MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfuc Structured version   Visualization version   GIF version

Theorem invfuc 17884
Description: If 𝑉(𝑥) is an inverse to 𝑈(𝑥) for each 𝑥, and 𝑈 is a natural transformation, then 𝑉 is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucinv.i 𝐼 = (Inv‘𝑄)
fucinv.j 𝐽 = (Inv‘𝐷)
invfuc.u (𝜑𝑈 ∈ (𝐹𝑁𝐺))
invfuc.v ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋)
Assertion
Ref Expression
invfuc (𝜑𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem invfuc
Dummy variables 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfuc.u . 2 (𝜑𝑈 ∈ (𝐹𝑁𝐺))
2 invfuc.v . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋)
3 eqid 2729 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
4 fucinv.j . . . . . . . . . 10 𝐽 = (Inv‘𝐷)
5 fuciso.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
6 funcrcl 17770 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
87simprd 495 . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
98adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
10 fuciso.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐶)
11 relfunc 17769 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝐷)
12 1st2ndbr 7977 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1311, 5, 12sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1410, 3, 13funcf1 17773 . . . . . . . . . . 11 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
1514ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
16 fuciso.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
17 1st2ndbr 7977 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1811, 16, 17sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1910, 3, 18funcf1 17773 . . . . . . . . . . 11 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
2019ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
21 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
223, 4, 9, 15, 20, 21invss 17668 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ⊆ ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2322ssbrd 5135 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋 → (𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋))
242, 23mpd 15 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋)
25 brxp 5668 . . . . . . . 8 ((𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋 ↔ ((𝑈𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) ∧ 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2625simprbi 496 . . . . . . 7 ((𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2724, 26syl 17 . . . . . 6 ((𝜑𝑥𝐵) → 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2827ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2910fvexi 6836 . . . . . 6 𝐵 ∈ V
30 mptelixpg 8862 . . . . . 6 (𝐵 ∈ V → ((𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
3129, 30ax-mp 5 . . . . 5 ((𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
3228, 31sylibr 234 . . . 4 (𝜑 → (𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
33 fveq2 6822 . . . . . 6 (𝑥 = 𝑦 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑦))
34 fveq2 6822 . . . . . 6 (𝑥 = 𝑦 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑦))
3533, 34oveq12d 7367 . . . . 5 (𝑥 = 𝑦 → (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) = (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
3635cbvixpv 8842 . . . 4 X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) = X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦))
3732, 36eleqtrdi 2838 . . 3 (𝜑 → (𝑥𝐵𝑋) ∈ X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr2 1196 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
39 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐵) → 𝑥𝐵)
40 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
4140fvmpt2 6941 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
4239, 27, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
432, 42breqtrrd 5120 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
4443ralrimiva 3121 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
4544adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
46 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑥(𝑈𝑧)
47 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑥(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))
48 nffvmpt1 6833 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝑋)‘𝑧)
4946, 47, 48nfbr 5139 . . . . . . . . . . . . . . 15 𝑥(𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)
50 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑈𝑥) = (𝑈𝑧))
51 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑧))
52 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑧))
5351, 52oveq12d 7367 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧)))
54 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑧))
5550, 53, 54breq123d 5106 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)))
5649, 55rspc 3565 . . . . . . . . . . . . . 14 (𝑧𝐵 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) → (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)))
5738, 45, 56sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧))
588adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat)
5914adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹):𝐵⟶(Base‘𝐷))
6059, 38ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
6119adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺):𝐵⟶(Base‘𝐷))
6261, 38ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑧) ∈ (Base‘𝐷))
63 eqid 2729 . . . . . . . . . . . . . 14 (Sect‘𝐷) = (Sect‘𝐷)
643, 4, 58, 60, 62, 63isinv 17667 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ↔ ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ∧ ((𝑥𝐵𝑋)‘𝑧)(((1st𝐺)‘𝑧)(Sect‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))))
6557, 64mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ∧ ((𝑥𝐵𝑋)‘𝑧)(((1st𝐺)‘𝑧)(Sect‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)))
6665simpld 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧))
67 eqid 2729 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
68 eqid 2729 . . . . . . . . . . . 12 (Id‘𝐷) = (Id‘𝐷)
693, 21, 67, 68, 63, 58, 60, 62issect 17660 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ↔ ((𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)) ∧ ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧)))))
7066, 69mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)) ∧ ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧))))
7170simp3d 1144 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧)))
7271oveq1d 7364 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((Id‘𝐷)‘((1st𝐹)‘𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)))
73 simpr1 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
7459, 73ffvelcdmd 7019 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
75 eqid 2729 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
7613adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
7710, 75, 21, 76, 73, 38funcf2 17775 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
78 simpr3 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))
7977, 78ffvelcdmd 7019 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
803, 21, 68, 58, 74, 67, 60, 79catlid 17589 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((Id‘𝐷)‘((1st𝐹)‘𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = ((𝑦(2nd𝐹)𝑧)‘𝑓))
8172, 80eqtr2d 2765 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) = ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)))
82 fuciso.n . . . . . . . . 9 𝑁 = (𝐶 Nat 𝐷)
831adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (𝐹𝑁𝐺))
8482, 83nat1st2nd 17861 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
8582, 84, 10, 21, 38natcl 17863 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
8670simp2d 1143 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
873, 21, 67, 58, 74, 60, 62, 79, 85, 60, 86catass 17592 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓))))
8882, 84, 10, 75, 67, 73, 38, 78nati 17865 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))
8988oveq2d 7365 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓))) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))))
9081, 87, 893eqtrd 2768 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))))
9190oveq1d 7364 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
9261, 73ffvelcdmd 7019 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
93 nfcv 2891 . . . . . . . . . . . . 13 𝑥(𝑈𝑦)
94 nfcv 2891 . . . . . . . . . . . . 13 𝑥(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))
95 nffvmpt1 6833 . . . . . . . . . . . . 13 𝑥((𝑥𝐵𝑋)‘𝑦)
9693, 94, 95nfbr 5139 . . . . . . . . . . . 12 𝑥(𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)
97 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
9834, 33oveq12d 7367 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
99 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑦))
10097, 98, 99breq123d 5106 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)))
10196, 100rspc 3565 . . . . . . . . . . 11 (𝑦𝐵 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) → (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)))
10273, 45, 101sylc 65 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
1033, 4, 58, 74, 92, 63isinv 17667 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ↔ ((𝑈𝑦)(((1st𝐹)‘𝑦)(Sect‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ∧ ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦))))
104102, 103mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(((1st𝐹)‘𝑦)(Sect‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ∧ ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦)))
105104simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦))
1063, 21, 67, 68, 63, 58, 92, 74issect 17660 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦) ↔ (((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)) ∧ ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦)))))
107105, 106mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)) ∧ ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦))))
108107simp1d 1142 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
109107simp2d 1143 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
11018adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
11110, 75, 21, 110, 73, 38funcf2 17775 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
112111, 78ffvelcdmd 7019 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑓) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
1133, 21, 67, 58, 74, 92, 62, 109, 112catcocl 17591 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
1143, 21, 67, 58, 92, 74, 62, 108, 113, 60, 86catass 17592 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦))))
11582, 84, 10, 21, 73natcl 17863 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
1163, 21, 67, 58, 92, 74, 92, 108, 115, 62, 112catass 17592 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))))
117107simp3d 1144 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦)))
118117oveq2d 7365 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((Id‘𝐷)‘((1st𝐺)‘𝑦))))
1193, 21, 68, 58, 92, 67, 62, 112catrid 17590 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((Id‘𝐷)‘((1st𝐺)‘𝑦))) = ((𝑦(2nd𝐺)𝑧)‘𝑓))
120116, 118, 1193eqtrd 2768 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = ((𝑦(2nd𝐺)𝑧)‘𝑓))
121120oveq2d 7365 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦))) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)))
12291, 114, 1213eqtrrd 2769 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
123122ralrimivvva 3175 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
12482, 10, 75, 21, 67, 16, 5isnat2 17858 . . 3 (𝜑 → ((𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹) ↔ ((𝑥𝐵𝑋) ∈ X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))))
12537, 123, 124mpbir2and 713 . 2 (𝜑 → (𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹))
126 nfv 1914 . . . 4 𝑦(𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥)
127126, 96, 100cbvralw 3271 . . 3 (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
12844, 127sylib 218 . 2 (𝜑 → ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
129 fuciso.q . . 3 𝑄 = (𝐶 FuncCat 𝐷)
130 fucinv.i . . 3 𝐼 = (Inv‘𝑄)
131129, 10, 82, 5, 16, 130, 4fucinv 17883 . 2 (𝜑 → (𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ (𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹) ∧ ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))))
1321, 125, 128, 131mpbir3and 1343 1 (𝜑𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  Rel wrel 5624  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Xcixp 8824  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Sectcsect 17651  Invcinv 17652   Func cfunc 17761   Nat cnat 17851   FuncCat cfuc 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-sect 17654  df-inv 17655  df-func 17765  df-nat 17853  df-fuc 17854
This theorem is referenced by:  fuciso  17885  yonedainv  18187
  Copyright terms: Public domain W3C validator