MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsle Structured version   Visualization version   GIF version

Theorem xpsle 17207
Description: Value of the ordering in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsle.t 𝑇 = (𝑅 ×s 𝑆)
xpsle.x 𝑋 = (Base‘𝑅)
xpsle.y 𝑌 = (Base‘𝑆)
xpsle.1 (𝜑𝑅𝑉)
xpsle.2 (𝜑𝑆𝑊)
xpsle.p = (le‘𝑇)
xpsle.m 𝑀 = (le‘𝑅)
xpsle.n 𝑁 = (le‘𝑆)
xpsle.3 (𝜑𝐴𝑋)
xpsle.4 (𝜑𝐵𝑌)
xpsle.5 (𝜑𝐶𝑋)
xpsle.6 (𝜑𝐷𝑌)
Assertion
Ref Expression
xpsle (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))

Proof of Theorem xpsle
Dummy variables 𝑐 𝑑 𝑘 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7258 . . . . 5 (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩)
2 xpsle.3 . . . . . 6 (𝜑𝐴𝑋)
3 xpsle.4 . . . . . 6 (𝜑𝐵𝑌)
4 eqid 2738 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54xpsfval 17194 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
62, 3, 5syl2anc 583 . . . . 5 (𝜑 → (𝐴(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
71, 6eqtr3id 2793 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
82, 3opelxpd 5618 . . . . 5 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
94xpsff1o2 17197 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
10 f1of 6700 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
119, 10ax-mp 5 . . . . . 6 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1211ffvelrni 6942 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
138, 12syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
147, 13eqeltrrd 2840 . . 3 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
15 df-ov 7258 . . . . 5 (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩)
16 xpsle.5 . . . . . 6 (𝜑𝐶𝑋)
17 xpsle.6 . . . . . 6 (𝜑𝐷𝑌)
184xpsfval 17194 . . . . . 6 ((𝐶𝑋𝐷𝑌) → (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
1916, 17, 18syl2anc 583 . . . . 5 (𝜑 → (𝐶(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2015, 19eqtr3id 2793 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2116, 17opelxpd 5618 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2211ffvelrni 6942 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2321, 22syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2420, 23eqeltrrd 2840 . . 3 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
25 xpsle.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
26 xpsle.x . . . . 5 𝑋 = (Base‘𝑅)
27 xpsle.y . . . . 5 𝑌 = (Base‘𝑆)
28 xpsle.1 . . . . 5 (𝜑𝑅𝑉)
29 xpsle.2 . . . . 5 (𝜑𝑆𝑊)
30 eqid 2738 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
31 eqid 2738 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
3225, 26, 27, 28, 29, 4, 30, 31xpsval 17198 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
3325, 26, 27, 28, 29, 4, 30, 31xpsrnbas 17199 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
34 f1ocnv 6712 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
359, 34mp1i 13 . . . . 5 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
36 f1ofo 6707 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
3735, 36syl 17 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
38 ovexd 7290 . . . 4 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
39 xpsle.p . . . 4 = (le‘𝑇)
40 eqid 2738 . . . 4 (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
4135f1olecpbl 17155 . . . 4 ((𝜑 ∧ (𝑎 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) ∧ (𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑑 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) → ((((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑎) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑐) ∧ ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑏) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑑)) → (𝑎(le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑏𝑐(le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑑)))
4232, 33, 37, 38, 39, 40, 41imasleval 17169 . . 3 ((𝜑 ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}))
4314, 24, 42mpd3an23 1461 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}))
44 f1ocnvfv 7131 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
459, 8, 44sylancr 586 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
467, 45mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩)
47 f1ocnvfv 7131 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
489, 21, 47sylancr 586 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
4920, 48mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩)
5046, 49breq12d 5083 . 2 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) ↔ ⟨𝐴, 𝐵𝐶, 𝐷⟩))
51 eqid 2738 . . . 4 (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
52 fvexd 6771 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
53 2on 8275 . . . . 5 2o ∈ On
5453a1i 11 . . . 4 (𝜑 → 2o ∈ On)
55 fnpr2o 17185 . . . . 5 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
5628, 29, 55syl2anc 583 . . . 4 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
5714, 33eleqtrd 2841 . . . 4 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5824, 33eleqtrd 2841 . . . 4 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5931, 51, 52, 54, 56, 57, 58, 40prdsleval 17105 . . 3 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ↔ ∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)))
60 df2o3 8282 . . . . . 6 2o = {∅, 1o}
6160raleqi 3337 . . . . 5 (∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ ∀𝑘 ∈ {∅, 1o} ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))
62 0ex 5226 . . . . . 6 ∅ ∈ V
63 1oex 8280 . . . . . 6 1o ∈ V
64 fveq2 6756 . . . . . . 7 (𝑘 = ∅ → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅))
65 2fveq3 6761 . . . . . . 7 (𝑘 = ∅ → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
66 fveq2 6756 . . . . . . 7 (𝑘 = ∅ → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅))
6764, 65, 66breq123d 5084 . . . . . 6 (𝑘 = ∅ → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅)))
68 fveq2 6756 . . . . . . 7 (𝑘 = 1o → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o))
69 2fveq3 6761 . . . . . . 7 (𝑘 = 1o → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
70 fveq2 6756 . . . . . . 7 (𝑘 = 1o → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o))
7168, 69, 70breq123d 5084 . . . . . 6 (𝑘 = 1o → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)))
7262, 63, 67, 71ralpr 4633 . . . . 5 (∀𝑘 ∈ {∅, 1o} ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ∧ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)))
7361, 72bitri 274 . . . 4 (∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ∧ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)))
74 fvpr0o 17187 . . . . . . 7 (𝐴𝑋 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
752, 74syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
76 fvpr0o 17187 . . . . . . . . 9 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
7728, 76syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
7877fveq2d 6760 . . . . . . 7 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (le‘𝑅))
79 xpsle.m . . . . . . 7 𝑀 = (le‘𝑅)
8078, 79eqtr4di 2797 . . . . . 6 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = 𝑀)
81 fvpr0o 17187 . . . . . . 7 (𝐶𝑋 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) = 𝐶)
8216, 81syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) = 𝐶)
8375, 80, 82breq123d 5084 . . . . 5 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ↔ 𝐴𝑀𝐶))
84 fvpr1o 17188 . . . . . . 7 (𝐵𝑌 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
853, 84syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
86 fvpr1o 17188 . . . . . . . . 9 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
8729, 86syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
8887fveq2d 6760 . . . . . . 7 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (le‘𝑆))
89 xpsle.n . . . . . . 7 𝑁 = (le‘𝑆)
9088, 89eqtr4di 2797 . . . . . 6 (𝜑 → (le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = 𝑁)
91 fvpr1o 17188 . . . . . . 7 (𝐷𝑌 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) = 𝐷)
9217, 91syl 17 . . . . . 6 (𝜑 → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) = 𝐷)
9385, 90, 92breq123d 5084 . . . . 5 (𝜑 → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o) ↔ 𝐵𝑁𝐷))
9483, 93anbi12d 630 . . . 4 (𝜑 → ((({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘∅) ∧ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘1o)) ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
9573, 94syl5bb 282 . . 3 (𝜑 → (∀𝑘 ∈ 2o ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(le‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
9659, 95bitrd 278 . 2 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (le‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
9743, 50, 963bitr3d 308 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴𝑀𝐶𝐵𝑁𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  c0 4253  {cpr 4560  cop 4564   class class class wbr 5070   × cxp 5578  ccnv 5579  ran crn 5581  Oncon0 6251   Fn wfn 6413  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  1oc1o 8260  2oc2o 8261  Basecbs 16840  Scalarcsca 16891  lecple 16895  Xscprds 17073   ×s cxps 17134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-prds 17075  df-imas 17136  df-xps 17138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator