Step | Hyp | Ref
| Expression |
1 | | submrcl 18441 |
. . . . . 6
⊢ (𝐴 ∈ (SubMnd‘𝑊) → 𝑊 ∈ Mnd) |
2 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) |
4 | | eqid 2738 |
. . . . . . 7
⊢
(.g‘𝑊) = (.g‘𝑊) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝑊) =
(le‘𝑊) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(lt‘𝑊) =
(lt‘𝑊) |
7 | 2, 3, 4, 5, 6 | isarchi2 31439 |
. . . . . 6
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
8 | 1, 7 | sylan2 593 |
. . . . 5
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
9 | 8 | biimpa 477 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥))) |
10 | 9 | an32s 649 |
. . 3
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥))) |
11 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) |
12 | 11 | submbas 18453 |
. . . . . . 7
⊢ (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 = (Base‘(𝑊 ↾s 𝐴))) |
13 | 2 | submss 18448 |
. . . . . . 7
⊢ (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 ⊆ (Base‘𝑊)) |
14 | 12, 13 | eqsstrrd 3960 |
. . . . . 6
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (Base‘(𝑊 ↾s 𝐴)) ⊆ (Base‘𝑊)) |
15 | | ssralv 3987 |
. . . . . . . 8
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑦 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
16 | 15 | ralimdv 3109 |
. . . . . . 7
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
17 | | ssralv 3987 |
. . . . . . 7
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
18 | 16, 17 | syld 47 |
. . . . . 6
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
19 | 14, 18 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
20 | 19 | adantl 482 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
21 | 11, 3 | subm0 18454 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubMnd‘𝑊) →
(0g‘𝑊) =
(0g‘(𝑊
↾s 𝐴))) |
22 | 21 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (0g‘𝑊) = (0g‘(𝑊 ↾s 𝐴))) |
23 | 11, 5 | ressle 17090 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (le‘𝑊) = (le‘(𝑊 ↾s 𝐴))) |
24 | 23 | difeq1d 4056 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubMnd‘𝑊) → ((le‘𝑊) ∖ I ) =
((le‘(𝑊
↾s 𝐴))
∖ I )) |
25 | 5, 6 | pltfval 18049 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Mnd →
(lt‘𝑊) =
((le‘𝑊) ∖ I
)) |
26 | 1, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = ((le‘𝑊) ∖ I )) |
27 | 11 | submmnd 18452 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (𝑊 ↾s 𝐴) ∈ Mnd) |
28 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(le‘(𝑊
↾s 𝐴)) =
(le‘(𝑊
↾s 𝐴)) |
29 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(lt‘(𝑊
↾s 𝐴)) =
(lt‘(𝑊
↾s 𝐴)) |
30 | 28, 29 | pltfval 18049 |
. . . . . . . . . . . 12
⊢ ((𝑊 ↾s 𝐴) ∈ Mnd →
(lt‘(𝑊
↾s 𝐴)) =
((le‘(𝑊
↾s 𝐴))
∖ I )) |
31 | 27, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (lt‘(𝑊 ↾s 𝐴)) = ((le‘(𝑊 ↾s 𝐴)) ∖ I )) |
32 | 24, 26, 31 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = (lt‘(𝑊 ↾s 𝐴))) |
33 | 32 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (lt‘𝑊) = (lt‘(𝑊 ↾s 𝐴))) |
34 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → 𝑥 = 𝑥) |
35 | 22, 33, 34 | breq123d 5088 |
. . . . . . . 8
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → ((0g‘𝑊)(lt‘𝑊)𝑥 ↔ (0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥)) |
36 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑦) |
37 | 23 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → (le‘𝑊) = (le‘(𝑊 ↾s 𝐴))) |
38 | | simplll 772 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (SubMnd‘𝑊)) |
39 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
40 | 39 | nnnn0d 12293 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
41 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) |
42 | 38, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 = (Base‘(𝑊 ↾s 𝐴))) |
43 | 41, 42 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ 𝐴) |
44 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.g‘(𝑊 ↾s 𝐴)) = (.g‘(𝑊 ↾s 𝐴)) |
45 | 4, 11, 44 | submmulg 18747 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐴) → (𝑛(.g‘𝑊)𝑥) = (𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)) |
46 | 38, 40, 43, 45 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘𝑊)𝑥) = (𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)) |
47 | 36, 37, 46 | breq123d 5088 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥) ↔ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥))) |
48 | 47 | rexbidva 3225 |
. . . . . . . 8
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥))) |
49 | 35, 48 | imbi12d 345 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
50 | 49 | ralbidva 3111 |
. . . . . 6
⊢ ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) → (∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
51 | 50 | ralbidva 3111 |
. . . . 5
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
52 | 51 | adantl 482 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
53 | 20, 52 | sylibd 238 |
. . 3
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
54 | 10, 53 | mpd 15 |
. 2
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥))) |
55 | | resstos 31245 |
. . . 4
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Toset) |
56 | 27 | adantl 482 |
. . . 4
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Mnd) |
57 | | eqid 2738 |
. . . . 5
⊢
(Base‘(𝑊
↾s 𝐴)) =
(Base‘(𝑊
↾s 𝐴)) |
58 | | eqid 2738 |
. . . . 5
⊢
(0g‘(𝑊 ↾s 𝐴)) = (0g‘(𝑊 ↾s 𝐴)) |
59 | 57, 58, 44, 28, 29 | isarchi2 31439 |
. . . 4
⊢ (((𝑊 ↾s 𝐴) ∈ Toset ∧ (𝑊 ↾s 𝐴) ∈ Mnd) → ((𝑊 ↾s 𝐴) ∈ Archi ↔
∀𝑥 ∈
(Base‘(𝑊
↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
60 | 55, 56, 59 | syl2anc 584 |
. . 3
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊 ↾s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
61 | 60 | adantlr 712 |
. 2
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊 ↾s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
62 | 54, 61 | mpbird 256 |
1
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Archi) |