MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedainv Structured version   Visualization version   GIF version

Theorem yonedainv 17188
Description: The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
yonedainv.i 𝐼 = (Inv‘𝑅)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
Assertion
Ref Expression
yonedainv (𝜑𝑀(𝑍𝐼𝐸)𝑁)
Distinct variable groups:   𝑓,𝑎,𝑔,𝑥,𝑦, 1   𝑢,𝑎,𝑔,𝑦,𝐶,𝑓,𝑥   𝐸,𝑎,𝑓,𝑔,𝑢,𝑦   𝐵,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑁,𝑎   𝑂,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑆,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑔,𝑀,𝑢,𝑦   𝑄,𝑎,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑌,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑍,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝐼(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)

Proof of Theorem yonedainv
Dummy variables 𝑏 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.r . . 3 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
2 eqid 2764 . . . 4 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
3 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
43fucbas 16886 . . . 4 (𝑂 Func 𝑆) = (Base‘𝑄)
5 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
6 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
75, 6oppcbas 16644 . . . 4 𝐵 = (Base‘𝑂)
82, 4, 7xpcbas 17085 . . 3 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
9 eqid 2764 . . 3 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
10 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
11 yoneda.1 . . . . 5 1 = (Id‘𝐶)
12 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
13 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
14 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
15 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
16 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
18 yoneda.w . . . . 5 (𝜑𝑉𝑊)
19 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
20 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2110, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20yonedalem1 17179 . . . 4 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
2221simpld 488 . . 3 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
2321simprd 489 . . 3 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
24 yonedainv.i . . 3 𝐼 = (Inv‘𝑅)
25 eqid 2764 . . 3 (Inv‘𝑇) = (Inv‘𝑇)
26 yoneda.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
2710, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20, 26yonedalem3 17187 . . 3 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
2817adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝐶 ∈ Cat)
2918adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑉𝑊)
3019adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
3120adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
32 simprl 787 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ∈ (𝑂 Func 𝑆))
33 simprr 789 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑤𝐵)
3410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33, 26yonedalem3a 17181 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
3534simprd 489 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤))
3628adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝐶 ∈ Cat)
3729adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑉𝑊)
3830adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
3931adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
40 simplrl 795 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ∈ (𝑂 Func 𝑆))
41 simplrr 796 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑤𝐵)
42 yonedainv.n . . . . . . . . . . . 12 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
43 simpr 477 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑏 ∈ ((1st)‘𝑤))
4410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 36, 37, 38, 39, 40, 41, 42, 43yonedalem4c 17184 . . . . . . . . . . 11 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ((𝑁𝑤)‘𝑏) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
4544fmpttd 6574 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
466fvexi 6388 . . . . . . . . . . . . . . 15 𝐵 ∈ V
4746mptex 6678 . . . . . . . . . . . . . 14 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))) ∈ V
48 eqid 2764 . . . . . . . . . . . . . 14 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))))
4947, 48fnmpti 6199 . . . . . . . . . . . . 13 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) Fn ((1st)‘𝑤)
50 simpl 474 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = 𝑥 = 𝑤) → 𝑓 = )
5150fveq2d 6378 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 𝑥 = 𝑤) → (1st𝑓) = (1st))
52 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 𝑥 = 𝑤) → 𝑥 = 𝑤)
5351, 52fveq12d 6381 . . . . . . . . . . . . . . . . 17 ((𝑓 = 𝑥 = 𝑤) → ((1st𝑓)‘𝑥) = ((1st)‘𝑤))
54 simplr 785 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑥 = 𝑤)
5554oveq2d 6857 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑤))
56 simpll 783 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑓 = )
5756fveq2d 6378 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd))
58 eqidd 2765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑦 = 𝑦)
5957, 54, 58oveq123d 6862 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑤(2nd)𝑦))
6059fveq1d 6376 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘𝑔) = ((𝑤(2nd)𝑦)‘𝑔))
6160fveq1d 6376 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))
6255, 61mpteq12dv 4891 . . . . . . . . . . . . . . . . . 18 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))
6362mpteq2dva 4902 . . . . . . . . . . . . . . . . 17 ((𝑓 = 𝑥 = 𝑤) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))))
6453, 63mpteq12dv 4891 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝑥 = 𝑤) → (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
65 fvex 6387 . . . . . . . . . . . . . . . . 17 ((1st)‘𝑤) ∈ V
6665mptex 6678 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) ∈ V
6764, 42, 66ovmpt2a 6988 . . . . . . . . . . . . . . 15 (( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵) → (𝑁𝑤) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
6867adantl 473 . . . . . . . . . . . . . 14 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
6968fneq1d 6158 . . . . . . . . . . . . 13 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) Fn ((1st)‘𝑤) ↔ (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) Fn ((1st)‘𝑤)))
7049, 69mpbiri 249 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) Fn ((1st)‘𝑤))
71 dffn5 6429 . . . . . . . . . . . 12 ((𝑁𝑤) Fn ((1st)‘𝑤) ↔ (𝑁𝑤) = (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)))
7270, 71sylib 209 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) = (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)))
735oppccat 16648 . . . . . . . . . . . . . 14 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
7417, 73syl 17 . . . . . . . . . . . . 13 (𝜑𝑂 ∈ Cat)
7574adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑂 ∈ Cat)
7620unssbd 3952 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
7718, 76ssexd 4965 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ V)
7812setccat 17001 . . . . . . . . . . . . . 14 (𝑈 ∈ V → 𝑆 ∈ Cat)
7977, 78syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Cat)
8079adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑆 ∈ Cat)
8115, 75, 80, 7, 32, 33evlf1 17127 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝐸)𝑤) = ((1st)‘𝑤))
8210, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33yonedalem21 17180 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝑍)𝑤) = (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
8372, 81, 82feq123d 6211 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤) ↔ (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆))))
8445, 83mpbird 248 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤))
85 fcompt 6590 . . . . . . . . . . 11 (((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ∧ (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))))
8635, 84, 85syl2anc 579 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))))
8781eleq2d 2829 . . . . . . . . . . . . . 14 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↔ 𝑘 ∈ ((1st)‘𝑤)))
8887biimpa 468 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st𝐸)𝑤)) → 𝑘 ∈ ((1st)‘𝑤))
8928adantr 472 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝐶 ∈ Cat)
9029adantr 472 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑉𝑊)
9130adantr 472 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
9231adantr 472 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
93 simplrl 795 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ∈ (𝑂 Func 𝑆))
94 simplrr 796 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑤𝐵)
9510, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 26yonedalem3a 17181 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
9695simpld 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))))
9796fveq1d 6376 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)))
98 fvexd 6389 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ((𝑁𝑤)‘𝑏) ∈ V)
9998, 72, 44fmpt2d 6582 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
10099ffvelrnda 6548 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑁𝑤)‘𝑘) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
101 fveq1 6373 . . . . . . . . . . . . . . . . 17 (𝑎 = ((𝑁𝑤)‘𝑘) → (𝑎𝑤) = (((𝑁𝑤)‘𝑘)‘𝑤))
102101fveq1d 6376 . . . . . . . . . . . . . . . 16 (𝑎 = ((𝑁𝑤)‘𝑘) → ((𝑎𝑤)‘( 1𝑤)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
103 eqid 2764 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))
104 fvex 6387 . . . . . . . . . . . . . . . 16 ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) ∈ V
105102, 103, 104fvmpt 6470 . . . . . . . . . . . . . . 15 (((𝑁𝑤)‘𝑘) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
106100, 105syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
107 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑘 ∈ ((1st)‘𝑤))
108 eqid 2764 . . . . . . . . . . . . . . . . 17 (Hom ‘𝐶) = (Hom ‘𝐶)
1096, 108, 11, 89, 94catidcl 16609 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
11010, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 42, 107, 94, 109yonedalem4b 17183 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) = (((𝑤(2nd)𝑤)‘( 1𝑤))‘𝑘))
111 eqid 2764 . . . . . . . . . . . . . . . . . 18 (Id‘𝑂) = (Id‘𝑂)
112 eqid 2764 . . . . . . . . . . . . . . . . . 18 (Id‘𝑆) = (Id‘𝑆)
113 relfunc 16788 . . . . . . . . . . . . . . . . . . 19 Rel (𝑂 Func 𝑆)
114 1st2ndbr 7416 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ∈ (𝑂 Func 𝑆)) → (1st)(𝑂 Func 𝑆)(2nd))
115113, 93, 114sylancr 581 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
1167, 111, 112, 115, 94funcid 16796 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘((Id‘𝑂)‘𝑤)) = ((Id‘𝑆)‘((1st)‘𝑤)))
1175, 11oppcid 16647 . . . . . . . . . . . . . . . . . . . 20 (𝐶 ∈ Cat → (Id‘𝑂) = 1 )
11889, 117syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (Id‘𝑂) = 1 )
119118fveq1d 6376 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((Id‘𝑂)‘𝑤) = ( 1𝑤))
120119fveq2d 6378 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘((Id‘𝑂)‘𝑤)) = ((𝑤(2nd)𝑤)‘( 1𝑤)))
12177ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑈 ∈ V)
122 eqid 2764 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑆) = (Base‘𝑆)
1237, 122, 115funcf1 16792 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st):𝐵⟶(Base‘𝑆))
12412, 121setcbas 16994 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑈 = (Base‘𝑆))
125124feq3d 6209 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((1st):𝐵𝑈 ↔ (1st):𝐵⟶(Base‘𝑆)))
126123, 125mpbird 248 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st):𝐵𝑈)
127126, 94ffvelrnd 6549 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
12812, 112, 121, 127setcid 17002 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((Id‘𝑆)‘((1st)‘𝑤)) = ( I ↾ ((1st)‘𝑤)))
129116, 120, 1283eqtr3d 2806 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘( 1𝑤)) = ( I ↾ ((1st)‘𝑤)))
130129fveq1d 6376 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (((𝑤(2nd)𝑤)‘( 1𝑤))‘𝑘) = (( I ↾ ((1st)‘𝑤))‘𝑘))
131 fvresi 6631 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((1st)‘𝑤) → (( I ↾ ((1st)‘𝑤))‘𝑘) = 𝑘)
132131adantl 473 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (( I ↾ ((1st)‘𝑤))‘𝑘) = 𝑘)
133110, 130, 1323eqtrd 2802 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) = 𝑘)
13497, 106, 1333eqtrd 2802 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = 𝑘)
13588, 134syldan 585 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st𝐸)𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = 𝑘)
136135mpteq2dva 4902 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ 𝑘))
137 mptresid 5639 . . . . . . . . . . 11 (𝑘 ∈ ((1st𝐸)𝑤) ↦ 𝑘) = ( I ↾ ((1st𝐸)𝑤))
138136, 137syl6eq 2814 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))) = ( I ↾ ((1st𝐸)𝑤)))
13986, 138eqtrd 2798 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = ( I ↾ ((1st𝐸)𝑤)))
140 fcompt 6590 . . . . . . . . . . 11 (((𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))))
14184, 35, 140syl2anc 579 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))))
142 eqid 2764 . . . . . . . . . . . . . 14 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
14328adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝐶 ∈ Cat)
14429adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑉𝑊)
14530adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
14631adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
147 simplrl 795 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ∈ (𝑂 Func 𝑆))
148 simplrr 796 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑤𝐵)
14981feq3d 6209 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ↔ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st)‘𝑤)))
15035, 149mpbid 223 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤):((1st𝑍)𝑤)⟶((1st)‘𝑤))
151150ffvelrnda 6548 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑀𝑤)‘𝑏) ∈ ((1st)‘𝑤))
15210, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 143, 144, 145, 146, 147, 148, 42, 151yonedalem4c 17184 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
153142, 152nat1st2nd 16877 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
154142, 153, 7natfn 16880 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) Fn 𝐵)
15582eleq2d 2829 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↔ 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆))))
156155biimpa 468 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
157142, 156nat1st2nd 16877 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
158142, 157, 7natfn 16880 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 Fn 𝐵)
159143adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝐶 ∈ Cat)
160148adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑤𝐵)
161 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑧𝐵)
16210, 6, 159, 160, 108, 161yon11 17171 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤))
163162eleq2d 2829 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))
164163biimpa 468 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
165159adantr 472 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat)
166144ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉𝑊)
167145ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
168146ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
169147ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ (𝑂 Func 𝑆))
170160adantr 472 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑤𝐵)
171151ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) ∈ ((1st)‘𝑤))
172 simplr 785 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧𝐵)
173 simpr 477 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
17410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 165, 166, 167, 168, 169, 170, 42, 171, 172, 173yonedalem4b 17183 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑀𝑤)‘𝑏)))
17510, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 165, 166, 167, 168, 169, 170, 26yonedalem3a 17181 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
176175simpld 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))))
177176fveq1d 6376 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) = ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏))
178156ad2antrr 717 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
179 fveq1 6373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑎𝑤) = (𝑏𝑤))
180179fveq1d 6376 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → ((𝑎𝑤)‘( 1𝑤)) = ((𝑏𝑤)‘( 1𝑤)))
181 fvex 6387 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑤)‘( 1𝑤)) ∈ V
182180, 103, 181fvmpt 6470 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
183178, 182syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
184177, 183eqtrd 2798 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
185184fveq2d 6378 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)‘((𝑀𝑤)‘𝑏)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
186157ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
187 eqid 2764 . . . . . . . . . . . . . . . . . . . . . 22 (Hom ‘𝑂) = (Hom ‘𝑂)
188 eqid 2764 . . . . . . . . . . . . . . . . . . . . . 22 (comp‘𝑆) = (comp‘𝑆)
189108, 5oppchom 16641 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑤)
190173, 189syl6eleqr 2854 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑤(Hom ‘𝑂)𝑧))
191142, 186, 7, 187, 188, 170, 172, 190nati 16881 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟩(comp‘𝑆)((1st)‘𝑧))((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd)𝑧)‘𝑘)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st)‘𝑤)⟩(comp‘𝑆)((1st)‘𝑧))(𝑏𝑤)))
19277ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑈 ∈ V)
193192adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑈 ∈ V)
194193adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑈 ∈ V)
195 relfunc 16788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐶 Func 𝑄)
19610, 17, 5, 12, 3, 77, 19yoncl 17169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
197 1st2ndbr 7416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
198195, 196, 197sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
1996, 4, 198funcf1 16792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
200199ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
201200, 148ffvelrnd 6549 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
202 1st2ndbr 7416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
203113, 201, 202sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
2047, 122, 203funcf1 16792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
20512, 192setcbas 16994 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑈 = (Base‘𝑆))
206205feq3d 6209 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆)))
207204, 206mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵𝑈)
208207, 148ffvelrnd 6549 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) ∈ 𝑈)
209208ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) ∈ 𝑈)
210207ffvelrnda 6548 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
211210adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
212113, 147, 114sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
2137, 122, 212funcf1 16792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st):𝐵⟶(Base‘𝑆))
214205feq3d 6209 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st):𝐵𝑈 ↔ (1st):𝐵⟶(Base‘𝑆)))
215213, 214mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st):𝐵𝑈)
216215ffvelrnda 6548 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st)‘𝑧) ∈ 𝑈)
217216adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st)‘𝑧) ∈ 𝑈)
218 eqid 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Hom ‘𝑆) = (Hom ‘𝑆)
219203ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
2207, 187, 218, 219, 170, 172funcf2 16794 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
221220, 190ffvelrnd 6549 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
22212, 194, 218, 209, 211elsetchom 16997 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)) ↔ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
223221, 222mpbid 223 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑧))
224157adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
225142, 224, 7, 218, 161natcl 16879 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)))
22612, 193, 218, 210, 216elsetchom 16997 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((𝑏𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)) ↔ (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧)))
227225, 226mpbid 223 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
228227adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
22912, 194, 188, 209, 211, 217, 223, 228setcco 16999 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟩(comp‘𝑆)((1st)‘𝑧))((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = ((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)))
230215, 148ffvelrnd 6549 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
231230ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
232142, 157, 7, 218, 148natcl 16879 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (𝑏𝑤) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st)‘𝑤)))
23312, 192, 218, 208, 230elsetchom 16997 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑏𝑤) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st)‘𝑤)) ↔ (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤)))
234232, 233mpbid 223 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤))
235234ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤))
236113, 169, 114sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
2377, 187, 218, 236, 170, 172funcf2 16794 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd)𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)))
238237, 190ffvelrnd 6549 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd)𝑧)‘𝑘) ∈ (((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)))
23912, 194, 218, 231, 217elsetchom 16997 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘) ∈ (((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)) ↔ ((𝑤(2nd)𝑧)‘𝑘):((1st)‘𝑤)⟶((1st)‘𝑧)))
240238, 239mpbid 223 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd)𝑧)‘𝑘):((1st)‘𝑤)⟶((1st)‘𝑧))
24112, 194, 188, 209, 231, 217, 235, 240setcco 16999 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st)‘𝑤)⟩(comp‘𝑆)((1st)‘𝑧))(𝑏𝑤)) = (((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤)))
242191, 229, 2413eqtr3d 2806 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤)))
243242fveq1d 6376 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘))‘( 1𝑤)) = ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)))
2446, 108, 11, 143, 148catidcl 16609 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
24510, 6, 143, 148, 108, 148yon11 17171 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) = (𝑤(Hom ‘𝐶)𝑤))
246244, 245eleqtrrd 2846 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤))
247246ad2antrr 717 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤))
248 fvco3 6463 . . . . . . . . . . . . . . . . . . . 20 ((((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∧ ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤)) → (((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘))‘( 1𝑤)) = ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))))
249223, 247, 248syl2anc 579 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘))‘( 1𝑤)) = ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))))
250 fvco3 6463 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤) ∧ ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤)) → ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
251234, 246, 250syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
252251ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
253243, 249, 2523eqtr3d 2806 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
254 eqid 2764 . . . . . . . . . . . . . . . . . . . . 21 (comp‘𝐶) = (comp‘𝐶)
255244ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
25610, 6, 165, 170, 108, 170, 254, 172, 173, 255yon12 17172 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤)) = (( 1𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐶)𝑤)𝑘))
2576, 108, 11, 165, 172, 254, 170, 173catlid 16610 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (( 1𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐶)𝑤)𝑘) = 𝑘)
258256, 257eqtrd 2798 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤)) = 𝑘)
259258fveq2d 6378 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))) = ((𝑏𝑧)‘𝑘))
260253, 259eqtr3d 2800 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))) = ((𝑏𝑧)‘𝑘))
261174, 185, 2603eqtrd 2802 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏𝑧)‘𝑘))
262164, 261syldan 585 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏𝑧)‘𝑘))
263262mpteq2dva 4902 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((𝑏𝑧)‘𝑘)))
264153adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
265142, 264, 7, 218, 161natcl 16879 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)))
26612, 193, 218, 210, 216elsetchom 16997 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)) ↔ (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧)))
267265, 266mpbid 223 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
268267feqmptd 6437 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)))
269227feqmptd 6437 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((𝑏𝑧)‘𝑘)))
270263, 268, 2693eqtr4d 2808 . . . . . . . . . . . . 13 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) = (𝑏𝑧))
271154, 158, 270eqfnfvd 6503 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) = 𝑏)
272271mpteq2dva 4902 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ 𝑏))
273 mptresid 5639 . . . . . . . . . . 11 (𝑏 ∈ ((1st𝑍)𝑤) ↦ 𝑏) = ( I ↾ ((1st𝑍)𝑤))
274272, 273syl6eq 2814 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))) = ( I ↾ ((1st𝑍)𝑤)))
275141, 274eqtrd 2798 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = ( I ↾ ((1st𝑍)𝑤)))
276 fcof1o 6742 . . . . . . . . 9 ((((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ∧ (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤)) ∧ (((𝑀𝑤) ∘ (𝑁𝑤)) = ( I ↾ ((1st𝐸)𝑤)) ∧ ((𝑁𝑤) ∘ (𝑀𝑤)) = ( I ↾ ((1st𝑍)𝑤)))) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)))
27735, 84, 139, 275, 276syl22anc 867 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)))
278 eqcom 2771 . . . . . . . . 9 ((𝑀𝑤) = (𝑁𝑤) ↔ (𝑁𝑤) = (𝑀𝑤))
279278anbi2i 616 . . . . . . . 8 (((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)) ↔ ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤)))
280277, 279sylib 209 . . . . . . 7 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤)))
281 eqid 2764 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
282 relfunc 16788 . . . . . . . . . . . 12 Rel ((𝑄 ×c 𝑂) Func 𝑇)
283 1st2ndbr 7416 . . . . . . . . . . . 12 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
284282, 22, 283sylancr 581 . . . . . . . . . . 11 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
2858, 281, 284funcf1 16792 . . . . . . . . . 10 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
28613, 18setcbas 16994 . . . . . . . . . . 11 (𝜑𝑉 = (Base‘𝑇))
287286feq3d 6209 . . . . . . . . . 10 (𝜑 → ((1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)))
288285, 287mpbird 248 . . . . . . . . 9 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉)
289288fovrnda 7002 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝑍)𝑤) ∈ 𝑉)
290 1st2ndbr 7416 . . . . . . . . . . . 12 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
291282, 23, 290sylancr 581 . . . . . . . . . . 11 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
2928, 281, 291funcf1 16792 . . . . . . . . . 10 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
293286feq3d 6209 . . . . . . . . . 10 (𝜑 → ((1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)))
294292, 293mpbird 248 . . . . . . . . 9 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉)
295294fovrnda 7002 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝐸)𝑤) ∈ 𝑉)
29613, 29, 289, 295, 25setcinv 17006 . . . . . . 7 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤) ↔ ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤))))
297280, 296mpbird 248 . . . . . 6 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
298297ralrimivva 3117 . . . . 5 (𝜑 → ∀ ∈ (𝑂 Func 𝑆)∀𝑤𝐵 (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
299 fveq2 6374 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → (𝑀𝑧) = (𝑀‘⟨, 𝑤⟩))
300 df-ov 6844 . . . . . . . 8 (𝑀𝑤) = (𝑀‘⟨, 𝑤⟩)
301299, 300syl6eqr 2816 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (𝑀𝑧) = (𝑀𝑤))
302 fveq2 6374 . . . . . . . . 9 (𝑧 = ⟨, 𝑤⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨, 𝑤⟩))
303 df-ov 6844 . . . . . . . . 9 ((1st𝑍)𝑤) = ((1st𝑍)‘⟨, 𝑤⟩)
304302, 303syl6eqr 2816 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)𝑤))
305 fveq2 6374 . . . . . . . . 9 (𝑧 = ⟨, 𝑤⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨, 𝑤⟩))
306 df-ov 6844 . . . . . . . . 9 ((1st𝐸)𝑤) = ((1st𝐸)‘⟨, 𝑤⟩)
307305, 306syl6eqr 2816 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)𝑤))
308304, 307oveq12d 6859 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧)) = (((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤)))
309 fveq2 6374 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → (𝑁𝑧) = (𝑁‘⟨, 𝑤⟩))
310 df-ov 6844 . . . . . . . 8 (𝑁𝑤) = (𝑁‘⟨, 𝑤⟩)
311309, 310syl6eqr 2816 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (𝑁𝑧) = (𝑁𝑤))
312301, 308, 311breq123d 4822 . . . . . 6 (𝑧 = ⟨, 𝑤⟩ → ((𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧) ↔ (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤)))
313312ralxp 5431 . . . . 5 (∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧) ↔ ∀ ∈ (𝑂 Func 𝑆)∀𝑤𝐵 (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
314298, 313sylibr 225 . . . 4 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧))
315314r19.21bi 3078 . . 3 ((𝜑𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)) → (𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧))
3161, 8, 9, 22, 23, 24, 25, 27, 315invfuc 16900 . 2 (𝜑𝑀(𝑍𝐼𝐸)(𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧)))
317 fvex 6387 . . . . 5 ((1st𝑓)‘𝑥) ∈ V
318317mptex 6678 . . . 4 (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) ∈ V
31942, 318fnmpt2i 7439 . . 3 𝑁 Fn ((𝑂 Func 𝑆) × 𝐵)
320 dffn5 6429 . . 3 (𝑁 Fn ((𝑂 Func 𝑆) × 𝐵) ↔ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧)))
321319, 320mpbi 221 . 2 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧))
322316, 321syl6breqr 4850 1 (𝜑𝑀(𝑍𝐼𝐸)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3054  Vcvv 3349  cun 3729  wss 3731  cop 4339   class class class wbr 4808  cmpt 4887   I cid 5183   × cxp 5274  ccnv 5275  ran crn 5277  cres 5278  ccom 5280  Rel wrel 5281   Fn wfn 6062  wf 6063  1-1-ontowf1o 6066  cfv 6067  (class class class)co 6841  cmpt2 6843  1st c1st 7363  2nd c2nd 7364  tpos ctpos 7553  Basecbs 16131  Hom chom 16226  compcco 16227  Catccat 16591  Idccid 16592  Homf chomf 16593  oppCatcoppc 16637  Invcinv 16671   Func cfunc 16780  func ccofu 16782   Nat cnat 16867   FuncCat cfuc 16868  SetCatcsetc 16991   ×c cxpc 17075   1stF c1stf 17076   2ndF c2ndf 17077   ⟨,⟩F cprf 17078   evalF cevlf 17116  HomFchof 17155  Yoncyon 17156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-tpos 7554  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-ixp 8113  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-fz 12533  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-hom 16239  df-cco 16240  df-cat 16595  df-cid 16596  df-homf 16597  df-comf 16598  df-oppc 16638  df-sect 16673  df-inv 16674  df-ssc 16736  df-resc 16737  df-subc 16738  df-func 16784  df-cofu 16786  df-nat 16869  df-fuc 16870  df-setc 16992  df-xpc 17079  df-1stf 17080  df-2ndf 17081  df-prf 17082  df-evlf 17120  df-curf 17121  df-hof 17157  df-yon 17158
This theorem is referenced by:  yonffthlem  17189  yoneda  17190
  Copyright terms: Public domain W3C validator