
113 1st2ndbr 8024 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ β„Ž ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜β„Ž)(𝑂 Func 𝑆)(2nd β€˜β„Ž))
114112, 93, 113sylancr 587 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (1st β€˜β„Ž)(𝑂 Func 𝑆)(2nd β€˜β„Ž))
1157, 110, 111, 114, 94funcid 17816 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((𝑀(2nd β€˜β„Ž)𝑀)β€˜((Idβ€˜π‘‚)β€˜π‘€)) = ((Idβ€˜π‘†)β€˜((1st β€˜β„Ž)β€˜π‘€)))
1165, 11oppcid 17663 . . . . . . . . . . . . . . . . . . . 20 (𝐢 ∈ Cat β†’ (Idβ€˜π‘‚) = 1 )
11789, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (Idβ€˜π‘‚) = 1 )
118117fveq1d 6890 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((Idβ€˜π‘‚)β€˜π‘€) = ( 1 β€˜π‘€))
119118fveq2d 6892 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((𝑀(2nd β€˜β„Ž)𝑀)β€˜((Idβ€˜π‘‚)β€˜π‘€)) = ((𝑀(2nd β€˜β„Ž)𝑀)β€˜( 1 β€˜π‘€)))
12077ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ π‘ˆ ∈ V)
121 eqid 2732 . . . . . . . . . . . . . . . . . . . . 21 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
1227, 121, 114funcf1 17812 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (1st β€˜β„Ž):𝐡⟢(Baseβ€˜π‘†))
12312, 120setcbas 18024 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ π‘ˆ = (Baseβ€˜π‘†))
124123feq3d 6701 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((1st β€˜β„Ž):π΅βŸΆπ‘ˆ ↔ (1st β€˜β„Ž):𝐡⟢(Baseβ€˜π‘†)))
125122, 124mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (1st β€˜β„Ž):π΅βŸΆπ‘ˆ)
126125, 94ffvelcdmd 7084 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((1st β€˜β„Ž)β€˜π‘€) ∈ π‘ˆ)
12712, 111, 120, 126setcid 18032 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((Idβ€˜π‘†)β€˜((1st β€˜β„Ž)β€˜π‘€)) = ( I β†Ύ ((1st β€˜β„Ž)β€˜π‘€)))
128115, 119, 1273eqtr3d 2780 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((𝑀(2nd β€˜β„Ž)𝑀)β€˜( 1 β€˜π‘€)) = ( I β†Ύ ((1st β€˜β„Ž)β€˜π‘€)))
129128fveq1d 6890 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (((𝑀(2nd β€˜β„Ž)𝑀)β€˜( 1 β€˜π‘€))β€˜π‘˜) = (( I β†Ύ ((1st β€˜β„Ž)β€˜π‘€))β€˜π‘˜))
130 fvresi 7167 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€) β†’ (( I β†Ύ ((1st β€˜β„Ž)β€˜π‘€))β€˜π‘˜) = π‘˜)
131130adantl 482 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ (( I β†Ύ ((1st β€˜β„Ž)β€˜π‘€))β€˜π‘˜) = π‘˜)
132109, 129, 1313eqtrd 2776 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((((β„Žπ‘π‘€)β€˜π‘˜)β€˜π‘€)β€˜( 1 β€˜π‘€)) = π‘˜)
13397, 105, 1323eqtrd 2776 . . . . . . . . . . . . 13 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ ((1st β€˜β„Ž)β€˜π‘€)) β†’ ((β„Žπ‘€π‘€)β€˜((β„Žπ‘π‘€)β€˜π‘˜)) = π‘˜)
13488, 133syldan 591 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀)) β†’ ((β„Žπ‘€π‘€)β€˜((β„Žπ‘π‘€)β€˜π‘˜)) = π‘˜)
135134mpteq2dva 5247 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀) ↦ ((β„Žπ‘€π‘€)β€˜((β„Žπ‘π‘€)β€˜π‘˜))) = (π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀) ↦ π‘˜))
136 mptresid 6048 . . . . . . . . . . 11 ( I β†Ύ (β„Ž(1st β€˜πΈ)𝑀)) = (π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀) ↦ π‘˜)
137135, 136eqtr4di 2790 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (π‘˜ ∈ (β„Ž(1st β€˜πΈ)𝑀) ↦ ((β„Žπ‘€π‘€)β€˜((β„Žπ‘π‘€)β€˜π‘˜))) = ( I β†Ύ (β„Ž(1st β€˜πΈ)𝑀)))
13886, 137eqtrd 2772 . . . . . . . . 9 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘€π‘€) ∘ (β„Žπ‘π‘€)) = ( I β†Ύ (β„Ž(1st β€˜πΈ)𝑀)))
139 fcompt 7127 . . . . . . . . . . 11 (((β„Žπ‘π‘€):(β„Ž(1st β€˜πΈ)𝑀)⟢(β„Ž(1st β€˜π‘)𝑀) ∧ (β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀)) β†’ ((β„Žπ‘π‘€) ∘ (β„Žπ‘€π‘€)) = (𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀) ↦ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))))
14084, 35, 139syl2anc 584 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘π‘€) ∘ (β„Žπ‘€π‘€)) = (𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀) ↦ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))))
141 eqid 2732 . . . . . . . . . . . . . 14 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
14228adantr 481 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ 𝐢 ∈ Cat)
14329adantr 481 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ 𝑉 ∈ π‘Š)
14430adantr 481 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
14531adantr 481 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
146 simplrl 775 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ β„Ž ∈ (𝑂 Func 𝑆))
147 simplrr 776 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ 𝑀 ∈ 𝐡)
14881feq3d 6701 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀) ↔ (β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢((1st β€˜β„Ž)β€˜π‘€)))
14935, 148mpbid 231 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢((1st β€˜β„Ž)β€˜π‘€))
150149ffvelcdmda 7083 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((β„Žπ‘€π‘€)β€˜π‘) ∈ ((1st β€˜β„Ž)β€˜π‘€))
15110, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 142, 143, 144, 145, 146, 147, 42, 150yonedalem4c 18226 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘)) ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
152141, 151nat1st2nd 17898 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘)) ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘€)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))⟩(𝑂 Nat 𝑆)⟨(1st β€˜β„Ž), (2nd β€˜β„Ž)⟩))
153141, 152, 7natfn 17901 . . . . . . . . . . . . 13 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘)) Fn 𝐡)
15482eleq2d 2819 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀) ↔ 𝑏 ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž)))
155154biimpa 477 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ 𝑏 ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
156141, 155nat1st2nd 17898 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ 𝑏 ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘€)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))⟩(𝑂 Nat 𝑆)⟨(1st β€˜β„Ž), (2nd β€˜β„Ž)⟩))
157141, 156, 7natfn 17901 . . . . . . . . . . . . 13 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ 𝑏 Fn 𝐡)
158142adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ 𝐢 ∈ Cat)
159147adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ 𝑀 ∈ 𝐡)
160 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ 𝑧 ∈ 𝐡)
16110, 6, 158, 159, 107, 160yon11 18213 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) = (𝑧(Hom β€˜πΆ)𝑀))
162161eleq2d 2819 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ↔ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)))
163162biimpa 477 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)) β†’ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀))
164158adantr 481 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝐢 ∈ Cat)
165143ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝑉 ∈ π‘Š)
166144ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
167145ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
168146ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ β„Ž ∈ (𝑂 Func 𝑆))
169159adantr 481 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝑀 ∈ 𝐡)
170150ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((β„Žπ‘€π‘€)β€˜π‘) ∈ ((1st β€˜β„Ž)β€˜π‘€))
171 simplr 767 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝑧 ∈ 𝐡)
172 simpr 485 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀))
17310, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 42, 170, 171, 172yonedalem4b 18225 . . . . . . . . . . . . . . . . 17 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§)β€˜π‘˜) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)β€˜((β„Žπ‘€π‘€)β€˜π‘)))
17410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 26yonedalem3a 18223 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((β„Žπ‘€π‘€) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€))) ∧ (β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀)))
175174simpld 495 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (β„Žπ‘€π‘€) = (π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€))))
176175fveq1d 6890 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((β„Žπ‘€π‘€)β€˜π‘) = ((π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)))β€˜π‘))
177155ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝑏 ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž))
178 fveq1 6887 . . . . . . . . . . . . . . . . . . . . . 22 (π‘Ž = 𝑏 β†’ (π‘Žβ€˜π‘€) = (π‘β€˜π‘€))
179178fveq1d 6890 . . . . . . . . . . . . . . . . . . . . 21 (π‘Ž = 𝑏 β†’ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)) = ((π‘β€˜π‘€)β€˜( 1 β€˜π‘€)))
180 fvex 6901 . . . . . . . . . . . . . . . . . . . . 21 ((π‘β€˜π‘€)β€˜( 1 β€˜π‘€)) ∈ V
181179, 102, 180fvmpt 6995 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) β†’ ((π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)))β€˜π‘) = ((π‘β€˜π‘€)β€˜( 1 β€˜π‘€)))
182177, 181syl 17 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((π‘Ž ∈ (((1st β€˜π‘Œ)β€˜π‘€)(𝑂 Nat 𝑆)β„Ž) ↦ ((π‘Žβ€˜π‘€)β€˜( 1 β€˜π‘€)))β€˜π‘) = ((π‘β€˜π‘€)β€˜( 1 β€˜π‘€)))
183176, 182eqtrd 2772 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((β„Žπ‘€π‘€)β€˜π‘) = ((π‘β€˜π‘€)β€˜( 1 β€˜π‘€)))
184183fveq2d 6892 . . . . . . . . . . . . . . . . 17 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)β€˜((β„Žπ‘€π‘€)β€˜π‘)) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)β€˜((π‘β€˜π‘€)β€˜( 1 β€˜π‘€))))
185156ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ 𝑏 ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘€)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))⟩(𝑂 Nat 𝑆)⟨(1st β€˜β„Ž), (2nd β€˜β„Ž)⟩))
186 eqid 2732 . . . . . . . . . . . . . . . . . . . . . 22 (Hom β€˜π‘‚) = (Hom β€˜π‘‚)
187 eqid 2732 . . . . . . . . . . . . . . . . . . . . . 22 (compβ€˜π‘†) = (compβ€˜π‘†)
188107, 5oppchom 17656 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀(Hom β€˜π‘‚)𝑧) = (𝑧(Hom β€˜πΆ)𝑀)
189172, 188eleqtrrdi 2844 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ π‘˜ ∈ (𝑀(Hom β€˜π‘‚)𝑧))
190141, 185, 7, 186, 187, 169, 171, 189nati 17902 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((π‘β€˜π‘§)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€), ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜β„Ž)β€˜π‘§))((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€), ((1st β€˜β„Ž)β€˜π‘€)⟩(compβ€˜π‘†)((1st β€˜β„Ž)β€˜π‘§))(π‘β€˜π‘€)))
19177ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ π‘ˆ ∈ V)
192191adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ π‘ˆ ∈ V)
193192adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ π‘ˆ ∈ V)
194 relfunc 17808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐢 Func 𝑄)
19510, 17, 5, 12, 3, 77, 19yoncl 18211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (πœ‘ β†’ π‘Œ ∈ (𝐢 Func 𝑄))
196 1st2ndbr 8024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
197194, 195, 196sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (πœ‘ β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
1986, 4, 197funcf1 17812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (πœ‘ β†’ (1st β€˜π‘Œ):𝐡⟢(𝑂 Func 𝑆))
199198ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (1st β€˜π‘Œ):𝐡⟢(𝑂 Func 𝑆))
200199, 147ffvelcdmd 7084 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((1st β€˜π‘Œ)β€˜π‘€) ∈ (𝑂 Func 𝑆))
201 1st2ndbr 8024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Rel (𝑂 Func 𝑆) ∧ ((1st β€˜π‘Œ)β€˜π‘€) ∈ (𝑂 Func 𝑆)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€)))
202112, 200, 201sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€)))
2037, 121, 202funcf1 17812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€)):𝐡⟢(Baseβ€˜π‘†))
20412, 191setcbas 18024 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ π‘ˆ = (Baseβ€˜π‘†))
205204feq3d 6701 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€)):π΅βŸΆπ‘ˆ ↔ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€)):𝐡⟢(Baseβ€˜π‘†)))
206203, 205mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€)):π΅βŸΆπ‘ˆ)
207206, 147ffvelcdmd 7084 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€) ∈ π‘ˆ)
208207ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€) ∈ π‘ˆ)
209206ffvelcdmda 7083 . . . . . . . . . . . . . . . . . . . . . . 23 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ∈ π‘ˆ)
210209adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ∈ π‘ˆ)
211112, 146, 113sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (1st β€˜β„Ž)(𝑂 Func 𝑆)(2nd β€˜β„Ž))
2127, 121, 211funcf1 17812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (1st β€˜β„Ž):𝐡⟢(Baseβ€˜π‘†))
213204feq3d 6701 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((1st β€˜β„Ž):π΅βŸΆπ‘ˆ ↔ (1st β€˜β„Ž):𝐡⟢(Baseβ€˜π‘†)))
214212, 213mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (1st β€˜β„Ž):π΅βŸΆπ‘ˆ)
215214ffvelcdmda 7083 . . . . . . . . . . . . . . . . . . . . . . 23 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ ((1st β€˜β„Ž)β€˜π‘§) ∈ π‘ˆ)
216215adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((1st β€˜β„Ž)β€˜π‘§) ∈ π‘ˆ)
217 eqid 2732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Hom β€˜π‘†) = (Hom β€˜π‘†)
218202ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (1st β€˜((1st β€˜π‘Œ)β€˜π‘€))(𝑂 Func 𝑆)(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€)))
2197, 186, 217, 218, 169, 171funcf2 17814 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧):(𝑀(Hom β€˜π‘‚)𝑧)⟢(((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)))
220219, 189ffvelcdmd 7084 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)))
22112, 193, 217, 208, 210elsetchom 18027 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)(Hom β€˜π‘†)((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)) ↔ ((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)⟢((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)))
222220, 221mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)⟢((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§))
223156adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ 𝑏 ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘€)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))⟩(𝑂 Nat 𝑆)⟨(1st β€˜β„Ž), (2nd β€˜β„Ž)⟩))
224141, 223, 7, 217, 160natcl 17900 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (π‘β€˜π‘§) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘§)))
22512, 192, 217, 209, 215elsetchom 18027 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ ((π‘β€˜π‘§) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘§)) ↔ (π‘β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)⟢((1st β€˜β„Ž)β€˜π‘§)))
226224, 225mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (π‘β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)⟢((1st β€˜β„Ž)β€˜π‘§))
227226adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (π‘β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)⟢((1st β€˜β„Ž)β€˜π‘§))
22812, 193, 187, 208, 210, 216, 222, 227setcco 18029 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((π‘β€˜π‘§)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€), ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)⟩(compβ€˜π‘†)((1st β€˜β„Ž)β€˜π‘§))((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)) = ((π‘β€˜π‘§) ∘ ((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)))
229214, 147ffvelcdmd 7084 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((1st β€˜β„Ž)β€˜π‘€) ∈ π‘ˆ)
230229ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((1st β€˜β„Ž)β€˜π‘€) ∈ π‘ˆ)
231141, 156, 7, 217, 147natcl 17900 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (π‘β€˜π‘€) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘€)))
23212, 191, 217, 207, 229elsetchom 18027 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((π‘β€˜π‘€) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘€)) ↔ (π‘β€˜π‘€):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)⟢((1st β€˜β„Ž)β€˜π‘€)))
233231, 232mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ (π‘β€˜π‘€):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)⟢((1st β€˜β„Ž)β€˜π‘€))
234233ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (π‘β€˜π‘€):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€)⟢((1st β€˜β„Ž)β€˜π‘€))
235112, 168, 113sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (1st β€˜β„Ž)(𝑂 Func 𝑆)(2nd β€˜β„Ž))
2367, 186, 217, 235, 169, 171funcf2 17814 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (𝑀(2nd β€˜β„Ž)𝑧):(𝑀(Hom β€˜π‘‚)𝑧)⟢(((1st β€˜β„Ž)β€˜π‘€)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘§)))
237236, 189ffvelcdmd 7084 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜) ∈ (((1st β€˜β„Ž)β€˜π‘€)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘§)))
23812, 193, 217, 230, 216elsetchom 18027 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜) ∈ (((1st β€˜β„Ž)β€˜π‘€)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘§)) ↔ ((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜):((1st β€˜β„Ž)β€˜π‘€)⟢((1st β€˜β„Ž)β€˜π‘§)))
239237, 238mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜):((1st β€˜β„Ž)β€˜π‘€)⟢((1st β€˜β„Ž)β€˜π‘§))
24012, 193, 187, 208, 230, 216, 234, 239setcco 18029 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)(⟨((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€), ((1st β€˜β„Ž)β€˜π‘€)⟩(compβ€˜π‘†)((1st β€˜β„Ž)β€˜π‘§))(π‘β€˜π‘€)) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜) ∘ (π‘β€˜π‘€)))
241190, 228, 2403eqtr3d 2780 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((π‘β€˜π‘§) ∘ ((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜) ∘ (π‘β€˜π‘€)))
242241fveq1d 6890 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((π‘β€˜π‘§) ∘ ((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜))β€˜( 1 β€˜π‘€)) = ((((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜) ∘ (π‘β€˜π‘€))β€˜( 1 β€˜π‘€)))
2436, 107, 11, 142, 147catidcl 17622 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ( 1 β€˜π‘€) ∈ (𝑀(Hom β€˜πΆ)𝑀))
24410, 6, 142, 147, 107, 147yon11 18213 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€) = (𝑀(Hom β€˜πΆ)𝑀))
245243, 244eleqtrrd 2836 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ( 1 β€˜π‘€) ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€))
246245ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ( 1 β€˜π‘€) ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘€))
247222, 246fvco3d 6988 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((π‘β€˜π‘§) ∘ ((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜))β€˜( 1 β€˜π‘€)) = ((π‘β€˜π‘§)β€˜(((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)β€˜( 1 β€˜π‘€))))
248233, 245fvco3d 6988 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜) ∘ (π‘β€˜π‘€))β€˜( 1 β€˜π‘€)) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)β€˜((π‘β€˜π‘€)β€˜( 1 β€˜π‘€))))
249248ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜) ∘ (π‘β€˜π‘€))β€˜( 1 β€˜π‘€)) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)β€˜((π‘β€˜π‘€)β€˜( 1 β€˜π‘€))))
250242, 247, 2493eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((π‘β€˜π‘§)β€˜(((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)β€˜( 1 β€˜π‘€))) = (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)β€˜((π‘β€˜π‘€)β€˜( 1 β€˜π‘€))))
251 eqid 2732 . . . . . . . . . . . . . . . . . . . . 21 (compβ€˜πΆ) = (compβ€˜πΆ)
252243ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ( 1 β€˜π‘€) ∈ (𝑀(Hom β€˜πΆ)𝑀))
25310, 6, 164, 169, 107, 169, 251, 171, 172, 252yon12 18214 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)β€˜( 1 β€˜π‘€)) = (( 1 β€˜π‘€)(βŸ¨π‘§, π‘€βŸ©(compβ€˜πΆ)𝑀)π‘˜))
2546, 107, 11, 164, 171, 251, 169, 172catlid 17623 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (( 1 β€˜π‘€)(βŸ¨π‘§, π‘€βŸ©(compβ€˜πΆ)𝑀)π‘˜) = π‘˜)
255253, 254eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)β€˜( 1 β€˜π‘€)) = π‘˜)
256255fveq2d 6892 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((π‘β€˜π‘§)β€˜(((𝑀(2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))𝑧)β€˜π‘˜)β€˜( 1 β€˜π‘€))) = ((π‘β€˜π‘§)β€˜π‘˜))
257250, 256eqtr3d 2774 . . . . . . . . . . . . . . . . 17 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ (((𝑀(2nd β€˜β„Ž)𝑧)β€˜π‘˜)β€˜((π‘β€˜π‘€)β€˜( 1 β€˜π‘€))) = ((π‘β€˜π‘§)β€˜π‘˜))
258173, 184, 2573eqtrd 2776 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ (𝑧(Hom β€˜πΆ)𝑀)) β†’ ((((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§)β€˜π‘˜) = ((π‘β€˜π‘§)β€˜π‘˜))
259163, 258syldan 591 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) ∧ π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)) β†’ ((((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§)β€˜π‘˜) = ((π‘β€˜π‘§)β€˜π‘˜))
260259mpteq2dva 5247 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ↦ ((((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§)β€˜π‘˜)) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ↦ ((π‘β€˜π‘§)β€˜π‘˜)))
261152adantr 481 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘)) ∈ (⟨(1st β€˜((1st β€˜π‘Œ)β€˜π‘€)), (2nd β€˜((1st β€˜π‘Œ)β€˜π‘€))⟩(𝑂 Nat 𝑆)⟨(1st β€˜β„Ž), (2nd β€˜β„Ž)⟩))
262141, 261, 7, 217, 160natcl 17900 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘§)))
26312, 192, 217, 209, 215elsetchom 18027 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ ((((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§) ∈ (((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)(Hom β€˜π‘†)((1st β€˜β„Ž)β€˜π‘§)) ↔ (((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)⟢((1st β€˜β„Ž)β€˜π‘§)))
264262, 263mpbid 231 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§):((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§)⟢((1st β€˜β„Ž)β€˜π‘§))
265264feqmptd 6957 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ↦ ((((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§)β€˜π‘˜)))
266226feqmptd 6957 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (π‘β€˜π‘§) = (π‘˜ ∈ ((1st β€˜((1st β€˜π‘Œ)β€˜π‘€))β€˜π‘§) ↦ ((π‘β€˜π‘§)β€˜π‘˜)))
267260, 265, 2663eqtr4d 2782 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) ∧ 𝑧 ∈ 𝐡) β†’ (((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))β€˜π‘§) = (π‘β€˜π‘§))
268153, 157, 267eqfnfvd 7032 . . . . . . . . . . . 12 (((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) ∧ 𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀)) β†’ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘)) = 𝑏)
269268mpteq2dva 5247 . . . . . . . . . . 11 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀) ↦ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))) = (𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀) ↦ 𝑏))
270 mptresid 6048 . . . . . . . . . . 11 ( I β†Ύ (β„Ž(1st β€˜π‘)𝑀)) = (𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀) ↦ 𝑏)
271269, 270eqtr4di 2790 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (𝑏 ∈ (β„Ž(1st β€˜π‘)𝑀) ↦ ((β„Žπ‘π‘€)β€˜((β„Žπ‘€π‘€)β€˜π‘))) = ( I β†Ύ (β„Ž(1st β€˜π‘)𝑀)))
272140, 271eqtrd 2772 . . . . . . . . 9 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘π‘€) ∘ (β„Žπ‘€π‘€)) = ( I β†Ύ (β„Ž(1st β€˜π‘)𝑀)))
273 fcof1o 7290 . . . . . . . . 9 ((((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)⟢(β„Ž(1st β€˜πΈ)𝑀) ∧ (β„Žπ‘π‘€):(β„Ž(1st β€˜πΈ)𝑀)⟢(β„Ž(1st β€˜π‘)𝑀)) ∧ (((β„Žπ‘€π‘€) ∘ (β„Žπ‘π‘€)) = ( I β†Ύ (β„Ž(1st β€˜πΈ)𝑀)) ∧ ((β„Žπ‘π‘€) ∘ (β„Žπ‘€π‘€)) = ( I β†Ύ (β„Ž(1st β€˜π‘)𝑀)))) β†’ ((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)–1-1-ontoβ†’(β„Ž(1st β€˜πΈ)𝑀) ∧ β—‘(β„Žπ‘€π‘€) = (β„Žπ‘π‘€)))
27435, 84, 138, 272, 273syl22anc 837 . . . . . . . 8 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)–1-1-ontoβ†’(β„Ž(1st β€˜πΈ)𝑀) ∧ β—‘(β„Žπ‘€π‘€) = (β„Žπ‘π‘€)))
275 eqcom 2739 . . . . . . . . 9 (β—‘(β„Žπ‘€π‘€) = (β„Žπ‘π‘€) ↔ (β„Žπ‘π‘€) = β—‘(β„Žπ‘€π‘€))
276275anbi2i 623 . . . . . . . 8 (((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)–1-1-ontoβ†’(β„Ž(1st β€˜πΈ)𝑀) ∧ β—‘(β„Žπ‘€π‘€) = (β„Žπ‘π‘€)) ↔ ((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)–1-1-ontoβ†’(β„Ž(1st β€˜πΈ)𝑀) ∧ (β„Žπ‘π‘€) = β—‘(β„Žπ‘€π‘€)))
277274, 276sylib 217 . . . . . . 7 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)–1-1-ontoβ†’(β„Ž(1st β€˜πΈ)𝑀) ∧ (β„Žπ‘π‘€) = β—‘(β„Žπ‘€π‘€)))
278 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜π‘‡) = (Baseβ€˜π‘‡)
279 relfunc 17808 . . . . . . . . . . . 12 Rel ((𝑄 Γ—c 𝑂) Func 𝑇)
280 1st2ndbr 8024 . . . . . . . . . . . 12 ((Rel ((𝑄 Γ—c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇)) β†’ (1st β€˜π‘)((𝑄 Γ—c 𝑂) Func 𝑇)(2nd β€˜π‘))
281279, 22, 280sylancr 587 . . . . . . . . . . 11 (πœ‘ β†’ (1st β€˜π‘)((𝑄 Γ—c 𝑂) Func 𝑇)(2nd β€˜π‘))
2828, 278, 281funcf1 17812 . . . . . . . . . 10 (πœ‘ β†’ (1st β€˜π‘):((𝑂 Func 𝑆) Γ— 𝐡)⟢(Baseβ€˜π‘‡))
28313, 18setcbas 18024 . . . . . . . . . . 11 (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘‡))
284283feq3d 6701 . . . . . . . . . 10 (πœ‘ β†’ ((1st β€˜π‘):((𝑂 Func 𝑆) Γ— 𝐡)βŸΆπ‘‰ ↔ (1st β€˜π‘):((𝑂 Func 𝑆) Γ— 𝐡)⟢(Baseβ€˜π‘‡)))
285282, 284mpbird 256 . . . . . . . . 9 (πœ‘ β†’ (1st β€˜π‘):((𝑂 Func 𝑆) Γ— 𝐡)βŸΆπ‘‰)
286285fovcdmda 7574 . . . . . . . 8 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Ž(1st β€˜π‘)𝑀) ∈ 𝑉)
287 1st2ndbr 8024 . . . . . . . . . . . 12 ((Rel ((𝑄 Γ—c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇)) β†’ (1st β€˜πΈ)((𝑄 Γ—c 𝑂) Func 𝑇)(2nd β€˜πΈ))
288279, 23, 287sylancr 587 . . . . . . . . . . 11 (πœ‘ β†’ (1st β€˜πΈ)((𝑄 Γ—c 𝑂) Func 𝑇)(2nd β€˜πΈ))
2898, 278, 288funcf1 17812 . . . . . . . . . 10 (πœ‘ β†’ (1st β€˜πΈ):((𝑂 Func 𝑆) Γ— 𝐡)⟢(Baseβ€˜π‘‡))
290283feq3d 6701 . . . . . . . . . 10 (πœ‘ β†’ ((1st β€˜πΈ):((𝑂 Func 𝑆) Γ— 𝐡)βŸΆπ‘‰ ↔ (1st β€˜πΈ):((𝑂 Func 𝑆) Γ— 𝐡)⟢(Baseβ€˜π‘‡)))
291289, 290mpbird 256 . . . . . . . . 9 (πœ‘ β†’ (1st β€˜πΈ):((𝑂 Func 𝑆) Γ— 𝐡)βŸΆπ‘‰)
292291fovcdmda 7574 . . . . . . . 8 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Ž(1st β€˜πΈ)𝑀) ∈ 𝑉)
29313, 29, 286, 292, 25setcinv 18036 . . . . . . 7 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ ((β„Žπ‘€π‘€)((β„Ž(1st β€˜π‘)𝑀)(Invβ€˜π‘‡)(β„Ž(1st β€˜πΈ)𝑀))(β„Žπ‘π‘€) ↔ ((β„Žπ‘€π‘€):(β„Ž(1st β€˜π‘)𝑀)–1-1-ontoβ†’(β„Ž(1st β€˜πΈ)𝑀) ∧ (β„Žπ‘π‘€) = β—‘(β„Žπ‘€π‘€))))
294277, 293mpbird 256 . . . . . 6 ((πœ‘ ∧ (β„Ž ∈ (𝑂 Func 𝑆) ∧ 𝑀 ∈ 𝐡)) β†’ (β„Žπ‘€π‘€)((β„Ž(1st β€˜π‘)𝑀)(Invβ€˜π‘‡)(β„Ž(1st β€˜πΈ)𝑀))(β„Žπ‘π‘€))
295294ralrimivva 3200 . . . . 5 (πœ‘ β†’ βˆ€β„Ž ∈ (𝑂 Func 𝑆)βˆ€π‘€ ∈ 𝐡 (β„Žπ‘€π‘€)((β„Ž(1st β€˜π‘)𝑀)(Invβ€˜π‘‡)(β„Ž(1st β€˜πΈ)𝑀))(β„Žπ‘π‘€))
296 fveq2 6888 . . . . . . . 8 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ (π‘€β€˜π‘§) = (π‘€β€˜βŸ¨β„Ž, π‘€βŸ©))
297 df-ov 7408 . . . . . . . 8 (β„Žπ‘€π‘€) = (π‘€β€˜βŸ¨β„Ž, π‘€βŸ©)
298296, 297eqtr4di 2790 . . . . . . 7 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ (π‘€β€˜π‘§) = (β„Žπ‘€π‘€))
299 fveq2 6888 . . . . . . . . 9 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ ((1st β€˜π‘)β€˜π‘§) = ((1st β€˜π‘)β€˜βŸ¨β„Ž, π‘€βŸ©))
300 df-ov 7408 . . . . . . . . 9 (β„Ž(1st β€˜π‘)𝑀) = ((1st β€˜π‘)β€˜βŸ¨β„Ž, π‘€βŸ©)
301299, 300eqtr4di 2790 . . . . . . . 8 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ ((1st β€˜π‘)β€˜π‘§) = (β„Ž(1st β€˜π‘)𝑀))
302 fveq2 6888 . . . . . . . . 9 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ ((1st β€˜πΈ)β€˜π‘§) = ((1st β€˜πΈ)β€˜βŸ¨β„Ž, π‘€βŸ©))
303 df-ov 7408 . . . . . . . . 9 (β„Ž(1st β€˜πΈ)𝑀) = ((1st β€˜πΈ)β€˜βŸ¨β„Ž, π‘€βŸ©)
304302, 303eqtr4di 2790 . . . . . . . 8 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ ((1st β€˜πΈ)β€˜π‘§) = (β„Ž(1st β€˜πΈ)𝑀))
305301, 304oveq12d 7423 . . . . . . 7 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ (((1st β€˜π‘)β€˜π‘§)(Invβ€˜π‘‡)((1st β€˜πΈ)β€˜π‘§)) = ((β„Ž(1st β€˜π‘)𝑀)(Invβ€˜π‘‡)(β„Ž(1st β€˜πΈ)𝑀)))
306 fveq2 6888 . . . . . . . 8 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ (π‘β€˜π‘§) = (π‘β€˜βŸ¨β„Ž, π‘€βŸ©))
307 df-ov 7408 . . . . . . . 8 (β„Žπ‘π‘€) = (π‘β€˜βŸ¨β„Ž, π‘€βŸ©)
308306, 307eqtr4di 2790 . . . . . . 7 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ (π‘β€˜π‘§) = (β„Žπ‘π‘€))
309298, 305, 308breq123d 5161 . . . . . 6 (𝑧 = βŸ¨β„Ž, π‘€βŸ© β†’ ((π‘€β€˜π‘§)(((1st β€˜π‘)β€˜π‘§)(Invβ€˜π‘‡)((1st β€˜πΈ)β€˜π‘§))(π‘β€˜π‘§) ↔ (β„Žπ‘€π‘€)((β„Ž(1st β€˜π‘)𝑀)(Invβ€˜π‘‡)(β„Ž(1st β€˜πΈ)𝑀))(β„Žπ‘π‘€)))
310309ralxp 5839 . . . . 5 (βˆ€π‘§ ∈ ((𝑂 Func 𝑆) Γ— 𝐡)(π‘€β€˜π‘§)(((1st β€˜π‘)β€˜π‘§)(Invβ€˜π‘‡)((1st β€˜πΈ)β€˜π‘§))(π‘β€˜π‘§) ↔ βˆ€β„Ž ∈ (𝑂 Func 𝑆)βˆ€π‘€ ∈ 𝐡 (β„Žπ‘€π‘€)((β„Ž(1st β€˜π‘)𝑀)(Invβ€˜π‘‡)(β„Ž(1st β€˜πΈ)𝑀))(β„Žπ‘π‘€))
311295, 310sylibr 233 . . . 4 (πœ‘ β†’ βˆ€π‘§ ∈ ((𝑂 Func 𝑆) Γ— 𝐡)(π‘€β€˜π‘§)(((1st β€˜π‘)β€˜π‘§)(Invβ€˜π‘‡)((1st β€˜πΈ)β€˜π‘§))(π‘β€˜π‘§))
312311r19.21bi 3248 . . 3 ((πœ‘ ∧ 𝑧 ∈ ((𝑂 Func 𝑆) Γ— 𝐡)) β†’ (π‘€β€˜π‘§)(((1st β€˜π‘)β€˜π‘§)(Invβ€˜π‘‡)((1st β€˜πΈ)β€˜π‘§))(π‘β€˜π‘§))
3131, 8, 9, 22, 23, 24, 25, 27, 312invfuc 17923 . 2 (πœ‘ β†’ 𝑀(𝑍𝐼𝐸)(𝑧 ∈ ((𝑂 Func 𝑆) Γ— 𝐡) ↦ (π‘β€˜π‘§)))
314 fvex 6901 . . . . 5 ((1st β€˜π‘“)β€˜π‘₯) ∈ V
315314mptex 7221 . . . 4 (𝑒 ∈ ((1st β€˜π‘“)β€˜π‘₯) ↦ (𝑦 ∈ 𝐡 ↦ (𝑔 ∈ (𝑦(Hom β€˜πΆ)π‘₯) ↦ (((π‘₯(2nd β€˜π‘“)𝑦)β€˜π‘”)β€˜π‘’)))) ∈ V
31642, 315fnmpoi 8052 . . 3 𝑁 Fn ((𝑂 Func 𝑆) Γ— 𝐡)
317 dffn5 6947 . . 3 (𝑁 Fn ((𝑂 Func 𝑆) Γ— 𝐡) ↔ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) Γ— 𝐡) ↦ (π‘β€˜π‘§)))
318316, 317mpbi 229 . 2 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) Γ— 𝐡) ↦ (π‘β€˜π‘§))
319313, 318breqtrrdi 5189 1 (πœ‘ β†’ 𝑀(𝑍𝐼𝐸)𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βˆͺ cun 3945   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673  β—‘ccnv 5674  ran crn 5676   β†Ύ cres 5677   ∘ ccom 5679  Rel wrel 5680   Fn wfn 6535  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8206  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604  Idccid 17605  Homf chomf 17606  oppCatcoppc 17651  Invcinv 17688   Func cfunc 17800   ∘func ccofu 17802   Nat cnat 17888   FuncCat cfuc 17889  SetCatcsetc 18021   Γ—c cxpc 18116   1stF c1stf 18117   2ndF c2ndf 18118   ⟨,⟩F cprf 18119   evalF cevlf 18158  HomFchof 18197  Yoncyon 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-homf 17610  df-comf 17611  df-oppc 17652  df-sect 17690  df-inv 17691  df-ssc 17753  df-resc 17754  df-subc 17755  df-func 17804  df-cofu 17806  df-nat 17890  df-fuc 17891  df-setc 18022  df-xpc 18120  df-1stf 18121  df-2ndf 18122  df-prf 18123  df-evlf 18162  df-curf 18163  df-hof 18199  df-yon 18200
This theorem is referenced by:  yonffthlem  18231  yoneda  18232
  Copyright terms: Public domain W3C validator