MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfuc Structured version   Visualization version   GIF version

Theorem invfuc 17608
Description: If 𝑉(𝑥) is an inverse to 𝑈(𝑥) for each 𝑥, and 𝑈 is a natural transformation, then 𝑉 is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q 𝑄 = (𝐶 FuncCat 𝐷)
fuciso.b 𝐵 = (Base‘𝐶)
fuciso.n 𝑁 = (𝐶 Nat 𝐷)
fuciso.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
fuciso.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
fucinv.i 𝐼 = (Inv‘𝑄)
fucinv.j 𝐽 = (Inv‘𝐷)
invfuc.u (𝜑𝑈 ∈ (𝐹𝑁𝐺))
invfuc.v ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋)
Assertion
Ref Expression
invfuc (𝜑𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑁   𝜑,𝑥   𝑥,𝑄   𝑥,𝑈
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem invfuc
Dummy variables 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfuc.u . 2 (𝜑𝑈 ∈ (𝐹𝑁𝐺))
2 invfuc.v . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋)
3 eqid 2738 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
4 fucinv.j . . . . . . . . . 10 𝐽 = (Inv‘𝐷)
5 fuciso.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
6 funcrcl 17494 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
87simprd 495 . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
98adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝐷 ∈ Cat)
10 fuciso.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐶)
11 relfunc 17493 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝐷)
12 1st2ndbr 7856 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1311, 5, 12sylancr 586 . . . . . . . . . . . 12 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1410, 3, 13funcf1 17497 . . . . . . . . . . 11 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
1514ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
16 fuciso.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
17 1st2ndbr 7856 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1811, 16, 17sylancr 586 . . . . . . . . . . . 12 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1910, 3, 18funcf1 17497 . . . . . . . . . . 11 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝐷))
2019ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
21 eqid 2738 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
223, 4, 9, 15, 20, 21invss 17390 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) ⊆ ((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2322ssbrd 5113 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋 → (𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋))
242, 23mpd 15 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋)
25 brxp 5627 . . . . . . . 8 ((𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋 ↔ ((𝑈𝑥) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) ∧ 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2625simprbi 496 . . . . . . 7 ((𝑈𝑥)((((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐺)‘𝑥)) × (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))𝑋𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2724, 26syl 17 . . . . . 6 ((𝜑𝑥𝐵) → 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2827ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2910fvexi 6770 . . . . . 6 𝐵 ∈ V
30 mptelixpg 8681 . . . . . 6 (𝐵 ∈ V → ((𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
3129, 30ax-mp 5 . . . . 5 ((𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥𝐵 𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
3228, 31sylibr 233 . . . 4 (𝜑 → (𝑥𝐵𝑋) ∈ X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
33 fveq2 6756 . . . . . 6 (𝑥 = 𝑦 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑦))
34 fveq2 6756 . . . . . 6 (𝑥 = 𝑦 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑦))
3533, 34oveq12d 7273 . . . . 5 (𝑥 = 𝑦 → (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) = (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
3635cbvixpv 8661 . . . 4 X𝑥𝐵 (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) = X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦))
3732, 36eleqtrdi 2849 . . 3 (𝜑 → (𝑥𝐵𝑋) ∈ X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr2 1193 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
39 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐵) → 𝑥𝐵)
40 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
4140fvmpt2 6868 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵𝑋 ∈ (((1st𝐺)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
4239, 27, 41syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
432, 42breqtrrd 5098 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
4443ralrimiva 3107 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
4544adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥))
46 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑥(𝑈𝑧)
47 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑥(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))
48 nffvmpt1 6767 . . . . . . . . . . . . . . . 16 𝑥((𝑥𝐵𝑋)‘𝑧)
4946, 47, 48nfbr 5117 . . . . . . . . . . . . . . 15 𝑥(𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)
50 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑈𝑥) = (𝑈𝑧))
51 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑧))
52 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((1st𝐺)‘𝑥) = ((1st𝐺)‘𝑧))
5351, 52oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧)))
54 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑧))
5550, 53, 54breq123d 5084 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)))
5649, 55rspc 3539 . . . . . . . . . . . . . 14 (𝑧𝐵 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) → (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧)))
5738, 45, 56sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧))
588adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐷 ∈ Cat)
5914adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹):𝐵⟶(Base‘𝐷))
6059, 38ffvelrnd 6944 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
6119adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺):𝐵⟶(Base‘𝐷))
6261, 38ffvelrnd 6944 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑧) ∈ (Base‘𝐷))
63 eqid 2738 . . . . . . . . . . . . . 14 (Sect‘𝐷) = (Sect‘𝐷)
643, 4, 58, 60, 62, 63isinv 17389 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)𝐽((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ↔ ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ∧ ((𝑥𝐵𝑋)‘𝑧)(((1st𝐺)‘𝑧)(Sect‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))))
6557, 64mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ∧ ((𝑥𝐵𝑋)‘𝑧)(((1st𝐺)‘𝑧)(Sect‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)))
6665simpld 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧))
67 eqid 2738 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
68 eqid 2738 . . . . . . . . . . . 12 (Id‘𝐷) = (Id‘𝐷)
693, 21, 67, 68, 63, 58, 60, 62issect 17382 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(((1st𝐹)‘𝑧)(Sect‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑧) ↔ ((𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)) ∧ ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧)))))
7066, 69mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)) ∧ ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧))))
7170simp3d 1142 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧)) = ((Id‘𝐷)‘((1st𝐹)‘𝑧)))
7271oveq1d 7270 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((Id‘𝐷)‘((1st𝐹)‘𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)))
73 simpr1 1192 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
7459, 73ffvelrnd 6944 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
75 eqid 2738 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
7613adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
7710, 75, 21, 76, 73, 38funcf2 17499 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
78 simpr3 1194 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))
7977, 78ffvelrnd 6944 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
803, 21, 68, 58, 74, 67, 60, 79catlid 17309 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((Id‘𝐷)‘((1st𝐹)‘𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = ((𝑦(2nd𝐹)𝑧)‘𝑓))
8172, 80eqtr2d 2779 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) = ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)))
82 fuciso.n . . . . . . . . 9 𝑁 = (𝐶 Nat 𝐷)
831adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (𝐹𝑁𝐺))
8482, 83nat1st2nd 17583 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑈 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
8582, 84, 10, 21, 38natcl 17585 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑧) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
8670simp2d 1141 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑧) ∈ (((1st𝐺)‘𝑧)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
873, 21, 67, 58, 74, 60, 62, 79, 85, 60, 86catass 17312 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑧), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(𝑈𝑧))(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓))))
8882, 84, 10, 75, 67, 73, 38, 78nati 17587 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓)) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))
8988oveq2d 7271 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑈𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐹)‘𝑧)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑦(2nd𝐹)𝑧)‘𝑓))) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))))
9081, 87, 893eqtrd 2782 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐹)𝑧)‘𝑓) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))))
9190oveq1d 7270 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
9261, 73ffvelrnd 6944 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
93 nfcv 2906 . . . . . . . . . . . . 13 𝑥(𝑈𝑦)
94 nfcv 2906 . . . . . . . . . . . . 13 𝑥(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))
95 nffvmpt1 6767 . . . . . . . . . . . . 13 𝑥((𝑥𝐵𝑋)‘𝑦)
9693, 94, 95nfbr 5117 . . . . . . . . . . . 12 𝑥(𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)
97 fveq2 6756 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
9834, 33oveq12d 7273 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)) = (((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦)))
99 fveq2 6756 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑦))
10097, 98, 99breq123d 5084 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)))
10196, 100rspc 3539 . . . . . . . . . . 11 (𝑦𝐵 → (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) → (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)))
10273, 45, 101sylc 65 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
1033, 4, 58, 74, 92, 63isinv 17389 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ↔ ((𝑈𝑦)(((1st𝐹)‘𝑦)(Sect‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ∧ ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦))))
104102, 103mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(((1st𝐹)‘𝑦)(Sect‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦) ∧ ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦)))
105104simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦))
1063, 21, 67, 68, 63, 58, 92, 74issect 17382 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑦)(((1st𝐺)‘𝑦)(Sect‘𝐷)((1st𝐹)‘𝑦))(𝑈𝑦) ↔ (((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)) ∧ ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦)))))
107105, 106mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)) ∧ ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦))))
108107simp1d 1140 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥𝐵𝑋)‘𝑦) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
109107simp2d 1141 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
11018adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
11110, 75, 21, 110, 73, 38funcf2 17499 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
112111, 78ffvelrnd 6944 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐺)𝑧)‘𝑓) ∈ (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
1133, 21, 67, 58, 74, 92, 62, 109, 112catcocl 17311 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑧)))
1143, 21, 67, 58, 92, 74, 62, 108, 113, 60, 86catass 17312 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))(((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦)))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦))))
11582, 84, 10, 21, 73natcl 17585 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑈𝑦) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐺)‘𝑦)))
1163, 21, 67, 58, 92, 74, 92, 108, 115, 62, 112catass 17312 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))))
117107simp3d 1142 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦)) = ((Id‘𝐷)‘((1st𝐺)‘𝑦)))
118117oveq2d 7271 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑈𝑦)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))) = (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((Id‘𝐷)‘((1st𝐺)‘𝑦))))
1193, 21, 68, 58, 92, 67, 62, 112catrid 17310 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((Id‘𝐷)‘((1st𝐺)‘𝑦))) = ((𝑦(2nd𝐺)𝑧)‘𝑓))
120116, 118, 1193eqtrd 2782 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦)) = ((𝑦(2nd𝐺)𝑧)‘𝑓))
121120oveq2d 7271 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((((𝑦(2nd𝐺)𝑧)‘𝑓)(⟨((1st𝐹)‘𝑦), ((1st𝐺)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))(𝑈𝑦))(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐺)‘𝑧))((𝑥𝐵𝑋)‘𝑦))) = (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)))
12291, 114, 1213eqtrrd 2783 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
123122ralrimivvva 3115 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))
12482, 10, 75, 21, 67, 16, 5isnat2 17580 . . 3 (𝜑 → ((𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹) ↔ ((𝑥𝐵𝑋) ∈ X𝑦𝐵 (((1st𝐺)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑦)) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑥𝐵𝑋)‘𝑧)(⟨((1st𝐺)‘𝑦), ((1st𝐺)‘𝑧)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑦(2nd𝐺)𝑧)‘𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑓)(⟨((1st𝐺)‘𝑦), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥𝐵𝑋)‘𝑦)))))
12537, 123, 124mpbir2and 709 . 2 (𝜑 → (𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹))
126 nfv 1918 . . . 4 𝑦(𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥)
127126, 96, 100cbvralw 3363 . . 3 (∀𝑥𝐵 (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))((𝑥𝐵𝑋)‘𝑥) ↔ ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
12844, 127sylib 217 . 2 (𝜑 → ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))
129 fuciso.q . . 3 𝑄 = (𝐶 FuncCat 𝐷)
130 fucinv.i . . 3 𝐼 = (Inv‘𝑄)
131129, 10, 82, 5, 16, 130, 4fucinv 17607 . 2 (𝜑 → (𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋) ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ (𝑥𝐵𝑋) ∈ (𝐺𝑁𝐹) ∧ ∀𝑦𝐵 (𝑈𝑦)(((1st𝐹)‘𝑦)𝐽((1st𝐺)‘𝑦))((𝑥𝐵𝑋)‘𝑦))))
1321, 125, 128, 131mpbir3and 1340 1 (𝜑𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Xcixp 8643  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291  Sectcsect 17373  Invcinv 17374   Func cfunc 17485   Nat cnat 17573   FuncCat cfuc 17574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-func 17489  df-nat 17575  df-fuc 17576
This theorem is referenced by:  fuciso  17609  yonedainv  17915
  Copyright terms: Public domain W3C validator