Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submarchi Structured version   Visualization version   GIF version

Theorem submarchi 33147
Description: A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
Assertion
Ref Expression
submarchi (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)

Proof of Theorem submarchi
Dummy variables 𝑥 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18695 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → 𝑊 ∈ Mnd)
2 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2729 . . . . . . 7 (0g𝑊) = (0g𝑊)
4 eqid 2729 . . . . . . 7 (.g𝑊) = (.g𝑊)
5 eqid 2729 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
6 eqid 2729 . . . . . . 7 (lt‘𝑊) = (lt‘𝑊)
72, 3, 4, 5, 6isarchi2 33146 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
81, 7sylan2 593 . . . . 5 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
98biimpa 476 . . . 4 (((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
109an32s 652 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
11 eqid 2729 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1211submbas 18707 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 = (Base‘(𝑊s 𝐴)))
132submss 18702 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 ⊆ (Base‘𝑊))
1412, 13eqsstrrd 3973 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → (Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊))
15 ssralv 4006 . . . . . . . 8 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1615ralimdv 3143 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
17 ssralv 4006 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1816, 17syld 47 . . . . . 6 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1914, 18syl 17 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2019adantl 481 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2111, 3subm0 18708 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2221ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2311, 5ressle 17303 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
2423difeq1d 4078 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → ((le‘𝑊) ∖ I ) = ((le‘(𝑊s 𝐴)) ∖ I ))
255, 6pltfval 18254 . . . . . . . . . . . 12 (𝑊 ∈ Mnd → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
261, 25syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
2711submmnd 18706 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (𝑊s 𝐴) ∈ Mnd)
28 eqid 2729 . . . . . . . . . . . . 13 (le‘(𝑊s 𝐴)) = (le‘(𝑊s 𝐴))
29 eqid 2729 . . . . . . . . . . . . 13 (lt‘(𝑊s 𝐴)) = (lt‘(𝑊s 𝐴))
3028, 29pltfval 18254 . . . . . . . . . . . 12 ((𝑊s 𝐴) ∈ Mnd → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3127, 30syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3224, 26, 313eqtr4d 2774 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
3332ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
34 eqidd 2730 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → 𝑥 = 𝑥)
3522, 33, 34breq123d 5109 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → ((0g𝑊)(lt‘𝑊)𝑥 ↔ (0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥))
36 eqidd 2730 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑦)
3723ad3antrrr 730 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
38 simplll 774 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (SubMnd‘𝑊))
39 simpr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4039nnnn0d 12464 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
41 simpllr 775 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (Base‘(𝑊s 𝐴)))
4238, 12syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 = (Base‘(𝑊s 𝐴)))
4341, 42eleqtrrd 2831 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
44 eqid 2729 . . . . . . . . . . . 12 (.g‘(𝑊s 𝐴)) = (.g‘(𝑊s 𝐴))
454, 11, 44submmulg 19016 . . . . . . . . . . 11 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑛 ∈ ℕ0𝑥𝐴) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4638, 40, 43, 45syl3anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4736, 37, 46breq123d 5109 . . . . . . . . 9 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4847rexbidva 3151 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4935, 48imbi12d 344 . . . . . . 7 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5049ralbidva 3150 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) → (∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5150ralbidva 3150 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5251adantl 481 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5320, 52sylibd 239 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5410, 53mpd 15 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
55 resstos 18355 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Toset)
5627adantl 481 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Mnd)
57 eqid 2729 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
58 eqid 2729 . . . . 5 (0g‘(𝑊s 𝐴)) = (0g‘(𝑊s 𝐴))
5957, 58, 44, 28, 29isarchi2 33146 . . . 4 (((𝑊s 𝐴) ∈ Toset ∧ (𝑊s 𝐴) ∈ Mnd) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6055, 56, 59syl2anc 584 . . 3 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6160adantlr 715 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6254, 61mpbird 257 1 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3902  wss 3905   class class class wbr 5095   I cid 5517  cfv 6486  (class class class)co 7353  cn 12147  0cn0 12403  Basecbs 17139  s cress 17160  lecple 17187  0gc0g 17362  ltcplt 18233  Tosetctos 18339  Mndcmnd 18627  SubMndcsubmnd 18675  .gcmg 18965  Archicarchi 33138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-seq 13928  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-ple 17200  df-0g 17364  df-proset 18219  df-poset 18238  df-plt 18253  df-toset 18340  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-inftm 33139  df-archi 33140
This theorem is referenced by:  nn0archi  33303
  Copyright terms: Public domain W3C validator