Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsv | Structured version Visualization version GIF version |
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
sgnsval.l | ⊢ < = (lt‘𝑅) |
sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
Ref | Expression |
---|---|
sgnsv | ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnsval.s | . 2 ⊢ 𝑆 = (sgns‘𝑅) | |
2 | elex 3440 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | fveq2 6756 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
4 | sgnsval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
7 | sgnsval.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | eqtr4di 2797 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → (0g‘𝑟) = 0 ) |
10 | 9 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → (𝑥 = (0g‘𝑟) ↔ 𝑥 = 0 )) |
11 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑟 = 𝑅 → (lt‘𝑟) = (lt‘𝑅)) | |
12 | sgnsval.l | . . . . . . . . . 10 ⊢ < = (lt‘𝑅) | |
13 | 11, 12 | eqtr4di 2797 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (lt‘𝑟) = < ) |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → (lt‘𝑟) = < ) |
15 | eqidd 2739 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → 𝑥 = 𝑥) | |
16 | 9, 14, 15 | breq123d 5084 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → ((0g‘𝑟)(lt‘𝑟)𝑥 ↔ 0 < 𝑥)) |
17 | 16 | ifbid 4479 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1) = if( 0 < 𝑥, 1, -1)) |
18 | 10, 17 | ifbieq2d 4482 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1)) = if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))) |
19 | 5, 18 | mpteq12dva 5159 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1))) = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
20 | df-sgns 31328 | . . . 4 ⊢ sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1)))) | |
21 | 19, 20, 4 | mptfvmpt 7086 | . . 3 ⊢ (𝑅 ∈ V → (sgns‘𝑅) = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → (sgns‘𝑅) = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
23 | 1, 22 | syl5eq 2791 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 0cc0 10802 1c1 10803 -cneg 11136 Basecbs 16840 0gc0g 17067 ltcplt 17941 sgnscsgns 31327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-sgns 31328 |
This theorem is referenced by: sgnsval 31330 sgnsf 31331 |
Copyright terms: Public domain | W3C validator |