Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsv Structured version   Visualization version   GIF version

Theorem sgnsv 33153
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsv (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Distinct variable groups:   𝑥, 0   𝑥, <   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem sgnsv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.s . 2 𝑆 = (sgns𝑅)
2 elex 3509 . . 3 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6920 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 sgnsval.b . . . . . 6 𝐵 = (Base‘𝑅)
53, 4eqtr4di 2798 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
6 fveq2 6920 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 sgnsval.0 . . . . . . . . 9 0 = (0g𝑅)
86, 7eqtr4di 2798 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98adantr 480 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (0g𝑟) = 0 )
109eqeq2d 2751 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
11 fveq2 6920 . . . . . . . . . 10 (𝑟 = 𝑅 → (lt‘𝑟) = (lt‘𝑅))
12 sgnsval.l . . . . . . . . . 10 < = (lt‘𝑅)
1311, 12eqtr4di 2798 . . . . . . . . 9 (𝑟 = 𝑅 → (lt‘𝑟) = < )
1413adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (lt‘𝑟) = < )
15 eqidd 2741 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → 𝑥 = 𝑥)
169, 14, 15breq123d 5180 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → ((0g𝑟)(lt‘𝑟)𝑥0 < 𝑥))
1716ifbid 4571 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if((0g𝑟)(lt‘𝑟)𝑥, 1, -1) = if( 0 < 𝑥, 1, -1))
1810, 17ifbieq2d 4574 . . . . 5 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1)) = if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))
195, 18mpteq12dva 5255 . . . 4 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
20 df-sgns 33152 . . . 4 sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))))
2119, 20, 4mptfvmpt 7265 . . 3 (𝑅 ∈ V → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
222, 21syl 17 . 2 (𝑅𝑉 → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
231, 22eqtrid 2792 1 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  0cc0 11184  1c1 11185  -cneg 11521  Basecbs 17258  0gc0g 17499  ltcplt 18378  sgnscsgns 33151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-sgns 33152
This theorem is referenced by:  sgnsval  33154  sgnsf  33155
  Copyright terms: Public domain W3C validator