Step | Hyp | Ref
| Expression |
1 | | invfuc.u |
. 2
⊢ (𝜑 → 𝑈 ∈ (𝐹𝑁𝐺)) |
2 | | invfuc.v |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))𝑋) |
3 | | eqid 2758 |
. . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝐷) |
4 | | fucinv.j |
. . . . . . . . . 10
⊢ 𝐽 = (Inv‘𝐷) |
5 | | fuciso.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
6 | | funcrcl 17192 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
8 | 7 | simprd 499 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ Cat) |
9 | 8 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ Cat) |
10 | | fuciso.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐶) |
11 | | relfunc 17191 |
. . . . . . . . . . . . 13
⊢ Rel
(𝐶 Func 𝐷) |
12 | | 1st2ndbr 7745 |
. . . . . . . . . . . . 13
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
13 | 11, 5, 12 | sylancr 590 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
14 | 10, 3, 13 | funcf1 17195 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝐷)) |
15 | 14 | ffvelrnda 6842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
16 | | fuciso.g |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
17 | | 1st2ndbr 7745 |
. . . . . . . . . . . . 13
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
18 | 11, 16, 17 | sylancr 590 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
19 | 10, 3, 18 | funcf1 17195 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝐺):𝐵⟶(Base‘𝐷)) |
20 | 19 | ffvelrnda 6842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) |
21 | | eqid 2758 |
. . . . . . . . . 10
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
22 | 3, 4, 9, 15, 20, 21 | invss 17090 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ⊆ ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))) |
23 | 22 | ssbrd 5075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))𝑋 → (𝑈‘𝑥)((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))𝑋)) |
24 | 2, 23 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈‘𝑥)((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))𝑋) |
25 | | brxp 5570 |
. . . . . . . 8
⊢ ((𝑈‘𝑥)((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))𝑋 ↔ ((𝑈‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥)) ∧ 𝑋 ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))) |
26 | 25 | simprbi 500 |
. . . . . . 7
⊢ ((𝑈‘𝑥)((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐺)‘𝑥)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))𝑋 → 𝑋 ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
27 | 24, 26 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
28 | 27 | ralrimiva 3113 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝑋 ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
29 | 10 | fvexi 6672 |
. . . . . 6
⊢ 𝐵 ∈ V |
30 | | mptelixpg 8517 |
. . . . . 6
⊢ (𝐵 ∈ V → ((𝑥 ∈ 𝐵 ↦ 𝑋) ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 𝑋 ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)))) |
31 | 29, 30 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ↦ 𝑋) ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 𝑋 ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
32 | 28, 31 | sylibr 237 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝑋) ∈ X𝑥 ∈ 𝐵 (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) |
33 | | fveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑦)) |
34 | | fveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑦)) |
35 | 33, 34 | oveq12d 7168 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)) = (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
36 | 35 | cbvixpv 8497 |
. . . 4
⊢ X𝑥 ∈
𝐵 (((1st
‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥)) = X𝑦 ∈ 𝐵 (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) |
37 | 32, 36 | eleqtrdi 2862 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝑋) ∈ X𝑦 ∈ 𝐵 (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
38 | | simpr2 1192 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ 𝐵) |
39 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
40 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐵 ↦ 𝑋) = (𝑥 ∈ 𝐵 ↦ 𝑋) |
41 | 40 | fvmpt2 6770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑥))) → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) = 𝑋) |
42 | 39, 27, 41 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) = 𝑋) |
43 | 2, 42 | breqtrrd 5060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥)) |
44 | 43 | ralrimiva 3113 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥)) |
45 | 44 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥)) |
46 | | nfcv 2919 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑈‘𝑧) |
47 | | nfcv 2919 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(((1st ‘𝐹)‘𝑧)𝐽((1st ‘𝐺)‘𝑧)) |
48 | | nffvmpt1 6669 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) |
49 | 46, 47, 48 | nfbr 5079 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)𝐽((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) |
50 | | fveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (𝑈‘𝑥) = (𝑈‘𝑧)) |
51 | | fveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑧)) |
52 | | fveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑧)) |
53 | 51, 52 | oveq12d 7168 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) = (((1st ‘𝐹)‘𝑧)𝐽((1st ‘𝐺)‘𝑧))) |
54 | | fveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)) |
55 | 50, 53, 54 | breq123d 5046 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) ↔ (𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)𝐽((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧))) |
56 | 49, 55 | rspc 3529 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) → (𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)𝐽((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧))) |
57 | 38, 45, 56 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)𝐽((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)) |
58 | 8 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat) |
59 | 14 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
60 | 59, 38 | ffvelrnd 6843 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑧) ∈ (Base‘𝐷)) |
61 | 19 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐺):𝐵⟶(Base‘𝐷)) |
62 | 61, 38 | ffvelrnd 6843 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑧) ∈ (Base‘𝐷)) |
63 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢
(Sect‘𝐷) =
(Sect‘𝐷) |
64 | 3, 4, 58, 60, 62, 63 | isinv 17089 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)𝐽((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) ↔ ((𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)(Sect‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) ∧ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(((1st ‘𝐺)‘𝑧)(Sect‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧)))) |
65 | 57, 64 | mpbid 235 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)(Sect‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) ∧ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(((1st ‘𝐺)‘𝑧)(Sect‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧))) |
66 | 65 | simpld 498 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)(Sect‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)) |
67 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(comp‘𝐷) =
(comp‘𝐷) |
68 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(Id‘𝐷) =
(Id‘𝐷) |
69 | 3, 21, 67, 68, 63, 58, 60, 62 | issect 17082 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑧)(((1st ‘𝐹)‘𝑧)(Sect‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) ↔ ((𝑈‘𝑧) ∈ (((1st ‘𝐹)‘𝑧)(Hom ‘𝐷)((1st ‘𝐺)‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) ∈ (((1st ‘𝐺)‘𝑧)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧)) ∧ (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑧))))) |
70 | 66, 69 | mpbid 235 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑧) ∈ (((1st ‘𝐹)‘𝑧)(Hom ‘𝐷)((1st ‘𝐺)‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) ∈ (((1st ‘𝐺)‘𝑧)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧)) ∧ (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑧)))) |
71 | 70 | simp3d 1141 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑧))) |
72 | 71 | oveq1d 7165 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧))(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓)) = (((Id‘𝐷)‘((1st ‘𝐹)‘𝑧))(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓))) |
73 | | simpr1 1191 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ 𝐵) |
74 | 59, 73 | ffvelrnd 6843 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
75 | | eqid 2758 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
76 | 13 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
77 | 10, 75, 21, 76, 73, 38 | funcf2 17197 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd ‘𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧))) |
78 | | simpr3 1193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
79 | 77, 78 | ffvelrnd 6843 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐹)𝑧)‘𝑓) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧))) |
80 | 3, 21, 68, 58, 74, 67, 60, 79 | catlid 17012 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((Id‘𝐷)‘((1st ‘𝐹)‘𝑧))(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓)) = ((𝑦(2nd ‘𝐹)𝑧)‘𝑓)) |
81 | 72, 80 | eqtr2d 2794 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐹)𝑧)‘𝑓) = ((((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧))(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓))) |
82 | | fuciso.n |
. . . . . . . . 9
⊢ 𝑁 = (𝐶 Nat 𝐷) |
83 | 1 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (𝐹𝑁𝐺)) |
84 | 82, 83 | nat1st2nd 17280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
85 | 82, 84, 10, 21, 38 | natcl 17282 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈‘𝑧) ∈ (((1st ‘𝐹)‘𝑧)(Hom ‘𝐷)((1st ‘𝐺)‘𝑧))) |
86 | 70 | simp2d 1140 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧) ∈ (((1st ‘𝐺)‘𝑧)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧))) |
87 | 3, 21, 67, 58, 74, 60, 62, 79, 85, 60, 86 | catass 17015 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(𝑈‘𝑧))(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓)) = (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑈‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓)))) |
88 | 82, 84, 10, 75, 67, 73, 38, 78 | nati 17284 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓)) = (((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦))) |
89 | 88 | oveq2d 7166 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑈‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐹)‘𝑧)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑦(2nd ‘𝐹)𝑧)‘𝑓))) = (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦)))) |
90 | 81, 87, 89 | 3eqtrd 2797 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐹)𝑧)‘𝑓) = (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦)))) |
91 | 90 | oveq1d 7165 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝐹)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) = ((((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦)))(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))) |
92 | 61, 73 | ffvelrnd 6843 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐷)) |
93 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑈‘𝑦) |
94 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦)) |
95 | | nffvmpt1 6669 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) |
96 | 93, 94, 95 | nfbr 5079 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) |
97 | | fveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑈‘𝑥) = (𝑈‘𝑦)) |
98 | 34, 33 | oveq12d 7168 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) = (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))) |
99 | | fveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) |
100 | 97, 98, 99 | breq123d 5046 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) ↔ (𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))) |
101 | 96, 100 | rspc 3529 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) → (𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))) |
102 | 73, 45, 101 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) |
103 | 3, 4, 58, 74, 92, 63 | isinv 17089 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) ↔ ((𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)(Sect‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) ∧ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)(((1st ‘𝐺)‘𝑦)(Sect‘𝐷)((1st ‘𝐹)‘𝑦))(𝑈‘𝑦)))) |
104 | 102, 103 | mpbid 235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)(Sect‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) ∧ ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)(((1st ‘𝐺)‘𝑦)(Sect‘𝐷)((1st ‘𝐹)‘𝑦))(𝑈‘𝑦))) |
105 | 104 | simprd 499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)(((1st ‘𝐺)‘𝑦)(Sect‘𝐷)((1st ‘𝐹)‘𝑦))(𝑈‘𝑦)) |
106 | 3, 21, 67, 68, 63, 58, 92, 74 | issect 17082 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)(((1st ‘𝐺)‘𝑦)(Sect‘𝐷)((1st ‘𝐹)‘𝑦))(𝑈‘𝑦) ↔ (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) ∈ (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ∧ (𝑈‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑦)) ∧ ((𝑈‘𝑦)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st ‘𝐺)‘𝑦))))) |
107 | 105, 106 | mpbid 235 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) ∈ (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ∧ (𝑈‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑦)) ∧ ((𝑈‘𝑦)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st ‘𝐺)‘𝑦)))) |
108 | 107 | simp1d 1139 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦) ∈ (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
109 | 107 | simp2d 1140 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑦))) |
110 | 18 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
111 | 10, 75, 21, 110, 73, 38 | funcf2 17197 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd ‘𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑧))) |
112 | 111, 78 | ffvelrnd 6843 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐺)𝑧)‘𝑓) ∈ (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑧))) |
113 | 3, 21, 67, 58, 74, 92, 62, 109, 112 | catcocl 17014 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦)) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑧))) |
114 | 3, 21, 67, 58, 92, 74, 62, 108, 113, 60, 86 | catass 17015 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))(((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦)))(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) = (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦))(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)))) |
115 | 82, 84, 10, 21, 73 | natcl 17282 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐺)‘𝑦))) |
116 | 3, 21, 67, 58, 92, 74, 92, 108, 115, 62, 112 | catass 17015 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦))(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) = (((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑈‘𝑦)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)))) |
117 | 107 | simp3d 1141 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈‘𝑦)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st ‘𝐺)‘𝑦))) |
118 | 117 | oveq2d 7166 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑈‘𝑦)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))) = (((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((Id‘𝐷)‘((1st ‘𝐺)‘𝑦)))) |
119 | 3, 21, 68, 58, 92, 67, 62, 112 | catrid 17013 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((Id‘𝐷)‘((1st ‘𝐺)‘𝑦))) = ((𝑦(2nd ‘𝐺)𝑧)‘𝑓)) |
120 | 116, 118,
119 | 3eqtrd 2797 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦))(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) = ((𝑦(2nd ‘𝐺)𝑧)‘𝑓)) |
121 | 120 | oveq2d 7166 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((((𝑦(2nd ‘𝐺)𝑧)‘𝑓)(〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))(𝑈‘𝑦))(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐺)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))) = (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐺)𝑧)‘𝑓))) |
122 | 91, 114, 121 | 3eqtrrd 2798 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐺)𝑧)‘𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))) |
123 | 122 | ralrimivvva 3121 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐺)𝑧)‘𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))) |
124 | 82, 10, 75, 21, 67, 16, 5 | isnat2 17277 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝑋) ∈ (𝐺𝑁𝐹) ↔ ((𝑥 ∈ 𝐵 ↦ 𝑋) ∈ X𝑦 ∈ 𝐵 (((1st ‘𝐺)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑧)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐺)‘𝑧)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑦(2nd ‘𝐺)𝑧)‘𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑓)(〈((1st ‘𝐺)‘𝑦), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦))))) |
125 | 37, 123, 124 | mpbir2and 712 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝑋) ∈ (𝐺𝑁𝐹)) |
126 | | nfv 1915 |
. . . 4
⊢
Ⅎ𝑦(𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) |
127 | 126, 96, 100 | cbvralw 3352 |
. . 3
⊢
(∀𝑥 ∈
𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑥) ↔ ∀𝑦 ∈ 𝐵 (𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) |
128 | 44, 127 | sylib 221 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)) |
129 | | fuciso.q |
. . 3
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
130 | | fucinv.i |
. . 3
⊢ 𝐼 = (Inv‘𝑄) |
131 | 129, 10, 82, 5, 16, 130, 4 | fucinv 17302 |
. 2
⊢ (𝜑 → (𝑈(𝐹𝐼𝐺)(𝑥 ∈ 𝐵 ↦ 𝑋) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ (𝑥 ∈ 𝐵 ↦ 𝑋) ∈ (𝐺𝑁𝐹) ∧ ∀𝑦 ∈ 𝐵 (𝑈‘𝑦)(((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))((𝑥 ∈ 𝐵 ↦ 𝑋)‘𝑦)))) |
132 | 1, 125, 128, 131 | mpbir3and 1339 |
1
⊢ (𝜑 → 𝑈(𝐹𝐼𝐺)(𝑥 ∈ 𝐵 ↦ 𝑋)) |