Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsv Structured version   Visualization version   GIF version

Theorem sgnsv 32881
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsv (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Distinct variable groups:   𝑥, 0   𝑥, <   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem sgnsv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.s . 2 𝑆 = (sgns𝑅)
2 elex 3490 . . 3 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6897 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 sgnsval.b . . . . . 6 𝐵 = (Base‘𝑅)
53, 4eqtr4di 2786 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
6 fveq2 6897 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 sgnsval.0 . . . . . . . . 9 0 = (0g𝑅)
86, 7eqtr4di 2786 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98adantr 480 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (0g𝑟) = 0 )
109eqeq2d 2739 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
11 fveq2 6897 . . . . . . . . . 10 (𝑟 = 𝑅 → (lt‘𝑟) = (lt‘𝑅))
12 sgnsval.l . . . . . . . . . 10 < = (lt‘𝑅)
1311, 12eqtr4di 2786 . . . . . . . . 9 (𝑟 = 𝑅 → (lt‘𝑟) = < )
1413adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (lt‘𝑟) = < )
15 eqidd 2729 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → 𝑥 = 𝑥)
169, 14, 15breq123d 5162 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → ((0g𝑟)(lt‘𝑟)𝑥0 < 𝑥))
1716ifbid 4552 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if((0g𝑟)(lt‘𝑟)𝑥, 1, -1) = if( 0 < 𝑥, 1, -1))
1810, 17ifbieq2d 4555 . . . . 5 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1)) = if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))
195, 18mpteq12dva 5237 . . . 4 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
20 df-sgns 32880 . . . 4 sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))))
2119, 20, 4mptfvmpt 7240 . . 3 (𝑅 ∈ V → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
222, 21syl 17 . 2 (𝑅𝑉 → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
231, 22eqtrid 2780 1 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  ifcif 4529   class class class wbr 5148  cmpt 5231  cfv 6548  0cc0 11138  1c1 11139  -cneg 11475  Basecbs 17179  0gc0g 17420  ltcplt 18299  sgnscsgns 32879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-sgns 32880
This theorem is referenced by:  sgnsval  32882  sgnsf  32883
  Copyright terms: Public domain W3C validator