Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsle Structured version   Visualization version   GIF version

Theorem xpsle 16910
 Description: Value of the ordering in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsle.t 𝑇 = (𝑅 ×s 𝑆)
xpsle.x 𝑋 = (Base‘𝑅)
xpsle.y 𝑌 = (Base‘𝑆)
xpsle.1 (𝜑𝑅𝑉)
xpsle.2 (𝜑𝑆𝑊)
xpsle.p = (le‘𝑇)
xpsle.m 𝑀 = (le‘𝑅)
xpsle.n 𝑁 = (le‘𝑆)
xpsle.3 (𝜑𝐴𝑋)
xpsle.4 (𝜑𝐵𝑌)
xpsle.5 (𝜑𝐶𝑋)
xpsle.6 (𝜑𝐷𝑌)
Assertion
Ref Expression
xpsle (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))

Proof of Theorem xpsle
Dummy variables 𝑐 𝑑 𝑘 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7153 . . . . 5 (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩)
2 xpsle.3 . . . . . 6 (𝜑𝐴𝑋)
3 xpsle.4 . . . . . 6 (𝜑𝐵𝑌)
4 eqid 2758 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54xpsfval 16897 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
62, 3, 5syl2anc 587 . . . . 5 (𝜑 → (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
71, 6syl5eqr 2807 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
82, 3opelxpd 5562 . . . . 5 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
94xpsff1o2 16900 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
10 f1of 6602 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
119, 10ax-mp 5 . . . . . 6 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1211ffvelrni 6841 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
138, 12syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
147, 13eqeltrrd 2853 . . 3 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
15 df-ov 7153 . . . . 5 (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩)
16 xpsle.5 . . . . . 6 (𝜑𝐶𝑋)
17 xpsle.6 . . . . . 6 (𝜑𝐷𝑌)
184xpsfval 16897 . . . . . 6 ((𝐶𝑋𝐷𝑌) → (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
1916, 17, 18syl2anc 587 . . . . 5 (𝜑 → (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2015, 19syl5eqr 2807 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2116, 17opelxpd 5562 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2211ffvelrni 6841 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2321, 22syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2420, 23eqeltrrd 2853 . . 3 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
25 xpsle.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
26 xpsle.x . . . . 5 𝑋 = (Base‘𝑅)
27 xpsle.y . . . . 5 𝑌 = (Base‘𝑆)
28 xpsle.1 . . . . 5 (𝜑𝑅𝑉)
29 xpsle.2 . . . . 5 (𝜑𝑆𝑊)
30 eqid 2758 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
31 eqid 2758 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
3225, 26, 27, 28, 29, 4, 30, 31xpsval 16901 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
3325, 26, 27, 28, 29, 4, 30, 31xpsrnbas 16902 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
34 f1ocnv 6614 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
359, 34mp1i 13 . . . . 5 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
36 f1ofo 6609 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
3735, 36syl 17 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
38 ovexd 7185 . . . 4 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
39 xpsle.p . . . 4 = (le‘𝑇)
40 eqid 2758 . . . 4 (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
4135f1olecpbl 16858 . . . 4 ((𝜑 ∧ (𝑎 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) ∧ (𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑑 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) → ((((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑎) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑐) ∧ ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑏) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑑)) → (𝑎(le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑏𝑐(le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑑)))
4232, 33, 37, 38, 39, 40, 41imasleval 16872 . . 3 ((𝜑 ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}))
4314, 24, 42mpd3an23 1460 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}))
44 f1ocnvfv 7027 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
459, 8, 44sylancr 590 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
467, 45mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩)
47 f1ocnvfv 7027 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
489, 21, 47sylancr 590 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
4920, 48mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩)
5046, 49breq12d 5045 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) ↔ ⟨𝐴, 𝐵𝐶, 𝐷⟩))
51 eqid 2758 . . . 4 (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
52 fvexd 6673 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
53 2on 8121 . . . . 5 2o ∈ On
5453a1i 11 . . . 4 (𝜑 → 2o ∈ On)
55 fnpr2o 16888 . . . . 5 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
5628, 29, 55syl2anc 587 . . . 4 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
5714, 33eleqtrd 2854 . . . 4 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5824, 33eleqtrd 2854 . . . 4 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5931, 51, 52, 54, 56, 57, 58, 40prdsleval 16808 . . 3 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ↔ ∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)))
60 df2o3 8127 . . . . . 6 2o = {∅, 1o}
6160raleqi 3327 . . . . 5 (∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ ∀𝑘 ∈ {∅, 1o} ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))
62 0ex 5177 . . . . . 6 ∅ ∈ V
63 1oex 8120 . . . . . 6 1o ∈ V
64 fveq2 6658 . . . . . . 7 (𝑘 = ∅ → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅))
65 2fveq3 6663 . . . . . . 7 (𝑘 = ∅ → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
66 fveq2 6658 . . . . . . 7 (𝑘 = ∅ → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅))
6764, 65, 66breq123d 5046 . . . . . 6 (𝑘 = ∅ → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)))
68 fveq2 6658 . . . . . . 7 (𝑘 = 1o → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o))
69 2fveq3 6663 . . . . . . 7 (𝑘 = 1o → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
70 fveq2 6658 . . . . . . 7 (𝑘 = 1o → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o))
7168, 69, 70breq123d 5046 . . . . . 6 (𝑘 = 1o → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)))
7262, 63, 67, 71ralpr 4593 . . . . 5 (∀𝑘 ∈ {∅, 1o} ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ∧ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)))
7361, 72bitri 278 . . . 4 (∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ∧ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)))
74 fvpr0o 16890 . . . . . . 7 (𝐴𝑋 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
752, 74syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
76 fvpr0o 16890 . . . . . . . . 9 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
7728, 76syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
7877fveq2d 6662 . . . . . . 7 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (le‘𝑅))
79 xpsle.m . . . . . . 7 𝑀 = (le‘𝑅)
8078, 79eqtr4di 2811 . . . . . 6 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = 𝑀)
81 fvpr0o 16890 . . . . . . 7 (𝐶𝑋 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) = 𝐶)
8216, 81syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) = 𝐶)
8375, 80, 82breq123d 5046 . . . . 5 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ↔ 𝐴𝑀𝐶))
84 fvpr1o 16891 . . . . . . 7 (𝐵𝑌 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
853, 84syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
86 fvpr1o 16891 . . . . . . . . 9 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
8729, 86syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
8887fveq2d 6662 . . . . . . 7 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (le‘𝑆))
89 xpsle.n . . . . . . 7 𝑁 = (le‘𝑆)
9088, 89eqtr4di 2811 . . . . . 6 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = 𝑁)
91 fvpr1o 16891 . . . . . . 7 (𝐷𝑌 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) = 𝐷)
9217, 91syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) = 𝐷)
9385, 90, 92breq123d 5046 . . . . 5 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) ↔ 𝐵𝑁𝐷))
9483, 93anbi12d 633 . . . 4 (𝜑 → ((({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ∧ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)) ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
9573, 94syl5bb 286 . . 3 (𝜑 → (∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
9659, 95bitrd 282 . 2 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
9743, 50, 963bitr3d 312 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409  ∅c0 4225  {cpr 4524  ⟨cop 4528   class class class wbr 5032   × cxp 5522  ◡ccnv 5523  ran crn 5525  Oncon0 6169   Fn wfn 6330  ⟶wf 6331  –onto→wfo 6333  –1-1-onto→wf1o 6334  ‘cfv 6335  (class class class)co 7150   ∈ cmpo 7152  1oc1o 8105  2oc2o 8106  Basecbs 16541  Scalarcsca 16626  lecple 16630  Xscprds 16777   ×s cxps 16837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-plusg 16636  df-mulr 16637  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-hom 16647  df-cco 16648  df-prds 16779  df-imas 16839  df-xps 16841 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator