MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfuc Structured version   Visualization version   GIF version

Theorem invfuc 17701
Description: If 𝑉(𝑥) is an inverse to 𝑈(𝑥) for each 𝑥, and 𝑈 is a natural transformation, then 𝑉 is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucinv.i 𝐼 = (Inv‘𝑄)
fucinv.j 𝐽 = (Inv‘𝐷)
invfuc.u (𝜑𝑈 ∈ (𝐹𝑁𝐺))
invfuc.v ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋)
Assertion
Ref Expression
invfuc (𝜑𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem invfuc
Dummy variables 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfuc.u . 2 (𝜑𝑈 ∈ (𝐹𝑁𝐺))
2 invfuc.v . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋)
3 eqid 2739 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
4 fucinv.j . . . . . . . . . 10 𝐽 = (Inv‘𝐷)
5 fuciso.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
6 funcrcl 17587 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
87simprd 496 . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
98adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
10 fuciso.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐶)
11 relfunc 17586 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝐷)
12 1st2ndbr 7892 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1311, 5, 12sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1410, 3, 13funcf1 17590 . . . . . . . . . . 11 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
1514ffvelrnda 6970 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
16 fuciso.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
17 1st2ndbr 7892 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1811, 16, 17sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1910, 3, 18funcf1 17590 . . . . . . . . . . 11 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
2019ffvelrnda 6970 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
21 eqid 2739 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
223, 4, 9, 15, 20, 21invss 17482 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ⊆ ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2322ssbrd 5118 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋 → (𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋))
242, 23mpd 15 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋)
25 brxp 5637 . . . . . . . 8 ((𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋 ↔ ((𝑈𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) ∧ 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2625simprbi 497 . . . . . . 7 ((𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2724, 26syl 17 . . . . . 6 ((𝜑𝑥𝐵) → 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2827ralrimiva 3104 . . . . 5 (𝜑 → ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2910fvexi 6797 . . . . . 6 𝐵 ∈ V
30 mptelixpg 8732 . . . . . 6 (𝐵 ∈ V → ((𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
3129, 30ax-mp 5 . . . . 5 ((𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
3228, 31sylibr 233 . . . 4 (𝜑 → (𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
33 fveq2 6783 . . . . . 6 (𝑥 = 𝑦 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑦))
34 fveq2 6783 . . . . . 6 (𝑥 = 𝑦 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑦))
3533, 34oveq12d 7302 . . . . 5 (𝑥 = 𝑦 → (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) = (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
3635cbvixpv 8712 . . . 4 X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) = X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦))
3732, 36eleqtrdi 2850 . . 3 (𝜑 → (𝑥𝐵𝑋) ∈ X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr2 1194 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
39 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐵) → 𝑥𝐵)
40 eqid 2739 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
4140fvmpt2 6895 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
4239, 27, 41syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
432, 42breqtrrd 5103 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
4443ralrimiva 3104 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
4544adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
46 nfcv 2908 . . . . . . . . . . . . . . . 16 𝑥(𝑈𝑧)
47 nfcv 2908 . . . . . . . . . . . . . . . 16 𝑥(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))
48 nffvmpt1 6794 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝑋)‘𝑧)
4946, 47, 48nfbr 5122 . . . . . . . . . . . . . . 15 𝑥(𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)
50 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑈𝑥) = (𝑈𝑧))
51 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑧))
52 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑧))
5351, 52oveq12d 7302 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧)))
54 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑧))
5550, 53, 54breq123d 5089 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)))
5649, 55rspc 3550 . . . . . . . . . . . . . 14 (𝑧𝐵 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) → (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)))
5738, 45, 56sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧))
588adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat)
5914adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹):𝐵⟶(Base‘𝐷))
6059, 38ffvelrnd 6971 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
6119adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺):𝐵⟶(Base‘𝐷))
6261, 38ffvelrnd 6971 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑧) ∈ (Base‘𝐷))
63 eqid 2739 . . . . . . . . . . . . . 14 (Sect‘𝐷) = (Sect‘𝐷)
643, 4, 58, 60, 62, 63isinv 17481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ↔ ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ∧ ((𝑥𝐵𝑋)‘𝑧)(((1st𝐺)‘𝑧)(Sect‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))))
6557, 64mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ∧ ((𝑥𝐵𝑋)‘𝑧)(((1st𝐺)‘𝑧)(Sect‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)))
6665simpld 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧))
67 eqid 2739 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
68 eqid 2739 . . . . . . . . . . . 12 (Id‘𝐷) = (Id‘𝐷)
693, 21, 67, 68, 63, 58, 60, 62issect 17474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ↔ ((𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)) ∧ ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧)))))
7066, 69mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)) ∧ ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧))))
7170simp3d 1143 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧)))
7271oveq1d 7299 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((Id‘𝐷)‘((1st𝐹)‘𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)))
73 simpr1 1193 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
7459, 73ffvelrnd 6971 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
75 eqid 2739 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
7613adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
7710, 75, 21, 76, 73, 38funcf2 17592 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
78 simpr3 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))
7977, 78ffvelrnd 6971 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
803, 21, 68, 58, 74, 67, 60, 79catlid 17401 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((Id‘𝐷)‘((1st𝐹)‘𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = ((𝑦(2nd𝐹)𝑧)‘𝑓))
8172, 80eqtr2d 2780 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) = ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)))
82 fuciso.n . . . . . . . . 9 𝑁 = (𝐶 Nat 𝐷)
831adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (𝐹𝑁𝐺))
8482, 83nat1st2nd 17676 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
8582, 84, 10, 21, 38natcl 17678 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
8670simp2d 1142 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
873, 21, 67, 58, 74, 60, 62, 79, 85, 60, 86catass 17404 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓))))
8882, 84, 10, 75, 67, 73, 38, 78nati 17680 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))
8988oveq2d 7300 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓))) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))))
9081, 87, 893eqtrd 2783 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))))
9190oveq1d 7299 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
9261, 73ffvelrnd 6971 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
93 nfcv 2908 . . . . . . . . . . . . 13 𝑥(𝑈𝑦)
94 nfcv 2908 . . . . . . . . . . . . 13 𝑥(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))
95 nffvmpt1 6794 . . . . . . . . . . . . 13 𝑥((𝑥𝐵𝑋)‘𝑦)
9693, 94, 95nfbr 5122 . . . . . . . . . . . 12 𝑥(𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)
97 fveq2 6783 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
9834, 33oveq12d 7302 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
99 fveq2 6783 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑦))
10097, 98, 99breq123d 5089 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)))
10196, 100rspc 3550 . . . . . . . . . . 11 (𝑦𝐵 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) → (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)))
10273, 45, 101sylc 65 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
1033, 4, 58, 74, 92, 63isinv 17481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ↔ ((𝑈𝑦)(((1st𝐹)‘𝑦)(Sect‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ∧ ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦))))
104102, 103mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(((1st𝐹)‘𝑦)(Sect‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ∧ ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦)))
105104simprd 496 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦))
1063, 21, 67, 68, 63, 58, 92, 74issect 17474 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦) ↔ (((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)) ∧ ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦)))))
107105, 106mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)) ∧ ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦))))
108107simp1d 1141 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
109107simp2d 1142 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
11018adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
11110, 75, 21, 110, 73, 38funcf2 17592 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
112111, 78ffvelrnd 6971 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑓) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
1133, 21, 67, 58, 74, 92, 62, 109, 112catcocl 17403 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
1143, 21, 67, 58, 92, 74, 62, 108, 113, 60, 86catass 17404 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦))))
11582, 84, 10, 21, 73natcl 17678 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
1163, 21, 67, 58, 92, 74, 92, 108, 115, 62, 112catass 17404 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))))
117107simp3d 1143 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦)))
118117oveq2d 7300 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((Id‘𝐷)‘((1st𝐺)‘𝑦))))
1193, 21, 68, 58, 92, 67, 62, 112catrid 17402 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((Id‘𝐷)‘((1st𝐺)‘𝑦))) = ((𝑦(2nd𝐺)𝑧)‘𝑓))
120116, 118, 1193eqtrd 2783 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = ((𝑦(2nd𝐺)𝑧)‘𝑓))
121120oveq2d 7300 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦))) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)))
12291, 114, 1213eqtrrd 2784 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
123122ralrimivvva 3128 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
12482, 10, 75, 21, 67, 16, 5isnat2 17673 . . 3 (𝜑 → ((𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹) ↔ ((𝑥𝐵𝑋) ∈ X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))))
12537, 123, 124mpbir2and 710 . 2 (𝜑 → (𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹))
126 nfv 1918 . . . 4 𝑦(𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥)
127126, 96, 100cbvralw 3374 . . 3 (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
12844, 127sylib 217 . 2 (𝜑 → ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
129 fuciso.q . . 3 𝑄 = (𝐶 FuncCat 𝐷)
130 fucinv.i . . 3 𝐼 = (Inv‘𝑄)
131129, 10, 82, 5, 16, 130, 4fucinv 17700 . 2 (𝜑 → (𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ (𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹) ∧ ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))))
1321, 125, 128, 131mpbir3and 1341 1 (𝜑𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wral 3065  Vcvv 3433  cop 4568   class class class wbr 5075  cmpt 5158   × cxp 5588  Rel wrel 5595  wf 6433  cfv 6437  (class class class)co 7284  1st c1st 7838  2nd c2nd 7839  Xcixp 8694  Basecbs 16921  Hom chom 16982  compcco 16983  Catccat 17382  Idccid 17383  Sectcsect 17465  Invcinv 17466   Func cfunc 17578   Nat cnat 17666   FuncCat cfuc 17667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-fz 13249  df-struct 16857  df-slot 16892  df-ndx 16904  df-base 16922  df-hom 16995  df-cco 16996  df-cat 17386  df-cid 17387  df-sect 17468  df-inv 17469  df-func 17582  df-nat 17668  df-fuc 17669
This theorem is referenced by:  fuciso  17702  yonedainv  18008
  Copyright terms: Public domain W3C validator