Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsv | Structured version Visualization version GIF version |
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
sgnsval.l | ⊢ < = (lt‘𝑅) |
sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
Ref | Expression |
---|---|
sgnsv | ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnsval.s | . 2 ⊢ 𝑆 = (sgns‘𝑅) | |
2 | elex 3461 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | fveq2 6834 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
4 | sgnsval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | eqtr4di 2795 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | fveq2 6834 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
7 | sgnsval.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | eqtr4di 2795 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
9 | 8 | adantr 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → (0g‘𝑟) = 0 ) |
10 | 9 | eqeq2d 2748 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → (𝑥 = (0g‘𝑟) ↔ 𝑥 = 0 )) |
11 | fveq2 6834 | . . . . . . . . . 10 ⊢ (𝑟 = 𝑅 → (lt‘𝑟) = (lt‘𝑅)) | |
12 | sgnsval.l | . . . . . . . . . 10 ⊢ < = (lt‘𝑅) | |
13 | 11, 12 | eqtr4di 2795 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (lt‘𝑟) = < ) |
14 | 13 | adantr 482 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → (lt‘𝑟) = < ) |
15 | eqidd 2738 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → 𝑥 = 𝑥) | |
16 | 9, 14, 15 | breq123d 5114 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → ((0g‘𝑟)(lt‘𝑟)𝑥 ↔ 0 < 𝑥)) |
17 | 16 | ifbid 4504 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1) = if( 0 < 𝑥, 1, -1)) |
18 | 10, 17 | ifbieq2d 4507 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑥 ∈ (Base‘𝑟)) → if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1)) = if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))) |
19 | 5, 18 | mpteq12dva 5189 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1))) = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
20 | df-sgns 31777 | . . . 4 ⊢ sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1)))) | |
21 | 19, 20, 4 | mptfvmpt 7169 | . . 3 ⊢ (𝑅 ∈ V → (sgns‘𝑅) = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
22 | 2, 21 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → (sgns‘𝑅) = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
23 | 1, 22 | eqtrid 2789 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3443 ifcif 4481 class class class wbr 5100 ↦ cmpt 5183 ‘cfv 6488 0cc0 10981 1c1 10982 -cneg 11316 Basecbs 17014 0gc0g 17252 ltcplt 18128 sgnscsgns 31776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-sgns 31777 |
This theorem is referenced by: sgnsval 31779 sgnsf 31780 |
Copyright terms: Public domain | W3C validator |