Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsv Structured version   Visualization version   GIF version

Theorem sgnsv 30855
Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsv (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Distinct variable groups:   𝑥, 0   𝑥, <   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem sgnsv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.s . 2 𝑆 = (sgns𝑅)
2 elex 3462 . . 3 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6649 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 sgnsval.b . . . . . 6 𝐵 = (Base‘𝑅)
53, 4eqtr4di 2854 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
6 fveq2 6649 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
7 sgnsval.0 . . . . . . . . 9 0 = (0g𝑅)
86, 7eqtr4di 2854 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
98adantr 484 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (0g𝑟) = 0 )
109eqeq2d 2812 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (𝑥 = (0g𝑟) ↔ 𝑥 = 0 ))
11 fveq2 6649 . . . . . . . . . 10 (𝑟 = 𝑅 → (lt‘𝑟) = (lt‘𝑅))
12 sgnsval.l . . . . . . . . . 10 < = (lt‘𝑅)
1311, 12eqtr4di 2854 . . . . . . . . 9 (𝑟 = 𝑅 → (lt‘𝑟) = < )
1413adantr 484 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → (lt‘𝑟) = < )
15 eqidd 2802 . . . . . . . 8 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → 𝑥 = 𝑥)
169, 14, 15breq123d 5047 . . . . . . 7 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → ((0g𝑟)(lt‘𝑟)𝑥0 < 𝑥))
1716ifbid 4450 . . . . . 6 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if((0g𝑟)(lt‘𝑟)𝑥, 1, -1) = if( 0 < 𝑥, 1, -1))
1810, 17ifbieq2d 4453 . . . . 5 ((𝑟 = 𝑅𝑥 ∈ (Base‘𝑟)) → if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1)) = if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))
195, 18mpteq12dva 5117 . . . 4 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
20 df-sgns 30854 . . . 4 sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))))
2119, 20, 4mptfvmpt 6972 . . 3 (𝑅 ∈ V → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
222, 21syl 17 . 2 (𝑅𝑉 → (sgns𝑅) = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
231, 22syl5eq 2848 1 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  ifcif 4428   class class class wbr 5033  cmpt 5113  cfv 6328  0cc0 10530  1c1 10531  -cneg 10864  Basecbs 16478  0gc0g 16708  ltcplt 17546  sgnscsgns 30853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-sgns 30854
This theorem is referenced by:  sgnsval  30856  sgnsf  30857
  Copyright terms: Public domain W3C validator