Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submarchi Structured version   Visualization version   GIF version

Theorem submarchi 31159
Description: A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
Assertion
Ref Expression
submarchi (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)

Proof of Theorem submarchi
Dummy variables 𝑥 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18229 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → 𝑊 ∈ Mnd)
2 eqid 2737 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2737 . . . . . . 7 (0g𝑊) = (0g𝑊)
4 eqid 2737 . . . . . . 7 (.g𝑊) = (.g𝑊)
5 eqid 2737 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
6 eqid 2737 . . . . . . 7 (lt‘𝑊) = (lt‘𝑊)
72, 3, 4, 5, 6isarchi2 31158 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
81, 7sylan2 596 . . . . 5 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
98biimpa 480 . . . 4 (((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
109an32s 652 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
11 eqid 2737 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1211submbas 18241 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 = (Base‘(𝑊s 𝐴)))
132submss 18236 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 ⊆ (Base‘𝑊))
1412, 13eqsstrrd 3940 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → (Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊))
15 ssralv 3967 . . . . . . . 8 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1615ralimdv 3101 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
17 ssralv 3967 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1816, 17syld 47 . . . . . 6 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1914, 18syl 17 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2019adantl 485 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2111, 3subm0 18242 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2221ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2311, 5ressle 16900 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
2423difeq1d 4036 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → ((le‘𝑊) ∖ I ) = ((le‘(𝑊s 𝐴)) ∖ I ))
255, 6pltfval 17837 . . . . . . . . . . . 12 (𝑊 ∈ Mnd → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
261, 25syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
2711submmnd 18240 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (𝑊s 𝐴) ∈ Mnd)
28 eqid 2737 . . . . . . . . . . . . 13 (le‘(𝑊s 𝐴)) = (le‘(𝑊s 𝐴))
29 eqid 2737 . . . . . . . . . . . . 13 (lt‘(𝑊s 𝐴)) = (lt‘(𝑊s 𝐴))
3028, 29pltfval 17837 . . . . . . . . . . . 12 ((𝑊s 𝐴) ∈ Mnd → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3127, 30syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3224, 26, 313eqtr4d 2787 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
3332ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
34 eqidd 2738 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → 𝑥 = 𝑥)
3522, 33, 34breq123d 5067 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → ((0g𝑊)(lt‘𝑊)𝑥 ↔ (0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥))
36 eqidd 2738 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑦)
3723ad3antrrr 730 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
38 simplll 775 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (SubMnd‘𝑊))
39 simpr 488 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4039nnnn0d 12150 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
41 simpllr 776 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (Base‘(𝑊s 𝐴)))
4238, 12syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 = (Base‘(𝑊s 𝐴)))
4341, 42eleqtrrd 2841 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
44 eqid 2737 . . . . . . . . . . . 12 (.g‘(𝑊s 𝐴)) = (.g‘(𝑊s 𝐴))
454, 11, 44submmulg 18535 . . . . . . . . . . 11 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑛 ∈ ℕ0𝑥𝐴) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4638, 40, 43, 45syl3anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4736, 37, 46breq123d 5067 . . . . . . . . 9 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4847rexbidva 3215 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4935, 48imbi12d 348 . . . . . . 7 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5049ralbidva 3117 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) → (∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5150ralbidva 3117 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5251adantl 485 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5320, 52sylibd 242 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5410, 53mpd 15 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
55 resstos 30964 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Toset)
5627adantl 485 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Mnd)
57 eqid 2737 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
58 eqid 2737 . . . . 5 (0g‘(𝑊s 𝐴)) = (0g‘(𝑊s 𝐴))
5957, 58, 44, 28, 29isarchi2 31158 . . . 4 (((𝑊s 𝐴) ∈ Toset ∧ (𝑊s 𝐴) ∈ Mnd) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6055, 56, 59syl2anc 587 . . 3 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6160adantlr 715 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6254, 61mpbird 260 1 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  cdif 3863  wss 3866   class class class wbr 5053   I cid 5454  cfv 6380  (class class class)co 7213  cn 11830  0cn0 12090  Basecbs 16760  s cress 16784  lecple 16809  0gc0g 16944  ltcplt 17815  Tosetctos 17922  Mndcmnd 18173  SubMndcsubmnd 18217  .gcmg 18488  Archicarchi 31150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-seq 13575  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-ple 16822  df-0g 16946  df-proset 17802  df-poset 17820  df-plt 17836  df-toset 17923  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-inftm 31151  df-archi 31152
This theorem is referenced by:  nn0archi  31261
  Copyright terms: Public domain W3C validator