Step | Hyp | Ref
| Expression |
1 | | yoneda.r |
. . 3
⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) |
2 | | eqid 2738 |
. . . 4
⊢ (𝑄 ×c
𝑂) = (𝑄 ×c 𝑂) |
3 | | yoneda.q |
. . . . 5
⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
4 | 3 | fucbas 17593 |
. . . 4
⊢ (𝑂 Func 𝑆) = (Base‘𝑄) |
5 | | yoneda.o |
. . . . 5
⊢ 𝑂 = (oppCat‘𝐶) |
6 | | yoneda.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
7 | 5, 6 | oppcbas 17345 |
. . . 4
⊢ 𝐵 = (Base‘𝑂) |
8 | 2, 4, 7 | xpcbas 17811 |
. . 3
⊢ ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂)) |
9 | | eqid 2738 |
. . 3
⊢ ((𝑄 ×c
𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇) |
10 | | yoneda.y |
. . . . 5
⊢ 𝑌 = (Yon‘𝐶) |
11 | | yoneda.1 |
. . . . 5
⊢ 1 =
(Id‘𝐶) |
12 | | yoneda.s |
. . . . 5
⊢ 𝑆 = (SetCat‘𝑈) |
13 | | yoneda.t |
. . . . 5
⊢ 𝑇 = (SetCat‘𝑉) |
14 | | yoneda.h |
. . . . 5
⊢ 𝐻 =
(HomF‘𝑄) |
15 | | yoneda.e |
. . . . 5
⊢ 𝐸 = (𝑂 evalF 𝑆) |
16 | | yoneda.z |
. . . . 5
⊢ 𝑍 = (𝐻 ∘func
((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉
∘func (𝑄 2ndF 𝑂))
〈,〉F (𝑄 1stF 𝑂))) |
17 | | yoneda.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
18 | | yoneda.w |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝑊) |
19 | | yoneda.u |
. . . . 5
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ 𝑈) |
20 | | yoneda.v |
. . . . 5
⊢ (𝜑 → (ran
(Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
21 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20 | yonedalem1 17906 |
. . . 4
⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) |
22 | 21 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
23 | 21 | simprd 495 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
24 | | yonedainv.i |
. . 3
⊢ 𝐼 = (Inv‘𝑅) |
25 | | eqid 2738 |
. . 3
⊢
(Inv‘𝑇) =
(Inv‘𝑇) |
26 | | yoneda.m |
. . . 4
⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) |
27 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20, 26 | yonedalem3 17914 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸)) |
28 | 17 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝐶 ∈ Cat) |
29 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑉 ∈ 𝑊) |
30 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
31 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
32 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ℎ ∈ (𝑂 Func 𝑆)) |
33 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
34 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33, 26 | yonedalem3a 17908 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤))) |
35 | 34 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤)) |
36 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝐶 ∈ Cat) |
37 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑉 ∈ 𝑊) |
38 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
39 | 31 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
40 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
41 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑤 ∈ 𝐵) |
42 | | yonedainv.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) |
43 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) |
44 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 36, 37, 38, 39, 40, 41, 42, 43 | yonedalem4c 17911 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑁𝑤)‘𝑏) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
45 | 44 | fmpttd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏)):((1st ‘ℎ)‘𝑤)⟶(((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
46 | 6 | fvexi 6770 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ∈ V |
47 | 46 | mptex 7081 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))) ∈ V |
48 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ((1st
‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) |
49 | 47, 48 | fnmpti 6560 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ((1st
‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) Fn ((1st ‘ℎ)‘𝑤) |
50 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → 𝑓 = ℎ) |
51 | 50 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → (1st ‘𝑓) = (1st ‘ℎ)) |
52 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → 𝑥 = 𝑤) |
53 | 51, 52 | fveq12d 6763 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → ((1st ‘𝑓)‘𝑥) = ((1st ‘ℎ)‘𝑤)) |
54 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝑤) |
55 | 54 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑤)) |
56 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → 𝑓 = ℎ) |
57 | 56 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑓) = (2nd ‘ℎ)) |
58 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → 𝑦 = 𝑦) |
59 | 57, 54, 58 | oveq123d 7276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑓)𝑦) = (𝑤(2nd ‘ℎ)𝑦)) |
60 | 59 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑓)𝑦)‘𝑔) = ((𝑤(2nd ‘ℎ)𝑦)‘𝑔)) |
61 | 60 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)) |
62 | 55, 61 | mpteq12dv 5161 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))) |
63 | 62 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) |
64 | 53, 63 | mpteq12dv 5161 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))))) |
65 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘ℎ)‘𝑤) ∈ V |
66 | 65 | mptex 7081 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ((1st
‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) ∈ V |
67 | 64, 42, 66 | ovmpoa 7406 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵) → (ℎ𝑁𝑤) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))))) |
68 | 67 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))))) |
69 | 68 | fneq1d 6510 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤) Fn ((1st ‘ℎ)‘𝑤) ↔ (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) Fn ((1st ‘ℎ)‘𝑤))) |
70 | 49, 69 | mpbiri 257 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤) Fn ((1st ‘ℎ)‘𝑤)) |
71 | | dffn5 6810 |
. . . . . . . . . . . 12
⊢ ((ℎ𝑁𝑤) Fn ((1st ‘ℎ)‘𝑤) ↔ (ℎ𝑁𝑤) = (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏))) |
72 | 70, 71 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤) = (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏))) |
73 | 5 | oppccat 17350 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
74 | 17, 73 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑂 ∈ Cat) |
75 | 74 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑂 ∈ Cat) |
76 | 20 | unssbd 4118 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
77 | 18, 76 | ssexd 5243 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ V) |
78 | 12 | setccat 17716 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ V → 𝑆 ∈ Cat) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ Cat) |
80 | 79 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑆 ∈ Cat) |
81 | 15, 75, 80, 7, 32, 33 | evlf1 17854 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝐸)𝑤) = ((1st ‘ℎ)‘𝑤)) |
82 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33 | yonedalem21 17907 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝑍)𝑤) = (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
83 | 72, 81, 82 | feq123d 6573 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤) ↔ (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏)):((1st ‘ℎ)‘𝑤)⟶(((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ))) |
84 | 45, 83 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤)) |
85 | | fcompt 6987 |
. . . . . . . . . . 11
⊢ (((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)))) |
86 | 35, 84, 85 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)))) |
87 | 81 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↔ 𝑘 ∈ ((1st ‘ℎ)‘𝑤))) |
88 | 87 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ (ℎ(1st ‘𝐸)𝑤)) → 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) |
89 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝐶 ∈ Cat) |
90 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑉 ∈ 𝑊) |
91 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
92 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
93 | | simplrl 773 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
94 | | simplrr 774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑤 ∈ 𝐵) |
95 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 26 | yonedalem3a 17908 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤))) |
96 | 95 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))) |
97 | 96 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)) = ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘((ℎ𝑁𝑤)‘𝑘))) |
98 | 72, 44 | fmpt3d 6972 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤):((1st ‘ℎ)‘𝑤)⟶(((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
99 | 98 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑁𝑤)‘𝑘) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
100 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ((ℎ𝑁𝑤)‘𝑘) → (𝑎‘𝑤) = (((ℎ𝑁𝑤)‘𝑘)‘𝑤)) |
101 | 100 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = ((ℎ𝑁𝑤)‘𝑘) → ((𝑎‘𝑤)‘( 1 ‘𝑤)) = ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤))) |
102 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (((1st
‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) |
103 | | fvex 6769 |
. . . . . . . . . . . . . . . 16
⊢ ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤)) ∈ V |
104 | 101, 102,
103 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (((ℎ𝑁𝑤)‘𝑘) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘((ℎ𝑁𝑤)‘𝑘)) = ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤))) |
105 | 99, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘((ℎ𝑁𝑤)‘𝑘)) = ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤))) |
106 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) |
107 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
108 | 6, 107, 11, 89, 94 | catidcl 17308 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ( 1 ‘𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤)) |
109 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 42, 106, 94, 108 | yonedalem4b 17910 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤))‘𝑘)) |
110 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(Id‘𝑂) =
(Id‘𝑂) |
111 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(Id‘𝑆) =
(Id‘𝑆) |
112 | | relfunc 17493 |
. . . . . . . . . . . . . . . . . . 19
⊢ Rel
(𝑂 Func 𝑆) |
113 | | 1st2ndbr 7856 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Rel
(𝑂 Func 𝑆) ∧ ℎ ∈ (𝑂 Func 𝑆)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
114 | 112, 93, 113 | sylancr 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
115 | 7, 110, 111, 114, 94 | funcid 17501 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑤(2nd ‘ℎ)𝑤)‘((Id‘𝑂)‘𝑤)) = ((Id‘𝑆)‘((1st ‘ℎ)‘𝑤))) |
116 | 5, 11 | oppcid 17349 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 ∈ Cat →
(Id‘𝑂) = 1
) |
117 | 89, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (Id‘𝑂) = 1 ) |
118 | 117 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((Id‘𝑂)‘𝑤) = ( 1 ‘𝑤)) |
119 | 118 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑤(2nd ‘ℎ)𝑤)‘((Id‘𝑂)‘𝑤)) = ((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤))) |
120 | 77 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑈 ∈ V) |
121 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘𝑆) =
(Base‘𝑆) |
122 | 7, 121, 114 | funcf1 17497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (1st ‘ℎ):𝐵⟶(Base‘𝑆)) |
123 | 12, 120 | setcbas 17709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑈 = (Base‘𝑆)) |
124 | 123 | feq3d 6571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((1st ‘ℎ):𝐵⟶𝑈 ↔ (1st ‘ℎ):𝐵⟶(Base‘𝑆))) |
125 | 122, 124 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (1st ‘ℎ):𝐵⟶𝑈) |
126 | 125, 94 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((1st ‘ℎ)‘𝑤) ∈ 𝑈) |
127 | 12, 111, 120, 126 | setcid 17717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((Id‘𝑆)‘((1st ‘ℎ)‘𝑤)) = ( I ↾ ((1st
‘ℎ)‘𝑤))) |
128 | 115, 119,
127 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤)) = ( I ↾ ((1st
‘ℎ)‘𝑤))) |
129 | 128 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤))‘𝑘) = (( I ↾ ((1st
‘ℎ)‘𝑤))‘𝑘)) |
130 | | fvresi 7027 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((1st
‘ℎ)‘𝑤) → (( I ↾
((1st ‘ℎ)‘𝑤))‘𝑘) = 𝑘) |
131 | 130 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (( I ↾ ((1st
‘ℎ)‘𝑤))‘𝑘) = 𝑘) |
132 | 109, 129,
131 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤)) = 𝑘) |
133 | 97, 105, 132 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)) = 𝑘) |
134 | 88, 133 | syldan 590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ (ℎ(1st ‘𝐸)𝑤)) → ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)) = 𝑘) |
135 | 134 | mpteq2dva 5170 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘))) = (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ 𝑘)) |
136 | | mptresid 5947 |
. . . . . . . . . . 11
⊢ ( I
↾ (ℎ(1st
‘𝐸)𝑤)) = (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ 𝑘) |
137 | 135, 136 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘))) = ( I ↾ (ℎ(1st ‘𝐸)𝑤))) |
138 | 86, 137 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = ( I ↾ (ℎ(1st ‘𝐸)𝑤))) |
139 | | fcompt 6987 |
. . . . . . . . . . 11
⊢ (((ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤)) → ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)))) |
140 | 84, 35, 139 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)))) |
141 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆) |
142 | 28 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝐶 ∈ Cat) |
143 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑉 ∈ 𝑊) |
144 | 30 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
145 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
146 | | simplrl 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
147 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑤 ∈ 𝐵) |
148 | 81 | feq3d 6571 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤) ↔ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶((1st ‘ℎ)‘𝑤))) |
149 | 35, 148 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶((1st ‘ℎ)‘𝑤)) |
150 | 149 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) ∈ ((1st ‘ℎ)‘𝑤)) |
151 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 142, 143, 144, 145, 146, 147, 42, 150 | yonedalem4c 17911 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
152 | 141, 151 | nat1st2nd 17583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
153 | 141, 152,
7 | natfn 17586 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) Fn 𝐵) |
154 | 82 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↔ 𝑏 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ))) |
155 | 154 | biimpa 476 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑏 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
156 | 141, 155 | nat1st2nd 17583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑏 ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
157 | 141, 156,
7 | natfn 17586 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑏 Fn 𝐵) |
158 | 142 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝐶 ∈ Cat) |
159 | 147 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
160 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
161 | 10, 6, 158, 159, 107, 160 | yon11 17898 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤)) |
162 | 161 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))) |
163 | 162 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) |
164 | 158 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat) |
165 | 143 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉 ∈ 𝑊) |
166 | 144 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
167 | 145 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
168 | 146 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
169 | 159 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑤 ∈ 𝐵) |
170 | 150 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) ∈ ((1st ‘ℎ)‘𝑤)) |
171 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧 ∈ 𝐵) |
172 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) |
173 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 42, 170, 171, 172 | yonedalem4b 17910 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((ℎ𝑀𝑤)‘𝑏))) |
174 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 26 | yonedalem3a 17908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤))) |
175 | 174 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))) |
176 | 175 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) = ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘𝑏)) |
177 | 155 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
178 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑏 → (𝑎‘𝑤) = (𝑏‘𝑤)) |
179 | 178 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑏 → ((𝑎‘𝑤)‘( 1 ‘𝑤)) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
180 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏‘𝑤)‘( 1 ‘𝑤)) ∈ V |
181 | 179, 102,
180 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ (((1st
‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘𝑏) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
182 | 177, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘𝑏) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
183 | 176, 182 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
184 | 183 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((ℎ𝑀𝑤)‘𝑏)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
185 | 156 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
186 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Hom
‘𝑂) = (Hom
‘𝑂) |
187 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(comp‘𝑆) =
(comp‘𝑆) |
188 | 107, 5 | oppchom 17342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑤) |
189 | 172, 188 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑤(Hom ‘𝑂)𝑧)) |
190 | 141, 185,
7, 186, 187, 169, 171, 189 | nati 17587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘ℎ)‘𝑤)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))(𝑏‘𝑤))) |
191 | 77 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑈 ∈ V) |
192 | 191 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑈 ∈ V) |
193 | 192 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑈 ∈ V) |
194 | | relfunc 17493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ Rel
(𝐶 Func 𝑄) |
195 | 10, 17, 5, 12, 3, 77, 19 | yoncl 17896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝑄)) |
196 | | 1st2ndbr 7856 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((Rel
(𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st ‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
197 | 194, 195,
196 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (1st
‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
198 | 6, 4, 197 | funcf1 17497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (1st
‘𝑌):𝐵⟶(𝑂 Func 𝑆)) |
199 | 198 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘𝑌):𝐵⟶(𝑂 Func 𝑆)) |
200 | 199, 147 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st ‘𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) |
201 | | 1st2ndbr 7856 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Rel
(𝑂 Func 𝑆) ∧ ((1st ‘𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st
‘((1st ‘𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑤))) |
202 | 112, 200,
201 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑤))) |
203 | 7, 121, 202 | funcf1 17497 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶(Base‘𝑆)) |
204 | 12, 191 | setcbas 17709 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑈 = (Base‘𝑆)) |
205 | 204 | feq3d 6571 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶𝑈 ↔ (1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))) |
206 | 203, 205 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶𝑈) |
207 | 206, 147 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤) ∈ 𝑈) |
208 | 207 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤) ∈ 𝑈) |
209 | 206 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ∈ 𝑈) |
210 | 209 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ∈ 𝑈) |
211 | 112, 146,
113 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
212 | 7, 121, 211 | funcf1 17497 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘ℎ):𝐵⟶(Base‘𝑆)) |
213 | 204 | feq3d 6571 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st ‘ℎ):𝐵⟶𝑈 ↔ (1st ‘ℎ):𝐵⟶(Base‘𝑆))) |
214 | 212, 213 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘ℎ):𝐵⟶𝑈) |
215 | 214 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((1st ‘ℎ)‘𝑧) ∈ 𝑈) |
216 | 215 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘ℎ)‘𝑧) ∈ 𝑈) |
217 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) |
218 | 202 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑤))) |
219 | 7, 186, 217, 218, 169, 171 | funcf2 17499 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧))) |
220 | 219, 189 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧))) |
221 | 12, 193, 217, 208, 210 | elsetchom 17712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)) ↔ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧))) |
222 | 220, 221 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)) |
223 | 156 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑏 ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
224 | 141, 223,
7, 217, 160 | natcl 17585 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑏‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
225 | 12, 192, 217, 209, 215 | elsetchom 17712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((𝑏‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧)) ↔ (𝑏‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧))) |
226 | 224, 225 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑏‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧)) |
227 | 226 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧)) |
228 | 12, 193, 187, 208, 210, 216, 222, 227 | setcco 17714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)) = ((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘))) |
229 | 214, 147 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st ‘ℎ)‘𝑤) ∈ 𝑈) |
230 | 229 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘ℎ)‘𝑤) ∈ 𝑈) |
231 | 141, 156,
7, 217, 147 | natcl 17585 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (𝑏‘𝑤) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑤))) |
232 | 12, 191, 217, 207, 229 | elsetchom 17712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((𝑏‘𝑤) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑤)) ↔ (𝑏‘𝑤):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st ‘ℎ)‘𝑤))) |
233 | 231, 232 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (𝑏‘𝑤):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st ‘ℎ)‘𝑤)) |
234 | 233 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏‘𝑤):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st ‘ℎ)‘𝑤)) |
235 | 112, 168,
113 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
236 | 7, 186, 217, 235, 169, 171 | funcf2 17499 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd ‘ℎ)𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st ‘ℎ)‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
237 | 236, 189 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∈ (((1st ‘ℎ)‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
238 | 12, 193, 217, 230, 216 | elsetchom 17712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∈ (((1st ‘ℎ)‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧)) ↔ ((𝑤(2nd ‘ℎ)𝑧)‘𝑘):((1st ‘ℎ)‘𝑤)⟶((1st ‘ℎ)‘𝑧))) |
239 | 237, 238 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘ℎ)𝑧)‘𝑘):((1st ‘ℎ)‘𝑤)⟶((1st ‘ℎ)‘𝑧)) |
240 | 12, 193, 187, 208, 230, 216, 234, 239 | setcco 17714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘ℎ)‘𝑤)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))(𝑏‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))) |
241 | 190, 228,
240 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))) |
242 | 241 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘))‘( 1 ‘𝑤)) = ((((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))‘( 1 ‘𝑤))) |
243 | 6, 107, 11, 142, 147 | catidcl 17308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ( 1 ‘𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤)) |
244 | 10, 6, 142, 147, 107, 147 | yon11 17898 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤) = (𝑤(Hom ‘𝐶)𝑤)) |
245 | 243, 244 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ( 1 ‘𝑤) ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)) |
246 | 245 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1 ‘𝑤) ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)) |
247 | 222, 246 | fvco3d 6850 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘))‘( 1 ‘𝑤)) = ((𝑏‘𝑧)‘(((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤)))) |
248 | 233, 245 | fvco3d 6850 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))‘( 1 ‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
249 | 248 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))‘( 1 ‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
250 | 242, 247,
249 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)‘(((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤))) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
251 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(comp‘𝐶) =
(comp‘𝐶) |
252 | 243 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1 ‘𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤)) |
253 | 10, 6, 164, 169, 107, 169, 251, 171, 172, 252 | yon12 17899 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤)) = (( 1 ‘𝑤)(〈𝑧, 𝑤〉(comp‘𝐶)𝑤)𝑘)) |
254 | 6, 107, 11, 164, 171, 251, 169, 172 | catlid 17309 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (( 1 ‘𝑤)(〈𝑧, 𝑤〉(comp‘𝐶)𝑤)𝑘) = 𝑘) |
255 | 253, 254 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤)) = 𝑘) |
256 | 255 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)‘(((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤))) = ((𝑏‘𝑧)‘𝑘)) |
257 | 250, 256 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤))) = ((𝑏‘𝑧)‘𝑘)) |
258 | 173, 184,
257 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏‘𝑧)‘𝑘)) |
259 | 163, 258 | syldan 590 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏‘𝑧)‘𝑘)) |
260 | 259 | mpteq2dva 5170 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)) = (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((𝑏‘𝑧)‘𝑘))) |
261 | 152 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
262 | 141, 261,
7, 217, 160 | natcl 17585 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
263 | 12, 192, 217, 209, 215 | elsetchom 17712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧)) ↔ (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧))) |
264 | 262, 263 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧)) |
265 | 264 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) = (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘))) |
266 | 226 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑏‘𝑧) = (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((𝑏‘𝑧)‘𝑘))) |
267 | 260, 265,
266 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) = (𝑏‘𝑧)) |
268 | 153, 157,
267 | eqfnfvd 6894 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) = 𝑏) |
269 | 268 | mpteq2dva 5170 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))) = (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ 𝑏)) |
270 | | mptresid 5947 |
. . . . . . . . . . 11
⊢ ( I
↾ (ℎ(1st
‘𝑍)𝑤)) = (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ 𝑏) |
271 | 269, 270 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))) = ( I ↾ (ℎ(1st ‘𝑍)𝑤))) |
272 | 140, 271 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = ( I ↾ (ℎ(1st ‘𝑍)𝑤))) |
273 | | fcof1o 7148 |
. . . . . . . . 9
⊢ ((((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤)) ∧ (((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = ( I ↾ (ℎ(1st ‘𝐸)𝑤)) ∧ ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = ( I ↾ (ℎ(1st ‘𝑍)𝑤)))) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ ◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤))) |
274 | 35, 84, 138, 272, 273 | syl22anc 835 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ ◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤))) |
275 | | eqcom 2745 |
. . . . . . . . 9
⊢ (◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤) ↔ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤)) |
276 | 275 | anbi2i 622 |
. . . . . . . 8
⊢ (((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ ◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤)) ↔ ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤))) |
277 | 274, 276 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤))) |
278 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑇) =
(Base‘𝑇) |
279 | | relfunc 17493 |
. . . . . . . . . . . 12
⊢ Rel
((𝑄
×c 𝑂) Func 𝑇) |
280 | | 1st2ndbr 7856 |
. . . . . . . . . . . 12
⊢ ((Rel
((𝑄
×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st ‘𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd ‘𝑍)) |
281 | 279, 22, 280 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝑍)((𝑄 ×c
𝑂) Func 𝑇)(2nd ‘𝑍)) |
282 | 8, 278, 281 | funcf1 17497 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)) |
283 | 13, 18 | setcbas 17709 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 = (Base‘𝑇)) |
284 | 283 | feq3d 6571 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st
‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st ‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))) |
285 | 282, 284 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉) |
286 | 285 | fovrnda 7421 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝑍)𝑤) ∈ 𝑉) |
287 | | 1st2ndbr 7856 |
. . . . . . . . . . . 12
⊢ ((Rel
((𝑄
×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st ‘𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd ‘𝐸)) |
288 | 279, 23, 287 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝐸)((𝑄 ×c
𝑂) Func 𝑇)(2nd ‘𝐸)) |
289 | 8, 278, 288 | funcf1 17497 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)) |
290 | 283 | feq3d 6571 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st
‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st ‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))) |
291 | 289, 290 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉) |
292 | 291 | fovrnda 7421 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝐸)𝑤) ∈ 𝑉) |
293 | 13, 29, 286, 292, 25 | setcinv 17721 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤) ↔ ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤)))) |
294 | 277, 293 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤)) |
295 | 294 | ralrimivva 3114 |
. . . . 5
⊢ (𝜑 → ∀ℎ ∈ (𝑂 Func 𝑆)∀𝑤 ∈ 𝐵 (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤)) |
296 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑀‘𝑧) = (𝑀‘〈ℎ, 𝑤〉)) |
297 | | df-ov 7258 |
. . . . . . . 8
⊢ (ℎ𝑀𝑤) = (𝑀‘〈ℎ, 𝑤〉) |
298 | 296, 297 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑀‘𝑧) = (ℎ𝑀𝑤)) |
299 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝑍)‘𝑧) = ((1st ‘𝑍)‘〈ℎ, 𝑤〉)) |
300 | | df-ov 7258 |
. . . . . . . . 9
⊢ (ℎ(1st ‘𝑍)𝑤) = ((1st ‘𝑍)‘〈ℎ, 𝑤〉) |
301 | 299, 300 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝑍)‘𝑧) = (ℎ(1st ‘𝑍)𝑤)) |
302 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝐸)‘𝑧) = ((1st ‘𝐸)‘〈ℎ, 𝑤〉)) |
303 | | df-ov 7258 |
. . . . . . . . 9
⊢ (ℎ(1st ‘𝐸)𝑤) = ((1st ‘𝐸)‘〈ℎ, 𝑤〉) |
304 | 302, 303 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝐸)‘𝑧) = (ℎ(1st ‘𝐸)𝑤)) |
305 | 301, 304 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧)) = ((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))) |
306 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑁‘𝑧) = (𝑁‘〈ℎ, 𝑤〉)) |
307 | | df-ov 7258 |
. . . . . . . 8
⊢ (ℎ𝑁𝑤) = (𝑁‘〈ℎ, 𝑤〉) |
308 | 306, 307 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑁‘𝑧) = (ℎ𝑁𝑤)) |
309 | 298, 305,
308 | breq123d 5084 |
. . . . . 6
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧) ↔ (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤))) |
310 | 309 | ralxp 5739 |
. . . . 5
⊢
(∀𝑧 ∈
((𝑂 Func 𝑆) × 𝐵)(𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧) ↔ ∀ℎ ∈ (𝑂 Func 𝑆)∀𝑤 ∈ 𝐵 (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤)) |
311 | 295, 310 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧)) |
312 | 311 | r19.21bi 3132 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)) → (𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧)) |
313 | 1, 8, 9, 22, 23, 24, 25, 27, 312 | invfuc 17608 |
. 2
⊢ (𝜑 → 𝑀(𝑍𝐼𝐸)(𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁‘𝑧))) |
314 | | fvex 6769 |
. . . . 5
⊢
((1st ‘𝑓)‘𝑥) ∈ V |
315 | 314 | mptex 7081 |
. . . 4
⊢ (𝑢 ∈ ((1st
‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))) ∈ V |
316 | 42, 315 | fnmpoi 7883 |
. . 3
⊢ 𝑁 Fn ((𝑂 Func 𝑆) × 𝐵) |
317 | | dffn5 6810 |
. . 3
⊢ (𝑁 Fn ((𝑂 Func 𝑆) × 𝐵) ↔ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁‘𝑧))) |
318 | 316, 317 | mpbi 229 |
. 2
⊢ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁‘𝑧)) |
319 | 313, 318 | breqtrrdi 5112 |
1
⊢ (𝜑 → 𝑀(𝑍𝐼𝐸)𝑁) |