Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsv Structured version   Visualization version   GIF version

Theorem sgnsv 33140
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsv (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Distinct variable groups:   𝑥, 0   𝑥, <   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem sgnsv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.s . 2 𝑆 = (sgns𝑅)
2 elex 3459 . . 3 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6831 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 sgnsval.b . . . . . 6 𝐵 = (Base‘𝑅)
53, 4eqtr4di 2786 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
6 fveq2 6831 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 sgnsval.0 . . . . . . . . 9 0 = (0g𝑅)
86, 7eqtr4di 2786 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98adantr 480 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (0g𝑟) = 0 )
109eqeq2d 2744 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
11 fveq2 6831 . . . . . . . . . 10 (𝑟 = 𝑅 → (lt‘𝑟) = (lt‘𝑅))
12 sgnsval.l . . . . . . . . . 10 < = (lt‘𝑅)
1311, 12eqtr4di 2786 . . . . . . . . 9 (𝑟 = 𝑅 → (lt‘𝑟) = < )
1413adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (lt‘𝑟) = < )
15 eqidd 2734 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → 𝑥 = 𝑥)
169, 14, 15breq123d 5109 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → ((0g𝑟)(lt‘𝑟)𝑥0 < 𝑥))
1716ifbid 4500 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if((0g𝑟)(lt‘𝑟)𝑥, 1, -1) = if( 0 < 𝑥, 1, -1))
1810, 17ifbieq2d 4503 . . . . 5 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1)) = if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))
195, 18mpteq12dva 5181 . . . 4 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
20 df-sgns 33139 . . . 4 sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))))
2119, 20, 4mptfvmpt 7171 . . 3 (𝑅 ∈ V → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
222, 21syl 17 . 2 (𝑅𝑉 → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
231, 22eqtrid 2780 1 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  ifcif 4476   class class class wbr 5095  cmpt 5176  cfv 6489  0cc0 11016  1c1 11017  -cneg 11355  Basecbs 17130  0gc0g 17353  ltcplt 18224  sgnscsgns 33138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-sgns 33139
This theorem is referenced by:  sgnsval  33141  sgnsf  33142
  Copyright terms: Public domain W3C validator