MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedainv Structured version   Visualization version   GIF version

Theorem yonedainv 18351
Description: The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
yonedainv.i 𝐼 = (Inv‘𝑅)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
Assertion
Ref Expression
yonedainv (𝜑𝑀(𝑍𝐼𝐸)𝑁)
Distinct variable groups:   𝑓,𝑎,𝑔,𝑥,𝑦, 1   𝑢,𝑎,𝑔,𝑦,𝐶,𝑓,𝑥   𝐸,𝑎,𝑓,𝑔,𝑢,𝑦   𝐵,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑁,𝑎   𝑂,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑆,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑔,𝑀,𝑢,𝑦   𝑄,𝑎,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑌,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑍,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝐼(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)

Proof of Theorem yonedainv
Dummy variables 𝑏 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.r . . 3 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
2 eqid 2740 . . . 4 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
3 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
43fucbas 18029 . . . 4 (𝑂 Func 𝑆) = (Base‘𝑄)
5 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
6 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
75, 6oppcbas 17777 . . . 4 𝐵 = (Base‘𝑂)
82, 4, 7xpcbas 18247 . . 3 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
9 eqid 2740 . . 3 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
10 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
11 yoneda.1 . . . . 5 1 = (Id‘𝐶)
12 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
13 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
14 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
15 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
16 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
18 yoneda.w . . . . 5 (𝜑𝑉𝑊)
19 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
20 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2110, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20yonedalem1 18342 . . . 4 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
2221simpld 494 . . 3 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
2321simprd 495 . . 3 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
24 yonedainv.i . . 3 𝐼 = (Inv‘𝑅)
25 eqid 2740 . . 3 (Inv‘𝑇) = (Inv‘𝑇)
26 yoneda.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
2710, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20, 26yonedalem3 18350 . . 3 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
2817adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝐶 ∈ Cat)
2918adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑉𝑊)
3019adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
3120adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
32 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ∈ (𝑂 Func 𝑆))
33 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑤𝐵)
3410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33, 26yonedalem3a 18344 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
3534simprd 495 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤))
3628adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝐶 ∈ Cat)
3729adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑉𝑊)
3830adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
3931adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
40 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ∈ (𝑂 Func 𝑆))
41 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑤𝐵)
42 yonedainv.n . . . . . . . . . . . 12 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
43 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑏 ∈ ((1st)‘𝑤))
4410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 36, 37, 38, 39, 40, 41, 42, 43yonedalem4c 18347 . . . . . . . . . . 11 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ((𝑁𝑤)‘𝑏) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
4544fmpttd 7149 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
466fvexi 6934 . . . . . . . . . . . . . . 15 𝐵 ∈ V
4746mptex 7260 . . . . . . . . . . . . . 14 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))) ∈ V
48 eqid 2740 . . . . . . . . . . . . . 14 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))))
4947, 48fnmpti 6723 . . . . . . . . . . . . 13 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) Fn ((1st)‘𝑤)
50 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = 𝑥 = 𝑤) → 𝑓 = )
5150fveq2d 6924 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 𝑥 = 𝑤) → (1st𝑓) = (1st))
52 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 𝑥 = 𝑤) → 𝑥 = 𝑤)
5351, 52fveq12d 6927 . . . . . . . . . . . . . . . . 17 ((𝑓 = 𝑥 = 𝑤) → ((1st𝑓)‘𝑥) = ((1st)‘𝑤))
54 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑥 = 𝑤)
5554oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑤))
56 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑓 = )
5756fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd))
58 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑦 = 𝑦)
5957, 54, 58oveq123d 7469 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑤(2nd)𝑦))
6059fveq1d 6922 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘𝑔) = ((𝑤(2nd)𝑦)‘𝑔))
6160fveq1d 6922 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))
6255, 61mpteq12dv 5257 . . . . . . . . . . . . . . . . . 18 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))
6362mpteq2dva 5266 . . . . . . . . . . . . . . . . 17 ((𝑓 = 𝑥 = 𝑤) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))))
6453, 63mpteq12dv 5257 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝑥 = 𝑤) → (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
65 fvex 6933 . . . . . . . . . . . . . . . . 17 ((1st)‘𝑤) ∈ V
6665mptex 7260 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) ∈ V
6764, 42, 66ovmpoa 7605 . . . . . . . . . . . . . . 15 (( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵) → (𝑁𝑤) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
6867adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
6968fneq1d 6672 . . . . . . . . . . . . 13 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) Fn ((1st)‘𝑤) ↔ (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) Fn ((1st)‘𝑤)))
7049, 69mpbiri 258 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) Fn ((1st)‘𝑤))
71 dffn5 6980 . . . . . . . . . . . 12 ((𝑁𝑤) Fn ((1st)‘𝑤) ↔ (𝑁𝑤) = (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)))
7270, 71sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) = (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)))
735oppccat 17782 . . . . . . . . . . . . . 14 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
7417, 73syl 17 . . . . . . . . . . . . 13 (𝜑𝑂 ∈ Cat)
7574adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑂 ∈ Cat)
7620unssbd 4217 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
7718, 76ssexd 5342 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ V)
7812setccat 18152 . . . . . . . . . . . . . 14 (𝑈 ∈ V → 𝑆 ∈ Cat)
7977, 78syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Cat)
8079adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑆 ∈ Cat)
8115, 75, 80, 7, 32, 33evlf1 18290 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝐸)𝑤) = ((1st)‘𝑤))
8210, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33yonedalem21 18343 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝑍)𝑤) = (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
8372, 81, 82feq123d 6736 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤) ↔ (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆))))
8445, 83mpbird 257 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤))
85 fcompt 7167 . . . . . . . . . . 11 (((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ∧ (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))))
8635, 84, 85syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))))
8781eleq2d 2830 . . . . . . . . . . . . . 14 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↔ 𝑘 ∈ ((1st)‘𝑤)))
8887biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st𝐸)𝑤)) → 𝑘 ∈ ((1st)‘𝑤))
8928adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝐶 ∈ Cat)
9029adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑉𝑊)
9130adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
9231adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
93 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ∈ (𝑂 Func 𝑆))
94 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑤𝐵)
9510, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 26yonedalem3a 18344 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
9695simpld 494 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))))
9796fveq1d 6922 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)))
9872, 44fmpt3d 7150 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
9998ffvelcdmda 7118 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑁𝑤)‘𝑘) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
100 fveq1 6919 . . . . . . . . . . . . . . . . 17 (𝑎 = ((𝑁𝑤)‘𝑘) → (𝑎𝑤) = (((𝑁𝑤)‘𝑘)‘𝑤))
101100fveq1d 6922 . . . . . . . . . . . . . . . 16 (𝑎 = ((𝑁𝑤)‘𝑘) → ((𝑎𝑤)‘( 1𝑤)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
102 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))
103 fvex 6933 . . . . . . . . . . . . . . . 16 ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) ∈ V
104101, 102, 103fvmpt 7029 . . . . . . . . . . . . . . 15 (((𝑁𝑤)‘𝑘) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
10599, 104syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
106 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑘 ∈ ((1st)‘𝑤))
107 eqid 2740 . . . . . . . . . . . . . . . . 17 (Hom ‘𝐶) = (Hom ‘𝐶)
1086, 107, 11, 89, 94catidcl 17740 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
10910, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 42, 106, 94, 108yonedalem4b 18346 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) = (((𝑤(2nd)𝑤)‘( 1𝑤))‘𝑘))
110 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Id‘𝑂) = (Id‘𝑂)
111 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Id‘𝑆) = (Id‘𝑆)
112 relfunc 17926 . . . . . . . . . . . . . . . . . . 19 Rel (𝑂 Func 𝑆)
113 1st2ndbr 8083 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ∈ (𝑂 Func 𝑆)) → (1st)(𝑂 Func 𝑆)(2nd))
114112, 93, 113sylancr 586 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
1157, 110, 111, 114, 94funcid 17934 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘((Id‘𝑂)‘𝑤)) = ((Id‘𝑆)‘((1st)‘𝑤)))
1165, 11oppcid 17781 . . . . . . . . . . . . . . . . . . . 20 (𝐶 ∈ Cat → (Id‘𝑂) = 1 )
11789, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (Id‘𝑂) = 1 )
118117fveq1d 6922 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((Id‘𝑂)‘𝑤) = ( 1𝑤))
119118fveq2d 6924 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘((Id‘𝑂)‘𝑤)) = ((𝑤(2nd)𝑤)‘( 1𝑤)))
12077ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑈 ∈ V)
121 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑆) = (Base‘𝑆)
1227, 121, 114funcf1 17930 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st):𝐵⟶(Base‘𝑆))
12312, 120setcbas 18145 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑈 = (Base‘𝑆))
124123feq3d 6734 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((1st):𝐵𝑈 ↔ (1st):𝐵⟶(Base‘𝑆)))
125122, 124mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st):𝐵𝑈)
126125, 94ffvelcdmd 7119 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
12712, 111, 120, 126setcid 18153 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((Id‘𝑆)‘((1st)‘𝑤)) = ( I ↾ ((1st)‘𝑤)))
128115, 119, 1273eqtr3d 2788 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘( 1𝑤)) = ( I ↾ ((1st)‘𝑤)))
129128fveq1d 6922 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (((𝑤(2nd)𝑤)‘( 1𝑤))‘𝑘) = (( I ↾ ((1st)‘𝑤))‘𝑘))
130 fvresi 7207 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((1st)‘𝑤) → (( I ↾ ((1st)‘𝑤))‘𝑘) = 𝑘)
131130adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (( I ↾ ((1st)‘𝑤))‘𝑘) = 𝑘)
132109, 129, 1313eqtrd 2784 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) = 𝑘)
13397, 105, 1323eqtrd 2784 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = 𝑘)
13488, 133syldan 590 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st𝐸)𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = 𝑘)
135134mpteq2dva 5266 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ 𝑘))
136 mptresid 6080 . . . . . . . . . . 11 ( I ↾ ((1st𝐸)𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ 𝑘)
137135, 136eqtr4di 2798 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))) = ( I ↾ ((1st𝐸)𝑤)))
13886, 137eqtrd 2780 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = ( I ↾ ((1st𝐸)𝑤)))
139 fcompt 7167 . . . . . . . . . . 11 (((𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))))
14084, 35, 139syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))))
141 eqid 2740 . . . . . . . . . . . . . 14 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
14228adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝐶 ∈ Cat)
14329adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑉𝑊)
14430adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
14531adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
146 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ∈ (𝑂 Func 𝑆))
147 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑤𝐵)
14881feq3d 6734 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ↔ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st)‘𝑤)))
14935, 148mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤):((1st𝑍)𝑤)⟶((1st)‘𝑤))
150149ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑀𝑤)‘𝑏) ∈ ((1st)‘𝑤))
15110, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 142, 143, 144, 145, 146, 147, 42, 150yonedalem4c 18347 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
152141, 151nat1st2nd 18019 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
153141, 152, 7natfn 18022 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) Fn 𝐵)
15482eleq2d 2830 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↔ 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆))))
155154biimpa 476 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
156141, 155nat1st2nd 18019 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
157141, 156, 7natfn 18022 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 Fn 𝐵)
158142adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝐶 ∈ Cat)
159147adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑤𝐵)
160 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑧𝐵)
16110, 6, 158, 159, 107, 160yon11 18334 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤))
162161eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))
163162biimpa 476 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
164158adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat)
165143ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉𝑊)
166144ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
167145ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
168146ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ (𝑂 Func 𝑆))
169159adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑤𝐵)
170150ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) ∈ ((1st)‘𝑤))
171 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧𝐵)
172 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
17310, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 42, 170, 171, 172yonedalem4b 18346 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑀𝑤)‘𝑏)))
17410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 26yonedalem3a 18344 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
175174simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))))
176175fveq1d 6922 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) = ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏))
177155ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
178 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑎𝑤) = (𝑏𝑤))
179178fveq1d 6922 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → ((𝑎𝑤)‘( 1𝑤)) = ((𝑏𝑤)‘( 1𝑤)))
180 fvex 6933 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑤)‘( 1𝑤)) ∈ V
181179, 102, 180fvmpt 7029 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
182177, 181syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
183176, 182eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
184183fveq2d 6924 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)‘((𝑀𝑤)‘𝑏)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
185156ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
186 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (Hom ‘𝑂) = (Hom ‘𝑂)
187 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (comp‘𝑆) = (comp‘𝑆)
188107, 5oppchom 17774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑤)
189172, 188eleqtrrdi 2855 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑤(Hom ‘𝑂)𝑧))
190141, 185, 7, 186, 187, 169, 171, 189nati 18023 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟩(comp‘𝑆)((1st)‘𝑧))((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd)𝑧)‘𝑘)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st)‘𝑤)⟩(comp‘𝑆)((1st)‘𝑧))(𝑏𝑤)))
19177ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑈 ∈ V)
192191adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑈 ∈ V)
193192adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑈 ∈ V)
194 relfunc 17926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐶 Func 𝑄)
19510, 17, 5, 12, 3, 77, 19yoncl 18332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
196 1st2ndbr 8083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
197194, 195, 196sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
1986, 4, 197funcf1 17930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
199198ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
200199, 147ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
201 1st2ndbr 8083 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
202112, 200, 201sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
2037, 121, 202funcf1 17930 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
20412, 191setcbas 18145 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑈 = (Base‘𝑆))
205204feq3d 6734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆)))
206203, 205mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵𝑈)
207206, 147ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) ∈ 𝑈)
208207ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) ∈ 𝑈)
209206ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
211112, 146, 113sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
2127, 121, 211funcf1 17930 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st):𝐵⟶(Base‘𝑆))
213204feq3d 6734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st):𝐵𝑈 ↔ (1st):𝐵⟶(Base‘𝑆)))
214212, 213mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st):𝐵𝑈)
215214ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st)‘𝑧) ∈ 𝑈)
216215adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st)‘𝑧) ∈ 𝑈)
217 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Hom ‘𝑆) = (Hom ‘𝑆)
218202ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
2197, 186, 217, 218, 169, 171funcf2 17932 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
220219, 189ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
22112, 193, 217, 208, 210elsetchom 18148 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)) ↔ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
222220, 221mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑧))
223156adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
224141, 223, 7, 217, 160natcl 18021 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)))
22512, 192, 217, 209, 215elsetchom 18148 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((𝑏𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)) ↔ (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧)))
226224, 225mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
227226adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
22812, 193, 187, 208, 210, 216, 222, 227setcco 18150 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟩(comp‘𝑆)((1st)‘𝑧))((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = ((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)))
229214, 147ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
230229ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
231141, 156, 7, 217, 147natcl 18021 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (𝑏𝑤) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st)‘𝑤)))
23212, 191, 217, 207, 229elsetchom 18148 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑏𝑤) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st)‘𝑤)) ↔ (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤)))
233231, 232mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤))
234233ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤))
235112, 168, 113sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
2367, 186, 217, 235, 169, 171funcf2 17932 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd)𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)))
237236, 189ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd)𝑧)‘𝑘) ∈ (((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)))
23812, 193, 217, 230, 216elsetchom 18148 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘) ∈ (((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)) ↔ ((𝑤(2nd)𝑧)‘𝑘):((1st)‘𝑤)⟶((1st)‘𝑧)))
239237, 238mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd)𝑧)‘𝑘):((1st)‘𝑤)⟶((1st)‘𝑧))
24012, 193, 187, 208, 230, 216, 234, 239setcco 18150 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st)‘𝑤)⟩(comp‘𝑆)((1st)‘𝑧))(𝑏𝑤)) = (((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤)))
241190, 228, 2403eqtr3d 2788 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤)))
242241fveq1d 6922 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘))‘( 1𝑤)) = ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)))
2436, 107, 11, 142, 147catidcl 17740 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
24410, 6, 142, 147, 107, 147yon11 18334 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) = (𝑤(Hom ‘𝐶)𝑤))
245243, 244eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤))
246245ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤))
247222, 246fvco3d 7022 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘))‘( 1𝑤)) = ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))))
248233, 245fvco3d 7022 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
249248ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
250242, 247, 2493eqtr3d 2788 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
251 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (comp‘𝐶) = (comp‘𝐶)
252243ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
25310, 6, 164, 169, 107, 169, 251, 171, 172, 252yon12 18335 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤)) = (( 1𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐶)𝑤)𝑘))
2546, 107, 11, 164, 171, 251, 169, 172catlid 17741 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (( 1𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐶)𝑤)𝑘) = 𝑘)
255253, 254eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤)) = 𝑘)
256255fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))) = ((𝑏𝑧)‘𝑘))
257250, 256eqtr3d 2782 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))) = ((𝑏𝑧)‘𝑘))
258173, 184, 2573eqtrd 2784 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏𝑧)‘𝑘))
259163, 258syldan 590 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏𝑧)‘𝑘))
260259mpteq2dva 5266 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((𝑏𝑧)‘𝑘)))
261152adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
262141, 261, 7, 217, 160natcl 18021 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)))
26312, 192, 217, 209, 215elsetchom 18148 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)) ↔ (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧)))
264262, 263mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
265264feqmptd 6990 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)))
266226feqmptd 6990 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((𝑏𝑧)‘𝑘)))
267260, 265, 2663eqtr4d 2790 . . . . . . . . . . . . 13 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) = (𝑏𝑧))
268153, 157, 267eqfnfvd 7067 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) = 𝑏)
269268mpteq2dva 5266 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ 𝑏))
270 mptresid 6080 . . . . . . . . . . 11 ( I ↾ ((1st𝑍)𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ 𝑏)
271269, 270eqtr4di 2798 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))) = ( I ↾ ((1st𝑍)𝑤)))
272140, 271eqtrd 2780 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = ( I ↾ ((1st𝑍)𝑤)))
273 fcof1o 7332 . . . . . . . . 9 ((((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ∧ (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤)) ∧ (((𝑀𝑤) ∘ (𝑁𝑤)) = ( I ↾ ((1st𝐸)𝑤)) ∧ ((𝑁𝑤) ∘ (𝑀𝑤)) = ( I ↾ ((1st𝑍)𝑤)))) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)))
27435, 84, 138, 272, 273syl22anc 838 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)))
275 eqcom 2747 . . . . . . . . 9 ((𝑀𝑤) = (𝑁𝑤) ↔ (𝑁𝑤) = (𝑀𝑤))
276275anbi2i 622 . . . . . . . 8 (((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)) ↔ ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤)))
277274, 276sylib 218 . . . . . . 7 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤)))
278 eqid 2740 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
279 relfunc 17926 . . . . . . . . . . . 12 Rel ((𝑄 ×c 𝑂) Func 𝑇)
280 1st2ndbr 8083 . . . . . . . . . . . 12 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
281279, 22, 280sylancr 586 . . . . . . . . . . 11 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
2828, 278, 281funcf1 17930 . . . . . . . . . 10 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
28313, 18setcbas 18145 . . . . . . . . . . 11 (𝜑𝑉 = (Base‘𝑇))
284283feq3d 6734 . . . . . . . . . 10 (𝜑 → ((1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)))
285282, 284mpbird 257 . . . . . . . . 9 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉)
286285fovcdmda 7621 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝑍)𝑤) ∈ 𝑉)
287 1st2ndbr 8083 . . . . . . . . . . . 12 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
288279, 23, 287sylancr 586 . . . . . . . . . . 11 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
2898, 278, 288funcf1 17930 . . . . . . . . . 10 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
290283feq3d 6734 . . . . . . . . . 10 (𝜑 → ((1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)))
291289, 290mpbird 257 . . . . . . . . 9 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉)
292291fovcdmda 7621 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝐸)𝑤) ∈ 𝑉)
29313, 29, 286, 292, 25setcinv 18157 . . . . . . 7 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤) ↔ ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤))))
294277, 293mpbird 257 . . . . . 6 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
295294ralrimivva 3208 . . . . 5 (𝜑 → ∀ ∈ (𝑂 Func 𝑆)∀𝑤𝐵 (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
296 fveq2 6920 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → (𝑀𝑧) = (𝑀‘⟨, 𝑤⟩))
297 df-ov 7451 . . . . . . . 8 (𝑀𝑤) = (𝑀‘⟨, 𝑤⟩)
298296, 297eqtr4di 2798 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (𝑀𝑧) = (𝑀𝑤))
299 fveq2 6920 . . . . . . . . 9 (𝑧 = ⟨, 𝑤⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨, 𝑤⟩))
300 df-ov 7451 . . . . . . . . 9 ((1st𝑍)𝑤) = ((1st𝑍)‘⟨, 𝑤⟩)
301299, 300eqtr4di 2798 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)𝑤))
302 fveq2 6920 . . . . . . . . 9 (𝑧 = ⟨, 𝑤⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨, 𝑤⟩))
303 df-ov 7451 . . . . . . . . 9 ((1st𝐸)𝑤) = ((1st𝐸)‘⟨, 𝑤⟩)
304302, 303eqtr4di 2798 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)𝑤))
305301, 304oveq12d 7466 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧)) = (((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤)))
306 fveq2 6920 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → (𝑁𝑧) = (𝑁‘⟨, 𝑤⟩))
307 df-ov 7451 . . . . . . . 8 (𝑁𝑤) = (𝑁‘⟨, 𝑤⟩)
308306, 307eqtr4di 2798 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (𝑁𝑧) = (𝑁𝑤))
309298, 305, 308breq123d 5180 . . . . . 6 (𝑧 = ⟨, 𝑤⟩ → ((𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧) ↔ (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤)))
310309ralxp 5866 . . . . 5 (∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧) ↔ ∀ ∈ (𝑂 Func 𝑆)∀𝑤𝐵 (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
311295, 310sylibr 234 . . . 4 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧))
312311r19.21bi 3257 . . 3 ((𝜑𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)) → (𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧))
3131, 8, 9, 22, 23, 24, 25, 27, 312invfuc 18044 . 2 (𝜑𝑀(𝑍𝐼𝐸)(𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧)))
314 fvex 6933 . . . . 5 ((1st𝑓)‘𝑥) ∈ V
315314mptex 7260 . . . 4 (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) ∈ V
31642, 315fnmpoi 8111 . . 3 𝑁 Fn ((𝑂 Func 𝑆) × 𝐵)
317 dffn5 6980 . . 3 (𝑁 Fn ((𝑂 Func 𝑆) × 𝐵) ↔ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧)))
318316, 317mpbi 230 . 2 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧))
319313, 318breqtrrdi 5208 1 (𝜑𝑀(𝑍𝐼𝐸)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ccnv 5699  ran crn 5701  cres 5702  ccom 5704  Rel wrel 5705   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  tpos ctpos 8266  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Homf chomf 17724  oppCatcoppc 17769  Invcinv 17806   Func cfunc 17918  func ccofu 17920   Nat cnat 18009   FuncCat cfuc 18010  SetCatcsetc 18142   ×c cxpc 18237   1stF c1stf 18238   2ndF c2ndf 18239   ⟨,⟩F cprf 18240   evalF cevlf 18279  HomFchof 18318  Yoncyon 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-homf 17728  df-comf 17729  df-oppc 17770  df-sect 17808  df-inv 17809  df-ssc 17871  df-resc 17872  df-subc 17873  df-func 17922  df-cofu 17924  df-nat 18011  df-fuc 18012  df-setc 18143  df-xpc 18241  df-1stf 18242  df-2ndf 18243  df-prf 18244  df-evlf 18283  df-curf 18284  df-hof 18320  df-yon 18321
This theorem is referenced by:  yonffthlem  18352  yoneda  18353
  Copyright terms: Public domain W3C validator