MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfuc Structured version   Visualization version   GIF version

Theorem invfuc 17923
Description: If 𝑉(π‘₯) is an inverse to π‘ˆ(π‘₯) for each π‘₯, and π‘ˆ is a natural transformation, then 𝑉 is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐢 FuncCat 𝐷)
fuciso.b 𝐡 = (Baseβ€˜πΆ)
fuciso.n 𝑁 = (𝐢 Nat 𝐷)
fuciso.f (πœ‘ β†’ 𝐹 ∈ (𝐢 Func 𝐷))
fuciso.g (πœ‘ β†’ 𝐺 ∈ (𝐢 Func 𝐷))
fucinv.i 𝐼 = (Invβ€˜π‘„)
fucinv.j 𝐽 = (Invβ€˜π·)
invfuc.u (πœ‘ β†’ π‘ˆ ∈ (𝐹𝑁𝐺))
invfuc.v ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))𝑋)
Assertion
Ref Expression
invfuc (πœ‘ β†’ π‘ˆ(𝐹𝐼𝐺)(π‘₯ ∈ 𝐡 ↦ 𝑋))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐢   π‘₯,𝐷   π‘₯,𝐼   π‘₯,𝐹   π‘₯,𝐺   π‘₯,𝐽   π‘₯,𝑁   πœ‘,π‘₯   π‘₯,𝑄   π‘₯,π‘ˆ
Allowed substitution hint:   𝑋(π‘₯)

Proof of Theorem invfuc
Dummy variables 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfuc.u . 2 (πœ‘ β†’ π‘ˆ ∈ (𝐹𝑁𝐺))
2 invfuc.v . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))𝑋)
3 eqid 2732 . . . . . . . . . 10 (Baseβ€˜π·) = (Baseβ€˜π·)
4 fucinv.j . . . . . . . . . 10 𝐽 = (Invβ€˜π·)
5 fuciso.f . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐹 ∈ (𝐢 Func 𝐷))
6 funcrcl 17809 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐢 Func 𝐷) β†’ (𝐢 ∈ Cat ∧ 𝐷 ∈ Cat))
75, 6syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐢 ∈ Cat ∧ 𝐷 ∈ Cat))
87simprd 496 . . . . . . . . . . 11 (πœ‘ β†’ 𝐷 ∈ Cat)
98adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝐷 ∈ Cat)
10 fuciso.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜πΆ)
11 relfunc 17808 . . . . . . . . . . . . 13 Rel (𝐢 Func 𝐷)
12 1st2ndbr 8024 . . . . . . . . . . . . 13 ((Rel (𝐢 Func 𝐷) ∧ 𝐹 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜πΉ)(𝐢 Func 𝐷)(2nd β€˜πΉ))
1311, 5, 12sylancr 587 . . . . . . . . . . . 12 (πœ‘ β†’ (1st β€˜πΉ)(𝐢 Func 𝐷)(2nd β€˜πΉ))
1410, 3, 13funcf1 17812 . . . . . . . . . . 11 (πœ‘ β†’ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π·))
1514ffvelcdmda 7083 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((1st β€˜πΉ)β€˜π‘₯) ∈ (Baseβ€˜π·))
16 fuciso.g . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐺 ∈ (𝐢 Func 𝐷))
17 1st2ndbr 8024 . . . . . . . . . . . . 13 ((Rel (𝐢 Func 𝐷) ∧ 𝐺 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜πΊ)(𝐢 Func 𝐷)(2nd β€˜πΊ))
1811, 16, 17sylancr 587 . . . . . . . . . . . 12 (πœ‘ β†’ (1st β€˜πΊ)(𝐢 Func 𝐷)(2nd β€˜πΊ))
1910, 3, 18funcf1 17812 . . . . . . . . . . 11 (πœ‘ β†’ (1st β€˜πΊ):𝐡⟢(Baseβ€˜π·))
2019ffvelcdmda 7083 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((1st β€˜πΊ)β€˜π‘₯) ∈ (Baseβ€˜π·))
21 eqid 2732 . . . . . . . . . 10 (Hom β€˜π·) = (Hom β€˜π·)
223, 4, 9, 15, 20, 21invss 17704 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)) βŠ† ((((1st β€˜πΉ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘₯)) Γ— (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯))))
2322ssbrd 5190 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))𝑋 β†’ (π‘ˆβ€˜π‘₯)((((1st β€˜πΉ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘₯)) Γ— (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))𝑋))
242, 23mpd 15 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (π‘ˆβ€˜π‘₯)((((1st β€˜πΉ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘₯)) Γ— (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))𝑋)
25 brxp 5723 . . . . . . . 8 ((π‘ˆβ€˜π‘₯)((((1st β€˜πΉ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘₯)) Γ— (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))𝑋 ↔ ((π‘ˆβ€˜π‘₯) ∈ (((1st β€˜πΉ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘₯)) ∧ 𝑋 ∈ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯))))
2625simprbi 497 . . . . . . 7 ((π‘ˆβ€˜π‘₯)((((1st β€˜πΉ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘₯)) Γ— (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))𝑋 β†’ 𝑋 ∈ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))
2724, 26syl 17 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝑋 ∈ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))
2827ralrimiva 3146 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 𝑋 ∈ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))
2910fvexi 6902 . . . . . 6 𝐡 ∈ V
30 mptelixpg 8925 . . . . . 6 (𝐡 ∈ V β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ Xπ‘₯ ∈ 𝐡 (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)) ↔ βˆ€π‘₯ ∈ 𝐡 𝑋 ∈ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯))))
3129, 30ax-mp 5 . . . . 5 ((π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ Xπ‘₯ ∈ 𝐡 (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)) ↔ βˆ€π‘₯ ∈ 𝐡 𝑋 ∈ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))
3228, 31sylibr 233 . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ Xπ‘₯ ∈ 𝐡 (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)))
33 fveq2 6888 . . . . . 6 (π‘₯ = 𝑦 β†’ ((1st β€˜πΊ)β€˜π‘₯) = ((1st β€˜πΊ)β€˜π‘¦))
34 fveq2 6888 . . . . . 6 (π‘₯ = 𝑦 β†’ ((1st β€˜πΉ)β€˜π‘₯) = ((1st β€˜πΉ)β€˜π‘¦))
3533, 34oveq12d 7423 . . . . 5 (π‘₯ = 𝑦 β†’ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)) = (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘¦)))
3635cbvixpv 8905 . . . 4 Xπ‘₯ ∈ 𝐡 (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯)) = X𝑦 ∈ 𝐡 (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘¦))
3732, 36eleqtrdi 2843 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ X𝑦 ∈ 𝐡 (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘¦)))
38 simpr2 1195 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ 𝑧 ∈ 𝐡)
39 simpr 485 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ 𝐡)
40 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (π‘₯ ∈ 𝐡 ↦ 𝑋) = (π‘₯ ∈ 𝐡 ↦ 𝑋)
4140fvmpt2 7006 . . . . . . . . . . . . . . . . . 18 ((π‘₯ ∈ 𝐡 ∧ 𝑋 ∈ (((1st β€˜πΊ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘₯))) β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) = 𝑋)
4239, 27, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) = 𝑋)
432, 42breqtrrd 5175 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯))
4443ralrimiva 3146 . . . . . . . . . . . . . . 15 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯))
4544adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ βˆ€π‘₯ ∈ 𝐡 (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯))
46 nfcv 2903 . . . . . . . . . . . . . . . 16 β„²π‘₯(π‘ˆβ€˜π‘§)
47 nfcv 2903 . . . . . . . . . . . . . . . 16 β„²π‘₯(((1st β€˜πΉ)β€˜π‘§)𝐽((1st β€˜πΊ)β€˜π‘§))
48 nffvmpt1 6899 . . . . . . . . . . . . . . . 16 β„²π‘₯((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)
4946, 47, 48nfbr 5194 . . . . . . . . . . . . . . 15 β„²π‘₯(π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)𝐽((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)
50 fveq2 6888 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑧 β†’ (π‘ˆβ€˜π‘₯) = (π‘ˆβ€˜π‘§))
51 fveq2 6888 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝑧 β†’ ((1st β€˜πΉ)β€˜π‘₯) = ((1st β€˜πΉ)β€˜π‘§))
52 fveq2 6888 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝑧 β†’ ((1st β€˜πΊ)β€˜π‘₯) = ((1st β€˜πΊ)β€˜π‘§))
5351, 52oveq12d 7423 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑧 β†’ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)) = (((1st β€˜πΉ)β€˜π‘§)𝐽((1st β€˜πΊ)β€˜π‘§)))
54 fveq2 6888 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑧 β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) = ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§))
5550, 53, 54breq123d 5161 . . . . . . . . . . . . . . 15 (π‘₯ = 𝑧 β†’ ((π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) ↔ (π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)𝐽((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)))
5649, 55rspc 3600 . . . . . . . . . . . . . 14 (𝑧 ∈ 𝐡 β†’ (βˆ€π‘₯ ∈ 𝐡 (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) β†’ (π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)𝐽((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)))
5738, 45, 56sylc 65 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)𝐽((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§))
588adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ 𝐷 ∈ Cat)
5914adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (1st β€˜πΉ):𝐡⟢(Baseβ€˜π·))
6059, 38ffvelcdmd 7084 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((1st β€˜πΉ)β€˜π‘§) ∈ (Baseβ€˜π·))
6119adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (1st β€˜πΊ):𝐡⟢(Baseβ€˜π·))
6261, 38ffvelcdmd 7084 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((1st β€˜πΊ)β€˜π‘§) ∈ (Baseβ€˜π·))
63 eqid 2732 . . . . . . . . . . . . . 14 (Sectβ€˜π·) = (Sectβ€˜π·)
643, 4, 58, 60, 62, 63isinv 17703 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)𝐽((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§) ↔ ((π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)(Sectβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§) ∧ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(((1st β€˜πΊ)β€˜π‘§)(Sectβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§))))
6557, 64mpbid 231 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)(Sectβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§) ∧ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(((1st β€˜πΊ)β€˜π‘§)(Sectβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§)))
6665simpld 495 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)(Sectβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§))
67 eqid 2732 . . . . . . . . . . . 12 (compβ€˜π·) = (compβ€˜π·)
68 eqid 2732 . . . . . . . . . . . 12 (Idβ€˜π·) = (Idβ€˜π·)
693, 21, 67, 68, 63, 58, 60, 62issect 17696 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘§)(((1st β€˜πΉ)β€˜π‘§)(Sectβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§) ↔ ((π‘ˆβ€˜π‘§) ∈ (((1st β€˜πΉ)β€˜π‘§)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘§)) ∧ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§) ∈ (((1st β€˜πΊ)β€˜π‘§)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘§)) ∧ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘§), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§)) = ((Idβ€˜π·)β€˜((1st β€˜πΉ)β€˜π‘§)))))
7066, 69mpbid 231 . . . . . . . . . 10 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘§) ∈ (((1st β€˜πΉ)β€˜π‘§)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘§)) ∧ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§) ∈ (((1st β€˜πΊ)β€˜π‘§)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘§)) ∧ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘§), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§)) = ((Idβ€˜π·)β€˜((1st β€˜πΉ)β€˜π‘§))))
7170simp3d 1144 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘§), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§)) = ((Idβ€˜π·)β€˜((1st β€˜πΉ)β€˜π‘§)))
7271oveq1d 7420 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘§), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§))(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)) = (((Idβ€˜π·)β€˜((1st β€˜πΉ)β€˜π‘§))(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)))
73 simpr1 1194 . . . . . . . . . 10 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ 𝑦 ∈ 𝐡)
7459, 73ffvelcdmd 7084 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((1st β€˜πΉ)β€˜π‘¦) ∈ (Baseβ€˜π·))
75 eqid 2732 . . . . . . . . . . 11 (Hom β€˜πΆ) = (Hom β€˜πΆ)
7613adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (1st β€˜πΉ)(𝐢 Func 𝐷)(2nd β€˜πΉ))
7710, 75, 21, 76, 73, 38funcf2 17814 . . . . . . . . . 10 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (𝑦(2nd β€˜πΉ)𝑧):(𝑦(Hom β€˜πΆ)𝑧)⟢(((1st β€˜πΉ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘§)))
78 simpr3 1196 . . . . . . . . . 10 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))
7977, 78ffvelcdmd 7084 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“) ∈ (((1st β€˜πΉ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘§)))
803, 21, 68, 58, 74, 67, 60, 79catlid 17623 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((Idβ€˜π·)β€˜((1st β€˜πΉ)β€˜π‘§))(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)) = ((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“))
8172, 80eqtr2d 2773 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“) = ((((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘§), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§))(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)))
82 fuciso.n . . . . . . . . 9 𝑁 = (𝐢 Nat 𝐷)
831adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ π‘ˆ ∈ (𝐹𝑁𝐺))
8482, 83nat1st2nd 17898 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ π‘ˆ ∈ (⟨(1st β€˜πΉ), (2nd β€˜πΉ)βŸ©π‘βŸ¨(1st β€˜πΊ), (2nd β€˜πΊ)⟩))
8582, 84, 10, 21, 38natcl 17900 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (π‘ˆβ€˜π‘§) ∈ (((1st β€˜πΉ)β€˜π‘§)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘§)))
8670simp2d 1143 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§) ∈ (((1st β€˜πΊ)β€˜π‘§)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘§)))
873, 21, 67, 58, 74, 60, 62, 79, 85, 60, 86catass 17626 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘§), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(π‘ˆβ€˜π‘§))(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)) = (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘ˆβ€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“))))
8882, 84, 10, 75, 67, 73, 38, 78nati 17902 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)) = (((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦)))
8988oveq2d 7421 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘ˆβ€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“))) = (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦))))
9081, 87, 893eqtrd 2776 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“) = (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦))))
9190oveq1d 7420 . . . . 5 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)) = ((((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦)))(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)))
9261, 73ffvelcdmd 7084 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((1st β€˜πΊ)β€˜π‘¦) ∈ (Baseβ€˜π·))
93 nfcv 2903 . . . . . . . . . . . . 13 β„²π‘₯(π‘ˆβ€˜π‘¦)
94 nfcv 2903 . . . . . . . . . . . . 13 β„²π‘₯(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))
95 nffvmpt1 6899 . . . . . . . . . . . . 13 β„²π‘₯((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)
9693, 94, 95nfbr 5194 . . . . . . . . . . . 12 β„²π‘₯(π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)
97 fveq2 6888 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ (π‘ˆβ€˜π‘₯) = (π‘ˆβ€˜π‘¦))
9834, 33oveq12d 7423 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ (((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯)) = (((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦)))
99 fveq2 6888 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) = ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))
10097, 98, 99breq123d 5161 . . . . . . . . . . . 12 (π‘₯ = 𝑦 β†’ ((π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) ↔ (π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)))
10196, 100rspc 3600 . . . . . . . . . . 11 (𝑦 ∈ 𝐡 β†’ (βˆ€π‘₯ ∈ 𝐡 (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) β†’ (π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)))
10273, 45, 101sylc 65 . . . . . . . . . 10 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))
1033, 4, 58, 74, 92, 63isinv 17703 . . . . . . . . . 10 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦) ↔ ((π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)(Sectβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦) ∧ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)(((1st β€˜πΊ)β€˜π‘¦)(Sectβ€˜π·)((1st β€˜πΉ)β€˜π‘¦))(π‘ˆβ€˜π‘¦))))
104102, 103mpbid 231 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)(Sectβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦) ∧ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)(((1st β€˜πΊ)β€˜π‘¦)(Sectβ€˜π·)((1st β€˜πΉ)β€˜π‘¦))(π‘ˆβ€˜π‘¦)))
105104simprd 496 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)(((1st β€˜πΊ)β€˜π‘¦)(Sectβ€˜π·)((1st β€˜πΉ)β€˜π‘¦))(π‘ˆβ€˜π‘¦))
1063, 21, 67, 68, 63, 58, 92, 74issect 17696 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)(((1st β€˜πΊ)β€˜π‘¦)(Sectβ€˜π·)((1st β€˜πΉ)β€˜π‘¦))(π‘ˆβ€˜π‘¦) ↔ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦) ∈ (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘¦)) ∧ (π‘ˆβ€˜π‘¦) ∈ (((1st β€˜πΉ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘¦)) ∧ ((π‘ˆβ€˜π‘¦)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)) = ((Idβ€˜π·)β€˜((1st β€˜πΊ)β€˜π‘¦)))))
107105, 106mpbid 231 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦) ∈ (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘¦)) ∧ (π‘ˆβ€˜π‘¦) ∈ (((1st β€˜πΉ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘¦)) ∧ ((π‘ˆβ€˜π‘¦)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)) = ((Idβ€˜π·)β€˜((1st β€˜πΊ)β€˜π‘¦))))
108107simp1d 1142 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦) ∈ (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘¦)))
109107simp2d 1143 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (π‘ˆβ€˜π‘¦) ∈ (((1st β€˜πΉ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘¦)))
11018adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (1st β€˜πΊ)(𝐢 Func 𝐷)(2nd β€˜πΊ))
11110, 75, 21, 110, 73, 38funcf2 17814 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (𝑦(2nd β€˜πΊ)𝑧):(𝑦(Hom β€˜πΆ)𝑧)⟢(((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘§)))
112111, 78ffvelcdmd 7084 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“) ∈ (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘§)))
1133, 21, 67, 58, 74, 92, 62, 109, 112catcocl 17625 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦)) ∈ (((1st β€˜πΉ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘§)))
1143, 21, 67, 58, 92, 74, 62, 108, 113, 60, 86catass 17626 . . . . 5 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))(((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦)))(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)) = (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦))(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))))
11582, 84, 10, 21, 73natcl 17900 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (π‘ˆβ€˜π‘¦) ∈ (((1st β€˜πΉ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΊ)β€˜π‘¦)))
1163, 21, 67, 58, 92, 74, 92, 108, 115, 62, 112catass 17626 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦))(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)) = (((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘ˆβ€˜π‘¦)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))))
117107simp3d 1144 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((π‘ˆβ€˜π‘¦)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)) = ((Idβ€˜π·)β€˜((1st β€˜πΊ)β€˜π‘¦)))
118117oveq2d 7421 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘ˆβ€˜π‘¦)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))) = (((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((Idβ€˜π·)β€˜((1st β€˜πΊ)β€˜π‘¦))))
1193, 21, 68, 58, 92, 67, 62, 112catrid 17624 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((Idβ€˜π·)β€˜((1st β€˜πΊ)β€˜π‘¦))) = ((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“))
120116, 118, 1193eqtrd 2776 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ ((((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦))(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)) = ((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“))
121120oveq2d 7421 . . . . 5 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)(⟨((1st β€˜πΉ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))(π‘ˆβ€˜π‘¦))(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΊ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))) = (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)))
12291, 114, 1213eqtrrd 2777 . . . 4 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡 ∧ 𝑓 ∈ (𝑦(Hom β€˜πΆ)𝑧))) β†’ (((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)) = (((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)))
123122ralrimivvva 3203 . . 3 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 βˆ€π‘“ ∈ (𝑦(Hom β€˜πΆ)𝑧)(((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)) = (((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)))
12482, 10, 75, 21, 67, 16, 5isnat2 17895 . . 3 (πœ‘ β†’ ((π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ (𝐺𝑁𝐹) ↔ ((π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ X𝑦 ∈ 𝐡 (((1st β€˜πΊ)β€˜π‘¦)(Hom β€˜π·)((1st β€˜πΉ)β€˜π‘¦)) ∧ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 βˆ€π‘“ ∈ (𝑦(Hom β€˜πΆ)𝑧)(((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘§)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΊ)β€˜π‘§)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((𝑦(2nd β€˜πΊ)𝑧)β€˜π‘“)) = (((𝑦(2nd β€˜πΉ)𝑧)β€˜π‘“)(⟨((1st β€˜πΊ)β€˜π‘¦), ((1st β€˜πΉ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΉ)β€˜π‘§))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦)))))
12537, 123, 124mpbir2and 711 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ (𝐺𝑁𝐹))
126 nfv 1917 . . . 4 Ⅎ𝑦(π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯)
127126, 96, 100cbvralw 3303 . . 3 (βˆ€π‘₯ ∈ 𝐡 (π‘ˆβ€˜π‘₯)(((1st β€˜πΉ)β€˜π‘₯)𝐽((1st β€˜πΊ)β€˜π‘₯))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘₯) ↔ βˆ€π‘¦ ∈ 𝐡 (π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))
12844, 127sylib 217 . 2 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝐡 (π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))
129 fuciso.q . . 3 𝑄 = (𝐢 FuncCat 𝐷)
130 fucinv.i . . 3 𝐼 = (Invβ€˜π‘„)
131129, 10, 82, 5, 16, 130, 4fucinv 17922 . 2 (πœ‘ β†’ (π‘ˆ(𝐹𝐼𝐺)(π‘₯ ∈ 𝐡 ↦ 𝑋) ↔ (π‘ˆ ∈ (𝐹𝑁𝐺) ∧ (π‘₯ ∈ 𝐡 ↦ 𝑋) ∈ (𝐺𝑁𝐹) ∧ βˆ€π‘¦ ∈ 𝐡 (π‘ˆβ€˜π‘¦)(((1st β€˜πΉ)β€˜π‘¦)𝐽((1st β€˜πΊ)β€˜π‘¦))((π‘₯ ∈ 𝐡 ↦ 𝑋)β€˜π‘¦))))
1321, 125, 128, 131mpbir3and 1342 1 (πœ‘ β†’ π‘ˆ(𝐹𝐼𝐺)(π‘₯ ∈ 𝐡 ↦ 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   Γ— cxp 5673  Rel wrel 5680  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Xcixp 8887  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604  Idccid 17605  Sectcsect 17687  Invcinv 17688   Func cfunc 17800   Nat cnat 17888   FuncCat cfuc 17889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-sect 17690  df-inv 17691  df-func 17804  df-nat 17890  df-fuc 17891
This theorem is referenced by:  fuciso  17924  yonedainv  18230
  Copyright terms: Public domain W3C validator