Step | Hyp | Ref
| Expression |
1 | | yoneda.r |
. . 3
β’ π
= ((π Γc π) FuncCat π) |
2 | | eqid 2732 |
. . . 4
β’ (π Γc
π) = (π Γc π) |
3 | | yoneda.q |
. . . . 5
β’ π = (π FuncCat π) |
4 | 3 | fucbas 17908 |
. . . 4
β’ (π Func π) = (Baseβπ) |
5 | | yoneda.o |
. . . . 5
β’ π = (oppCatβπΆ) |
6 | | yoneda.b |
. . . . 5
β’ π΅ = (BaseβπΆ) |
7 | 5, 6 | oppcbas 17659 |
. . . 4
β’ π΅ = (Baseβπ) |
8 | 2, 4, 7 | xpcbas 18126 |
. . 3
β’ ((π Func π) Γ π΅) = (Baseβ(π Γc π)) |
9 | | eqid 2732 |
. . 3
β’ ((π Γc
π) Nat π) = ((π Γc π) Nat π) |
10 | | yoneda.y |
. . . . 5
β’ π = (YonβπΆ) |
11 | | yoneda.1 |
. . . . 5
β’ 1 =
(IdβπΆ) |
12 | | yoneda.s |
. . . . 5
β’ π = (SetCatβπ) |
13 | | yoneda.t |
. . . . 5
β’ π = (SetCatβπ) |
14 | | yoneda.h |
. . . . 5
β’ π» =
(HomFβπ) |
15 | | yoneda.e |
. . . . 5
β’ πΈ = (π evalF π) |
16 | | yoneda.z |
. . . . 5
β’ π = (π» βfunc
((β¨(1st βπ), tpos (2nd βπ)β©
βfunc (π 2ndF π))
β¨,β©F (π 1stF π))) |
17 | | yoneda.c |
. . . . 5
β’ (π β πΆ β Cat) |
18 | | yoneda.w |
. . . . 5
β’ (π β π β π) |
19 | | yoneda.u |
. . . . 5
β’ (π β ran
(Homf βπΆ) β π) |
20 | | yoneda.v |
. . . . 5
β’ (π β (ran
(Homf βπ) βͺ π) β π) |
21 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20 | yonedalem1 18221 |
. . . 4
β’ (π β (π β ((π Γc π) Func π) β§ πΈ β ((π Γc π) Func π))) |
22 | 21 | simpld 495 |
. . 3
β’ (π β π β ((π Γc π) Func π)) |
23 | 21 | simprd 496 |
. . 3
β’ (π β πΈ β ((π Γc π) Func π)) |
24 | | yonedainv.i |
. . 3
β’ πΌ = (Invβπ
) |
25 | | eqid 2732 |
. . 3
β’
(Invβπ) =
(Invβπ) |
26 | | yoneda.m |
. . . 4
β’ π = (π β (π Func π), π₯ β π΅ β¦ (π β (((1st βπ)βπ₯)(π Nat π)π) β¦ ((πβπ₯)β( 1 βπ₯)))) |
27 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20, 26 | yonedalem3 18229 |
. . 3
β’ (π β π β (π((π Γc π) Nat π)πΈ)) |
28 | 17 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β πΆ β Cat) |
29 | 18 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β π β π) |
30 | 19 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ran (Homf
βπΆ) β π) |
31 | 20 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (ran (Homf
βπ) βͺ π) β π) |
32 | | simprl 769 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β β β (π Func π)) |
33 | | simprr 771 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β π€ β π΅) |
34 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33, 26 | yonedalem3a 18223 |
. . . . . . . . . 10
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€) = (π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€))) β§ (βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€))) |
35 | 34 | simprd 496 |
. . . . . . . . 9
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€)) |
36 | 28 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β πΆ β Cat) |
37 | 29 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π β π) |
38 | 30 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ran (Homf
βπΆ) β π) |
39 | 31 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (ran (Homf
βπ) βͺ π) β π) |
40 | | simplrl 775 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β β β (π Func π)) |
41 | | simplrr 776 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π€ β π΅) |
42 | | yonedainv.n |
. . . . . . . . . . . 12
β’ π = (π β (π Func π), π₯ β π΅ β¦ (π’ β ((1st βπ)βπ₯) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’))))) |
43 | | simpr 485 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π β ((1st ββ)βπ€)) |
44 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 36, 37, 38, 39, 40, 41, 42, 43 | yonedalem4c 18226 |
. . . . . . . . . . 11
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((βππ€)βπ) β (((1st βπ)βπ€)(π Nat π)β)) |
45 | 44 | fmpttd 7111 |
. . . . . . . . . 10
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (π β ((1st ββ)βπ€) β¦ ((βππ€)βπ)):((1st ββ)βπ€)βΆ(((1st βπ)βπ€)(π Nat π)β)) |
46 | 6 | fvexi 6902 |
. . . . . . . . . . . . . . 15
β’ π΅ β V |
47 | 46 | mptex 7221 |
. . . . . . . . . . . . . 14
β’ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’))) β V |
48 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’ (π’ β ((1st
ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’)))) = (π’ β ((1st ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’)))) |
49 | 47, 48 | fnmpti 6690 |
. . . . . . . . . . . . 13
β’ (π’ β ((1st
ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’)))) Fn ((1st ββ)βπ€) |
50 | | simpl 483 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π = β β§ π₯ = π€) β π = β) |
51 | 50 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = β β§ π₯ = π€) β (1st βπ) = (1st ββ)) |
52 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = β β§ π₯ = π€) β π₯ = π€) |
53 | 51, 52 | fveq12d 6895 |
. . . . . . . . . . . . . . . . 17
β’ ((π = β β§ π₯ = π€) β ((1st βπ)βπ₯) = ((1st ββ)βπ€)) |
54 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β π₯ = π€) |
55 | 54 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β (π¦(Hom βπΆ)π₯) = (π¦(Hom βπΆ)π€)) |
56 | | simpll 765 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β π = β) |
57 | 56 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β (2nd βπ) = (2nd ββ)) |
58 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β π¦ = π¦) |
59 | 57, 54, 58 | oveq123d 7426 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β (π₯(2nd βπ)π¦) = (π€(2nd ββ)π¦)) |
60 | 59 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β ((π₯(2nd βπ)π¦)βπ) = ((π€(2nd ββ)π¦)βπ)) |
61 | 60 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β (((π₯(2nd βπ)π¦)βπ)βπ’) = (((π€(2nd ββ)π¦)βπ)βπ’)) |
62 | 55, 61 | mpteq12dv 5238 |
. . . . . . . . . . . . . . . . . 18
β’ (((π = β β§ π₯ = π€) β§ π¦ β π΅) β (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’)) = (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’))) |
63 | 62 | mpteq2dva 5247 |
. . . . . . . . . . . . . . . . 17
β’ ((π = β β§ π₯ = π€) β (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’))) = (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’)))) |
64 | 53, 63 | mpteq12dv 5238 |
. . . . . . . . . . . . . . . 16
β’ ((π = β β§ π₯ = π€) β (π’ β ((1st βπ)βπ₯) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’)))) = (π’ β ((1st ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’))))) |
65 | | fvex 6901 |
. . . . . . . . . . . . . . . . 17
β’
((1st ββ)βπ€) β V |
66 | 65 | mptex 7221 |
. . . . . . . . . . . . . . . 16
β’ (π’ β ((1st
ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’)))) β V |
67 | 64, 42, 66 | ovmpoa 7559 |
. . . . . . . . . . . . . . 15
β’ ((β β (π Func π) β§ π€ β π΅) β (βππ€) = (π’ β ((1st ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’))))) |
68 | 67 | adantl 482 |
. . . . . . . . . . . . . 14
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€) = (π’ β ((1st ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’))))) |
69 | 68 | fneq1d 6639 |
. . . . . . . . . . . . 13
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€) Fn ((1st ββ)βπ€) β (π’ β ((1st ββ)βπ€) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π€) β¦ (((π€(2nd ββ)π¦)βπ)βπ’)))) Fn ((1st ββ)βπ€))) |
70 | 49, 69 | mpbiri 257 |
. . . . . . . . . . . 12
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€) Fn ((1st ββ)βπ€)) |
71 | | dffn5 6947 |
. . . . . . . . . . . 12
β’ ((βππ€) Fn ((1st ββ)βπ€) β (βππ€) = (π β ((1st ββ)βπ€) β¦ ((βππ€)βπ))) |
72 | 70, 71 | sylib 217 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€) = (π β ((1st ββ)βπ€) β¦ ((βππ€)βπ))) |
73 | 5 | oppccat 17664 |
. . . . . . . . . . . . . 14
β’ (πΆ β Cat β π β Cat) |
74 | 17, 73 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β Cat) |
75 | 74 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β π β Cat) |
76 | 20 | unssbd 4187 |
. . . . . . . . . . . . . . 15
β’ (π β π β π) |
77 | 18, 76 | ssexd 5323 |
. . . . . . . . . . . . . 14
β’ (π β π β V) |
78 | 12 | setccat 18031 |
. . . . . . . . . . . . . 14
β’ (π β V β π β Cat) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β Cat) |
80 | 79 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β π β Cat) |
81 | 15, 75, 80, 7, 32, 33 | evlf1 18169 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (β(1st βπΈ)π€) = ((1st ββ)βπ€)) |
82 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33 | yonedalem21 18222 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (β(1st βπ)π€) = (((1st βπ)βπ€)(π Nat π)β)) |
83 | 72, 81, 82 | feq123d 6703 |
. . . . . . . . . 10
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€):(β(1st βπΈ)π€)βΆ(β(1st βπ)π€) β (π β ((1st ββ)βπ€) β¦ ((βππ€)βπ)):((1st ββ)βπ€)βΆ(((1st βπ)βπ€)(π Nat π)β))) |
84 | 45, 83 | mpbird 256 |
. . . . . . . . 9
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€):(β(1st βπΈ)π€)βΆ(β(1st βπ)π€)) |
85 | | fcompt 7127 |
. . . . . . . . . . 11
β’ (((βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€) β§ (βππ€):(β(1st βπΈ)π€)βΆ(β(1st βπ)π€)) β ((βππ€) β (βππ€)) = (π β (β(1st βπΈ)π€) β¦ ((βππ€)β((βππ€)βπ)))) |
86 | 35, 84, 85 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€) β (βππ€)) = (π β (β(1st βπΈ)π€) β¦ ((βππ€)β((βππ€)βπ)))) |
87 | 81 | eleq2d 2819 |
. . . . . . . . . . . . . 14
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (π β (β(1st βπΈ)π€) β π β ((1st ββ)βπ€))) |
88 | 87 | biimpa 477 |
. . . . . . . . . . . . 13
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπΈ)π€)) β π β ((1st ββ)βπ€)) |
89 | 28 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β πΆ β Cat) |
90 | 29 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π β π) |
91 | 30 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ran (Homf
βπΆ) β π) |
92 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (ran (Homf
βπ) βͺ π) β π) |
93 | | simplrl 775 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β β β (π Func π)) |
94 | | simplrr 776 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π€ β π΅) |
95 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 26 | yonedalem3a 18223 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((βππ€) = (π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€))) β§ (βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€))) |
96 | 95 | simpld 495 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (βππ€) = (π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))) |
97 | 96 | fveq1d 6890 |
. . . . . . . . . . . . . 14
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((βππ€)β((βππ€)βπ)) = ((π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))β((βππ€)βπ))) |
98 | 72, 44 | fmpt3d 7112 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€):((1st ββ)βπ€)βΆ(((1st βπ)βπ€)(π Nat π)β)) |
99 | 98 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((βππ€)βπ) β (((1st βπ)βπ€)(π Nat π)β)) |
100 | | fveq1 6887 |
. . . . . . . . . . . . . . . . 17
β’ (π = ((βππ€)βπ) β (πβπ€) = (((βππ€)βπ)βπ€)) |
101 | 100 | fveq1d 6890 |
. . . . . . . . . . . . . . . 16
β’ (π = ((βππ€)βπ) β ((πβπ€)β( 1 βπ€)) = ((((βππ€)βπ)βπ€)β( 1 βπ€))) |
102 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’ (π β (((1st
βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€))) = (π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€))) |
103 | | fvex 6901 |
. . . . . . . . . . . . . . . 16
β’ ((((βππ€)βπ)βπ€)β( 1 βπ€)) β V |
104 | 101, 102,
103 | fvmpt 6995 |
. . . . . . . . . . . . . . 15
β’ (((βππ€)βπ) β (((1st βπ)βπ€)(π Nat π)β) β ((π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))β((βππ€)βπ)) = ((((βππ€)βπ)βπ€)β( 1 βπ€))) |
105 | 99, 104 | syl 17 |
. . . . . . . . . . . . . 14
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))β((βππ€)βπ)) = ((((βππ€)βπ)βπ€)β( 1 βπ€))) |
106 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π β ((1st ββ)βπ€)) |
107 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ (Hom
βπΆ) = (Hom
βπΆ) |
108 | 6, 107, 11, 89, 94 | catidcl 17622 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ( 1 βπ€) β (π€(Hom βπΆ)π€)) |
109 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 42, 106, 94, 108 | yonedalem4b 18225 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((((βππ€)βπ)βπ€)β( 1 βπ€)) = (((π€(2nd ββ)π€)β( 1 βπ€))βπ)) |
110 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(Idβπ) =
(Idβπ) |
111 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(Idβπ) =
(Idβπ) |
112 | | relfunc 17808 |
. . . . . . . . . . . . . . . . . . 19
β’ Rel
(π Func π) |
113 | | 1st2ndbr 8024 |
. . . . . . . . . . . . . . . . . . 19
β’ ((Rel
(π Func π) β§ β β (π Func π)) β (1st ββ)(π Func π)(2nd ββ)) |
114 | 112, 93, 113 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (1st ββ)(π Func π)(2nd ββ)) |
115 | 7, 110, 111, 114, 94 | funcid 17816 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((π€(2nd ββ)π€)β((Idβπ)βπ€)) = ((Idβπ)β((1st ββ)βπ€))) |
116 | 5, 11 | oppcid 17663 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΆ β Cat β
(Idβπ) = 1
) |
117 | 89, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (Idβπ) = 1 ) |
118 | 117 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((Idβπ)βπ€) = ( 1 βπ€)) |
119 | 118 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((π€(2nd ββ)π€)β((Idβπ)βπ€)) = ((π€(2nd ββ)π€)β( 1 βπ€))) |
120 | 77 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π β V) |
121 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(Baseβπ) =
(Baseβπ) |
122 | 7, 121, 114 | funcf1 17812 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (1st ββ):π΅βΆ(Baseβπ)) |
123 | 12, 120 | setcbas 18024 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β π = (Baseβπ)) |
124 | 123 | feq3d 6701 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((1st ββ):π΅βΆπ β (1st ββ):π΅βΆ(Baseβπ))) |
125 | 122, 124 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (1st ββ):π΅βΆπ) |
126 | 125, 94 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((1st ββ)βπ€) β π) |
127 | 12, 111, 120, 126 | setcid 18032 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((Idβπ)β((1st ββ)βπ€)) = ( I βΎ ((1st
ββ)βπ€))) |
128 | 115, 119,
127 | 3eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((π€(2nd ββ)π€)β( 1 βπ€)) = ( I βΎ ((1st
ββ)βπ€))) |
129 | 128 | fveq1d 6890 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (((π€(2nd ββ)π€)β( 1 βπ€))βπ) = (( I βΎ ((1st
ββ)βπ€))βπ)) |
130 | | fvresi 7167 |
. . . . . . . . . . . . . . . 16
β’ (π β ((1st
ββ)βπ€) β (( I βΎ
((1st ββ)βπ€))βπ) = π) |
131 | 130 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β (( I βΎ ((1st
ββ)βπ€))βπ) = π) |
132 | 109, 129,
131 | 3eqtrd 2776 |
. . . . . . . . . . . . . 14
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((((βππ€)βπ)βπ€)β( 1 βπ€)) = π) |
133 | 97, 105, 132 | 3eqtrd 2776 |
. . . . . . . . . . . . 13
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β ((1st ββ)βπ€)) β ((βππ€)β((βππ€)βπ)) = π) |
134 | 88, 133 | syldan 591 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπΈ)π€)) β ((βππ€)β((βππ€)βπ)) = π) |
135 | 134 | mpteq2dva 5247 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (π β (β(1st βπΈ)π€) β¦ ((βππ€)β((βππ€)βπ))) = (π β (β(1st βπΈ)π€) β¦ π)) |
136 | | mptresid 6048 |
. . . . . . . . . . 11
β’ ( I
βΎ (β(1st
βπΈ)π€)) = (π β (β(1st βπΈ)π€) β¦ π) |
137 | 135, 136 | eqtr4di 2790 |
. . . . . . . . . 10
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (π β (β(1st βπΈ)π€) β¦ ((βππ€)β((βππ€)βπ))) = ( I βΎ (β(1st βπΈ)π€))) |
138 | 86, 137 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€) β (βππ€)) = ( I βΎ (β(1st βπΈ)π€))) |
139 | | fcompt 7127 |
. . . . . . . . . . 11
β’ (((βππ€):(β(1st βπΈ)π€)βΆ(β(1st βπ)π€) β§ (βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€)) β ((βππ€) β (βππ€)) = (π β (β(1st βπ)π€) β¦ ((βππ€)β((βππ€)βπ)))) |
140 | 84, 35, 139 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€) β (βππ€)) = (π β (β(1st βπ)π€) β¦ ((βππ€)β((βππ€)βπ)))) |
141 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’ (π Nat π) = (π Nat π) |
142 | 28 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β πΆ β Cat) |
143 | 29 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β π β π) |
144 | 30 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ran (Homf
βπΆ) β π) |
145 | 31 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (ran (Homf
βπ) βͺ π) β π) |
146 | | simplrl 775 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β β β (π Func π)) |
147 | | simplrr 776 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β π€ β π΅) |
148 | 81 | feq3d 6701 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€) β (βππ€):(β(1st βπ)π€)βΆ((1st ββ)βπ€))) |
149 | 35, 148 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€):(β(1st βπ)π€)βΆ((1st ββ)βπ€)) |
150 | 149 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((βππ€)βπ) β ((1st ββ)βπ€)) |
151 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 142, 143, 144, 145, 146, 147, 42, 150 | yonedalem4c 18226 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((βππ€)β((βππ€)βπ)) β (((1st βπ)βπ€)(π Nat π)β)) |
152 | 141, 151 | nat1st2nd 17898 |
. . . . . . . . . . . . . 14
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((βππ€)β((βππ€)βπ)) β (β¨(1st
β((1st βπ)βπ€)), (2nd β((1st
βπ)βπ€))β©(π Nat π)β¨(1st ββ), (2nd ββ)β©)) |
153 | 141, 152,
7 | natfn 17901 |
. . . . . . . . . . . . 13
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((βππ€)β((βππ€)βπ)) Fn π΅) |
154 | 82 | eleq2d 2819 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (π β (β(1st βπ)π€) β π β (((1st βπ)βπ€)(π Nat π)β))) |
155 | 154 | biimpa 477 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β π β (((1st βπ)βπ€)(π Nat π)β)) |
156 | 141, 155 | nat1st2nd 17898 |
. . . . . . . . . . . . . 14
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β π β (β¨(1st
β((1st βπ)βπ€)), (2nd β((1st
βπ)βπ€))β©(π Nat π)β¨(1st ββ), (2nd ββ)β©)) |
157 | 141, 156,
7 | natfn 17901 |
. . . . . . . . . . . . 13
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β π Fn π΅) |
158 | 142 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β πΆ β Cat) |
159 | 147 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β π€ β π΅) |
160 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β π§ β π΅) |
161 | 10, 6, 158, 159, 107, 160 | yon11 18213 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β ((1st
β((1st βπ)βπ€))βπ§) = (π§(Hom βπΆ)π€)) |
162 | 161 | eleq2d 2819 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (π β ((1st
β((1st βπ)βπ€))βπ§) β π β (π§(Hom βπΆ)π€))) |
163 | 162 | biimpa 477 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β ((1st
β((1st βπ)βπ€))βπ§)) β π β (π§(Hom βπΆ)π€)) |
164 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β πΆ β Cat) |
165 | 143 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π β π) |
166 | 144 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ran (Homf
βπΆ) β π) |
167 | 145 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (ran (Homf
βπ) βͺ π) β π) |
168 | 146 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β β β (π Func π)) |
169 | 159 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π€ β π΅) |
170 | 150 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((βππ€)βπ) β ((1st ββ)βπ€)) |
171 | | simplr 767 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π§ β π΅) |
172 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π β (π§(Hom βπΆ)π€)) |
173 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 42, 170, 171, 172 | yonedalem4b 18225 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((((βππ€)β((βππ€)βπ))βπ§)βπ) = (((π€(2nd ββ)π§)βπ)β((βππ€)βπ))) |
174 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 26 | yonedalem3a 18223 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((βππ€) = (π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€))) β§ (βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€))) |
175 | 174 | simpld 495 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (βππ€) = (π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))) |
176 | 175 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((βππ€)βπ) = ((π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))βπ)) |
177 | 155 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π β (((1st βπ)βπ€)(π Nat π)β)) |
178 | | fveq1 6887 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π = π β (πβπ€) = (πβπ€)) |
179 | 178 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π = π β ((πβπ€)β( 1 βπ€)) = ((πβπ€)β( 1 βπ€))) |
180 | | fvex 6901 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((πβπ€)β( 1 βπ€)) β V |
181 | 179, 102,
180 | fvmpt 6995 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (((1st
βπ)βπ€)(π Nat π)β) β ((π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))βπ) = ((πβπ€)β( 1 βπ€))) |
182 | 177, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((π β (((1st βπ)βπ€)(π Nat π)β) β¦ ((πβπ€)β( 1 βπ€)))βπ) = ((πβπ€)β( 1 βπ€))) |
183 | 176, 182 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((βππ€)βπ) = ((πβπ€)β( 1 βπ€))) |
184 | 183 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((π€(2nd ββ)π§)βπ)β((βππ€)βπ)) = (((π€(2nd ββ)π§)βπ)β((πβπ€)β( 1 βπ€)))) |
185 | 156 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π β (β¨(1st
β((1st βπ)βπ€)), (2nd β((1st
βπ)βπ€))β©(π Nat π)β¨(1st ββ), (2nd ββ)β©)) |
186 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (Hom
βπ) = (Hom
βπ) |
187 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(compβπ) =
(compβπ) |
188 | 107, 5 | oppchom 17656 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π€(Hom βπ)π§) = (π§(Hom βπΆ)π€) |
189 | 172, 188 | eleqtrrdi 2844 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π β (π€(Hom βπ)π§)) |
190 | 141, 185,
7, 186, 187, 169, 171, 189 | nati 17902 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((πβπ§)(β¨((1st
β((1st βπ)βπ€))βπ€), ((1st β((1st
βπ)βπ€))βπ§)β©(compβπ)((1st ββ)βπ§))((π€(2nd β((1st
βπ)βπ€))π§)βπ)) = (((π€(2nd ββ)π§)βπ)(β¨((1st
β((1st βπ)βπ€))βπ€), ((1st ββ)βπ€)β©(compβπ)((1st ββ)βπ§))(πβπ€))) |
191 | 77 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β π β V) |
192 | 191 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β π β V) |
193 | 192 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β π β V) |
194 | | relfunc 17808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ Rel
(πΆ Func π) |
195 | 10, 17, 5, 12, 3, 77, 19 | yoncl 18211 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π β π β (πΆ Func π)) |
196 | | 1st2ndbr 8024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((Rel
(πΆ Func π) β§ π β (πΆ Func π)) β (1st βπ)(πΆ Func π)(2nd βπ)) |
197 | 194, 195,
196 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π β (1st
βπ)(πΆ Func π)(2nd βπ)) |
198 | 6, 4, 197 | funcf1 17812 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π β (1st
βπ):π΅βΆ(π Func π)) |
199 | 198 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (1st βπ):π΅βΆ(π Func π)) |
200 | 199, 147 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((1st βπ)βπ€) β (π Func π)) |
201 | | 1st2ndbr 8024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((Rel
(π Func π) β§ ((1st βπ)βπ€) β (π Func π)) β (1st
β((1st βπ)βπ€))(π Func π)(2nd β((1st
βπ)βπ€))) |
202 | 112, 200,
201 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (1st
β((1st βπ)βπ€))(π Func π)(2nd β((1st
βπ)βπ€))) |
203 | 7, 121, 202 | funcf1 17812 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (1st
β((1st βπ)βπ€)):π΅βΆ(Baseβπ)) |
204 | 12, 191 | setcbas 18024 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β π = (Baseβπ)) |
205 | 204 | feq3d 6701 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((1st
β((1st βπ)βπ€)):π΅βΆπ β (1st
β((1st βπ)βπ€)):π΅βΆ(Baseβπ))) |
206 | 203, 205 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (1st
β((1st βπ)βπ€)):π΅βΆπ) |
207 | 206, 147 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((1st
β((1st βπ)βπ€))βπ€) β π) |
208 | 207 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((1st
β((1st βπ)βπ€))βπ€) β π) |
209 | 206 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β ((1st
β((1st βπ)βπ€))βπ§) β π) |
210 | 209 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((1st
β((1st βπ)βπ€))βπ§) β π) |
211 | 112, 146,
113 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (1st ββ)(π Func π)(2nd ββ)) |
212 | 7, 121, 211 | funcf1 17812 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (1st ββ):π΅βΆ(Baseβπ)) |
213 | 204 | feq3d 6701 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((1st ββ):π΅βΆπ β (1st ββ):π΅βΆ(Baseβπ))) |
214 | 212, 213 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (1st ββ):π΅βΆπ) |
215 | 214 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β ((1st ββ)βπ§) β π) |
216 | 215 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((1st ββ)βπ§) β π) |
217 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (Hom
βπ) = (Hom
βπ) |
218 | 202 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (1st
β((1st βπ)βπ€))(π Func π)(2nd β((1st
βπ)βπ€))) |
219 | 7, 186, 217, 218, 169, 171 | funcf2 17814 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (π€(2nd β((1st
βπ)βπ€))π§):(π€(Hom βπ)π§)βΆ(((1st
β((1st βπ)βπ€))βπ€)(Hom βπ)((1st β((1st
βπ)βπ€))βπ§))) |
220 | 219, 189 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((π€(2nd β((1st
βπ)βπ€))π§)βπ) β (((1st
β((1st βπ)βπ€))βπ€)(Hom βπ)((1st β((1st
βπ)βπ€))βπ§))) |
221 | 12, 193, 217, 208, 210 | elsetchom 18027 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((π€(2nd β((1st
βπ)βπ€))π§)βπ) β (((1st
β((1st βπ)βπ€))βπ€)(Hom βπ)((1st β((1st
βπ)βπ€))βπ§)) β ((π€(2nd β((1st
βπ)βπ€))π§)βπ):((1st β((1st
βπ)βπ€))βπ€)βΆ((1st
β((1st βπ)βπ€))βπ§))) |
222 | 220, 221 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((π€(2nd β((1st
βπ)βπ€))π§)βπ):((1st β((1st
βπ)βπ€))βπ€)βΆ((1st
β((1st βπ)βπ€))βπ§)) |
223 | 156 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β π β (β¨(1st
β((1st βπ)βπ€)), (2nd β((1st
βπ)βπ€))β©(π Nat π)β¨(1st ββ), (2nd ββ)β©)) |
224 | 141, 223,
7, 217, 160 | natcl 17900 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (πβπ§) β (((1st
β((1st βπ)βπ€))βπ§)(Hom βπ)((1st ββ)βπ§))) |
225 | 12, 192, 217, 209, 215 | elsetchom 18027 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β ((πβπ§) β (((1st
β((1st βπ)βπ€))βπ§)(Hom βπ)((1st ββ)βπ§)) β (πβπ§):((1st β((1st
βπ)βπ€))βπ§)βΆ((1st ββ)βπ§))) |
226 | 224, 225 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (πβπ§):((1st β((1st
βπ)βπ€))βπ§)βΆ((1st ββ)βπ§)) |
227 | 226 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (πβπ§):((1st β((1st
βπ)βπ€))βπ§)βΆ((1st ββ)βπ§)) |
228 | 12, 193, 187, 208, 210, 216, 222, 227 | setcco 18029 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((πβπ§)(β¨((1st
β((1st βπ)βπ€))βπ€), ((1st β((1st
βπ)βπ€))βπ§)β©(compβπ)((1st ββ)βπ§))((π€(2nd β((1st
βπ)βπ€))π§)βπ)) = ((πβπ§) β ((π€(2nd β((1st
βπ)βπ€))π§)βπ))) |
229 | 214, 147 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((1st ββ)βπ€) β π) |
230 | 229 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((1st ββ)βπ€) β π) |
231 | 141, 156,
7, 217, 147 | natcl 17900 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (πβπ€) β (((1st
β((1st βπ)βπ€))βπ€)(Hom βπ)((1st ββ)βπ€))) |
232 | 12, 191, 217, 207, 229 | elsetchom 18027 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((πβπ€) β (((1st
β((1st βπ)βπ€))βπ€)(Hom βπ)((1st ββ)βπ€)) β (πβπ€):((1st β((1st
βπ)βπ€))βπ€)βΆ((1st ββ)βπ€))) |
233 | 231, 232 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β (πβπ€):((1st β((1st
βπ)βπ€))βπ€)βΆ((1st ββ)βπ€)) |
234 | 233 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (πβπ€):((1st β((1st
βπ)βπ€))βπ€)βΆ((1st ββ)βπ€)) |
235 | 112, 168,
113 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (1st ββ)(π Func π)(2nd ββ)) |
236 | 7, 186, 217, 235, 169, 171 | funcf2 17814 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (π€(2nd ββ)π§):(π€(Hom βπ)π§)βΆ(((1st ββ)βπ€)(Hom βπ)((1st ββ)βπ§))) |
237 | 236, 189 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((π€(2nd ββ)π§)βπ) β (((1st ββ)βπ€)(Hom βπ)((1st ββ)βπ§))) |
238 | 12, 193, 217, 230, 216 | elsetchom 18027 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((π€(2nd ββ)π§)βπ) β (((1st ββ)βπ€)(Hom βπ)((1st ββ)βπ§)) β ((π€(2nd ββ)π§)βπ):((1st ββ)βπ€)βΆ((1st ββ)βπ§))) |
239 | 237, 238 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((π€(2nd ββ)π§)βπ):((1st ββ)βπ€)βΆ((1st ββ)βπ§)) |
240 | 12, 193, 187, 208, 230, 216, 234, 239 | setcco 18029 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((π€(2nd ββ)π§)βπ)(β¨((1st
β((1st βπ)βπ€))βπ€), ((1st ββ)βπ€)β©(compβπ)((1st ββ)βπ§))(πβπ€)) = (((π€(2nd ββ)π§)βπ) β (πβπ€))) |
241 | 190, 228,
240 | 3eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((πβπ§) β ((π€(2nd β((1st
βπ)βπ€))π§)βπ)) = (((π€(2nd ββ)π§)βπ) β (πβπ€))) |
242 | 241 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((πβπ§) β ((π€(2nd β((1st
βπ)βπ€))π§)βπ))β( 1 βπ€)) = ((((π€(2nd ββ)π§)βπ) β (πβπ€))β( 1 βπ€))) |
243 | 6, 107, 11, 142, 147 | catidcl 17622 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ( 1 βπ€) β (π€(Hom βπΆ)π€)) |
244 | 10, 6, 142, 147, 107, 147 | yon11 18213 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((1st
β((1st βπ)βπ€))βπ€) = (π€(Hom βπΆ)π€)) |
245 | 243, 244 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ( 1 βπ€) β ((1st
β((1st βπ)βπ€))βπ€)) |
246 | 245 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ( 1 βπ€) β ((1st
β((1st βπ)βπ€))βπ€)) |
247 | 222, 246 | fvco3d 6988 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((πβπ§) β ((π€(2nd β((1st
βπ)βπ€))π§)βπ))β( 1 βπ€)) = ((πβπ§)β(((π€(2nd β((1st
βπ)βπ€))π§)βπ)β( 1 βπ€)))) |
248 | 233, 245 | fvco3d 6988 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((((π€(2nd ββ)π§)βπ) β (πβπ€))β( 1 βπ€)) = (((π€(2nd ββ)π§)βπ)β((πβπ€)β( 1 βπ€)))) |
249 | 248 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((((π€(2nd ββ)π§)βπ) β (πβπ€))β( 1 βπ€)) = (((π€(2nd ββ)π§)βπ)β((πβπ€)β( 1 βπ€)))) |
250 | 242, 247,
249 | 3eqtr3d 2780 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((πβπ§)β(((π€(2nd β((1st
βπ)βπ€))π§)βπ)β( 1 βπ€))) = (((π€(2nd ββ)π§)βπ)β((πβπ€)β( 1 βπ€)))) |
251 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(compβπΆ) =
(compβπΆ) |
252 | 243 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ( 1 βπ€) β (π€(Hom βπΆ)π€)) |
253 | 10, 6, 164, 169, 107, 169, 251, 171, 172, 252 | yon12 18214 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((π€(2nd β((1st
βπ)βπ€))π§)βπ)β( 1 βπ€)) = (( 1 βπ€)(β¨π§, π€β©(compβπΆ)π€)π)) |
254 | 6, 107, 11, 164, 171, 251, 169, 172 | catlid 17623 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (( 1 βπ€)(β¨π§, π€β©(compβπΆ)π€)π) = π) |
255 | 253, 254 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((π€(2nd β((1st
βπ)βπ€))π§)βπ)β( 1 βπ€)) = π) |
256 | 255 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((πβπ§)β(((π€(2nd β((1st
βπ)βπ€))π§)βπ)β( 1 βπ€))) = ((πβπ§)βπ)) |
257 | 250, 256 | eqtr3d 2774 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β (((π€(2nd ββ)π§)βπ)β((πβπ€)β( 1 βπ€))) = ((πβπ§)βπ)) |
258 | 173, 184,
257 | 3eqtrd 2776 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β (π§(Hom βπΆ)π€)) β ((((βππ€)β((βππ€)βπ))βπ§)βπ) = ((πβπ§)βπ)) |
259 | 163, 258 | syldan 591 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β§ π β ((1st
β((1st βπ)βπ€))βπ§)) β ((((βππ€)β((βππ€)βπ))βπ§)βπ) = ((πβπ§)βπ)) |
260 | 259 | mpteq2dva 5247 |
. . . . . . . . . . . . . 14
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (π β ((1st
β((1st βπ)βπ€))βπ§) β¦ ((((βππ€)β((βππ€)βπ))βπ§)βπ)) = (π β ((1st
β((1st βπ)βπ€))βπ§) β¦ ((πβπ§)βπ))) |
261 | 152 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β ((βππ€)β((βππ€)βπ)) β (β¨(1st
β((1st βπ)βπ€)), (2nd β((1st
βπ)βπ€))β©(π Nat π)β¨(1st ββ), (2nd ββ)β©)) |
262 | 141, 261,
7, 217, 160 | natcl 17900 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (((βππ€)β((βππ€)βπ))βπ§) β (((1st
β((1st βπ)βπ€))βπ§)(Hom βπ)((1st ββ)βπ§))) |
263 | 12, 192, 217, 209, 215 | elsetchom 18027 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β ((((βππ€)β((βππ€)βπ))βπ§) β (((1st
β((1st βπ)βπ€))βπ§)(Hom βπ)((1st ββ)βπ§)) β (((βππ€)β((βππ€)βπ))βπ§):((1st β((1st
βπ)βπ€))βπ§)βΆ((1st ββ)βπ§))) |
264 | 262, 263 | mpbid 231 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (((βππ€)β((βππ€)βπ))βπ§):((1st β((1st
βπ)βπ€))βπ§)βΆ((1st ββ)βπ§)) |
265 | 264 | feqmptd 6957 |
. . . . . . . . . . . . . 14
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (((βππ€)β((βππ€)βπ))βπ§) = (π β ((1st
β((1st βπ)βπ€))βπ§) β¦ ((((βππ€)β((βππ€)βπ))βπ§)βπ))) |
266 | 226 | feqmptd 6957 |
. . . . . . . . . . . . . 14
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (πβπ§) = (π β ((1st
β((1st βπ)βπ€))βπ§) β¦ ((πβπ§)βπ))) |
267 | 260, 265,
266 | 3eqtr4d 2782 |
. . . . . . . . . . . . 13
β’ ((((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β§ π§ β π΅) β (((βππ€)β((βππ€)βπ))βπ§) = (πβπ§)) |
268 | 153, 157,
267 | eqfnfvd 7032 |
. . . . . . . . . . . 12
β’ (((π β§ (β β (π Func π) β§ π€ β π΅)) β§ π β (β(1st βπ)π€)) β ((βππ€)β((βππ€)βπ)) = π) |
269 | 268 | mpteq2dva 5247 |
. . . . . . . . . . 11
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (π β (β(1st βπ)π€) β¦ ((βππ€)β((βππ€)βπ))) = (π β (β(1st βπ)π€) β¦ π)) |
270 | | mptresid 6048 |
. . . . . . . . . . 11
β’ ( I
βΎ (β(1st
βπ)π€)) = (π β (β(1st βπ)π€) β¦ π) |
271 | 269, 270 | eqtr4di 2790 |
. . . . . . . . . 10
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (π β (β(1st βπ)π€) β¦ ((βππ€)β((βππ€)βπ))) = ( I βΎ (β(1st βπ)π€))) |
272 | 140, 271 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€) β (βππ€)) = ( I βΎ (β(1st βπ)π€))) |
273 | | fcof1o 7290 |
. . . . . . . . 9
β’ ((((βππ€):(β(1st βπ)π€)βΆ(β(1st βπΈ)π€) β§ (βππ€):(β(1st βπΈ)π€)βΆ(β(1st βπ)π€)) β§ (((βππ€) β (βππ€)) = ( I βΎ (β(1st βπΈ)π€)) β§ ((βππ€) β (βππ€)) = ( I βΎ (β(1st βπ)π€)))) β ((βππ€):(β(1st βπ)π€)β1-1-ontoβ(β(1st βπΈ)π€) β§ β‘(βππ€) = (βππ€))) |
274 | 35, 84, 138, 272, 273 | syl22anc 837 |
. . . . . . . 8
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€):(β(1st βπ)π€)β1-1-ontoβ(β(1st βπΈ)π€) β§ β‘(βππ€) = (βππ€))) |
275 | | eqcom 2739 |
. . . . . . . . 9
β’ (β‘(βππ€) = (βππ€) β (βππ€) = β‘(βππ€)) |
276 | 275 | anbi2i 623 |
. . . . . . . 8
β’ (((βππ€):(β(1st βπ)π€)β1-1-ontoβ(β(1st βπΈ)π€) β§ β‘(βππ€) = (βππ€)) β ((βππ€):(β(1st βπ)π€)β1-1-ontoβ(β(1st βπΈ)π€) β§ (βππ€) = β‘(βππ€))) |
277 | 274, 276 | sylib 217 |
. . . . . . 7
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€):(β(1st βπ)π€)β1-1-ontoβ(β(1st βπΈ)π€) β§ (βππ€) = β‘(βππ€))) |
278 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Baseβπ) =
(Baseβπ) |
279 | | relfunc 17808 |
. . . . . . . . . . . 12
β’ Rel
((π
Γc π) Func π) |
280 | | 1st2ndbr 8024 |
. . . . . . . . . . . 12
β’ ((Rel
((π
Γc π) Func π) β§ π β ((π Γc π) Func π)) β (1st βπ)((π Γc π) Func π)(2nd βπ)) |
281 | 279, 22, 280 | sylancr 587 |
. . . . . . . . . . 11
β’ (π β (1st
βπ)((π Γc
π) Func π)(2nd βπ)) |
282 | 8, 278, 281 | funcf1 17812 |
. . . . . . . . . 10
β’ (π β (1st
βπ):((π Func π) Γ π΅)βΆ(Baseβπ)) |
283 | 13, 18 | setcbas 18024 |
. . . . . . . . . . 11
β’ (π β π = (Baseβπ)) |
284 | 283 | feq3d 6701 |
. . . . . . . . . 10
β’ (π β ((1st
βπ):((π Func π) Γ π΅)βΆπ β (1st βπ):((π Func π) Γ π΅)βΆ(Baseβπ))) |
285 | 282, 284 | mpbird 256 |
. . . . . . . . 9
β’ (π β (1st
βπ):((π Func π) Γ π΅)βΆπ) |
286 | 285 | fovcdmda 7574 |
. . . . . . . 8
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (β(1st βπ)π€) β π) |
287 | | 1st2ndbr 8024 |
. . . . . . . . . . . 12
β’ ((Rel
((π
Γc π) Func π) β§ πΈ β ((π Γc π) Func π)) β (1st βπΈ)((π Γc π) Func π)(2nd βπΈ)) |
288 | 279, 23, 287 | sylancr 587 |
. . . . . . . . . . 11
β’ (π β (1st
βπΈ)((π Γc
π) Func π)(2nd βπΈ)) |
289 | 8, 278, 288 | funcf1 17812 |
. . . . . . . . . 10
β’ (π β (1st
βπΈ):((π Func π) Γ π΅)βΆ(Baseβπ)) |
290 | 283 | feq3d 6701 |
. . . . . . . . . 10
β’ (π β ((1st
βπΈ):((π Func π) Γ π΅)βΆπ β (1st βπΈ):((π Func π) Γ π΅)βΆ(Baseβπ))) |
291 | 289, 290 | mpbird 256 |
. . . . . . . . 9
β’ (π β (1st
βπΈ):((π Func π) Γ π΅)βΆπ) |
292 | 291 | fovcdmda 7574 |
. . . . . . . 8
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (β(1st βπΈ)π€) β π) |
293 | 13, 29, 286, 292, 25 | setcinv 18036 |
. . . . . . 7
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β ((βππ€)((β(1st βπ)π€)(Invβπ)(β(1st βπΈ)π€))(βππ€) β ((βππ€):(β(1st βπ)π€)β1-1-ontoβ(β(1st βπΈ)π€) β§ (βππ€) = β‘(βππ€)))) |
294 | 277, 293 | mpbird 256 |
. . . . . 6
β’ ((π β§ (β β (π Func π) β§ π€ β π΅)) β (βππ€)((β(1st βπ)π€)(Invβπ)(β(1st βπΈ)π€))(βππ€)) |
295 | 294 | ralrimivva 3200 |
. . . . 5
β’ (π β ββ β (π Func π)βπ€ β π΅ (βππ€)((β(1st βπ)π€)(Invβπ)(β(1st βπΈ)π€))(βππ€)) |
296 | | fveq2 6888 |
. . . . . . . 8
β’ (π§ = β¨β, π€β© β (πβπ§) = (πββ¨β, π€β©)) |
297 | | df-ov 7408 |
. . . . . . . 8
β’ (βππ€) = (πββ¨β, π€β©) |
298 | 296, 297 | eqtr4di 2790 |
. . . . . . 7
β’ (π§ = β¨β, π€β© β (πβπ§) = (βππ€)) |
299 | | fveq2 6888 |
. . . . . . . . 9
β’ (π§ = β¨β, π€β© β ((1st βπ)βπ§) = ((1st βπ)ββ¨β, π€β©)) |
300 | | df-ov 7408 |
. . . . . . . . 9
β’ (β(1st βπ)π€) = ((1st βπ)ββ¨β, π€β©) |
301 | 299, 300 | eqtr4di 2790 |
. . . . . . . 8
β’ (π§ = β¨β, π€β© β ((1st βπ)βπ§) = (β(1st βπ)π€)) |
302 | | fveq2 6888 |
. . . . . . . . 9
β’ (π§ = β¨β, π€β© β ((1st βπΈ)βπ§) = ((1st βπΈ)ββ¨β, π€β©)) |
303 | | df-ov 7408 |
. . . . . . . . 9
β’ (β(1st βπΈ)π€) = ((1st βπΈ)ββ¨β, π€β©) |
304 | 302, 303 | eqtr4di 2790 |
. . . . . . . 8
β’ (π§ = β¨β, π€β© β ((1st βπΈ)βπ§) = (β(1st βπΈ)π€)) |
305 | 301, 304 | oveq12d 7423 |
. . . . . . 7
β’ (π§ = β¨β, π€β© β (((1st βπ)βπ§)(Invβπ)((1st βπΈ)βπ§)) = ((β(1st βπ)π€)(Invβπ)(β(1st βπΈ)π€))) |
306 | | fveq2 6888 |
. . . . . . . 8
β’ (π§ = β¨β, π€β© β (πβπ§) = (πββ¨β, π€β©)) |
307 | | df-ov 7408 |
. . . . . . . 8
β’ (βππ€) = (πββ¨β, π€β©) |
308 | 306, 307 | eqtr4di 2790 |
. . . . . . 7
β’ (π§ = β¨β, π€β© β (πβπ§) = (βππ€)) |
309 | 298, 305,
308 | breq123d 5161 |
. . . . . 6
β’ (π§ = β¨β, π€β© β ((πβπ§)(((1st βπ)βπ§)(Invβπ)((1st βπΈ)βπ§))(πβπ§) β (βππ€)((β(1st βπ)π€)(Invβπ)(β(1st βπΈ)π€))(βππ€))) |
310 | 309 | ralxp 5839 |
. . . . 5
β’
(βπ§ β
((π Func π) Γ π΅)(πβπ§)(((1st βπ)βπ§)(Invβπ)((1st βπΈ)βπ§))(πβπ§) β ββ β (π Func π)βπ€ β π΅ (βππ€)((β(1st βπ)π€)(Invβπ)(β(1st βπΈ)π€))(βππ€)) |
311 | 295, 310 | sylibr 233 |
. . . 4
β’ (π β βπ§ β ((π Func π) Γ π΅)(πβπ§)(((1st βπ)βπ§)(Invβπ)((1st βπΈ)βπ§))(πβπ§)) |
312 | 311 | r19.21bi 3248 |
. . 3
β’ ((π β§ π§ β ((π Func π) Γ π΅)) β (πβπ§)(((1st βπ)βπ§)(Invβπ)((1st βπΈ)βπ§))(πβπ§)) |
313 | 1, 8, 9, 22, 23, 24, 25, 27, 312 | invfuc 17923 |
. 2
β’ (π β π(ππΌπΈ)(π§ β ((π Func π) Γ π΅) β¦ (πβπ§))) |
314 | | fvex 6901 |
. . . . 5
β’
((1st βπ)βπ₯) β V |
315 | 314 | mptex 7221 |
. . . 4
β’ (π’ β ((1st
βπ)βπ₯) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’)))) β V |
316 | 42, 315 | fnmpoi 8052 |
. . 3
β’ π Fn ((π Func π) Γ π΅) |
317 | | dffn5 6947 |
. . 3
β’ (π Fn ((π Func π) Γ π΅) β π = (π§ β ((π Func π) Γ π΅) β¦ (πβπ§))) |
318 | 316, 317 | mpbi 229 |
. 2
β’ π = (π§ β ((π Func π) Γ π΅) β¦ (πβπ§)) |
319 | 313, 318 | breqtrrdi 5189 |
1
β’ (π β π(ππΌπΈ)π) |