| Step | Hyp | Ref
| Expression |
| 1 | | submrcl 18815 |
. . . . . 6
⊢ (𝐴 ∈ (SubMnd‘𝑊) → 𝑊 ∈ Mnd) |
| 2 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 3 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 4 | | eqid 2737 |
. . . . . . 7
⊢
(.g‘𝑊) = (.g‘𝑊) |
| 5 | | eqid 2737 |
. . . . . . 7
⊢
(le‘𝑊) =
(le‘𝑊) |
| 6 | | eqid 2737 |
. . . . . . 7
⊢
(lt‘𝑊) =
(lt‘𝑊) |
| 7 | 2, 3, 4, 5, 6 | isarchi2 33192 |
. . . . . 6
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 8 | 1, 7 | sylan2 593 |
. . . . 5
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 9 | 8 | biimpa 476 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥))) |
| 10 | 9 | an32s 652 |
. . 3
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥))) |
| 11 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) |
| 12 | 11 | submbas 18827 |
. . . . . . 7
⊢ (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 = (Base‘(𝑊 ↾s 𝐴))) |
| 13 | 2 | submss 18822 |
. . . . . . 7
⊢ (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 ⊆ (Base‘𝑊)) |
| 14 | 12, 13 | eqsstrrd 4019 |
. . . . . 6
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (Base‘(𝑊 ↾s 𝐴)) ⊆ (Base‘𝑊)) |
| 15 | | ssralv 4052 |
. . . . . . . 8
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑦 ∈
(Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 16 | 15 | ralimdv 3169 |
. . . . . . 7
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 17 | | ssralv 4052 |
. . . . . . 7
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 18 | 16, 17 | syld 47 |
. . . . . 6
⊢
((Base‘(𝑊
↾s 𝐴))
⊆ (Base‘𝑊)
→ (∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 19 | 14, 18 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 20 | 19 | adantl 481 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)))) |
| 21 | 11, 3 | subm0 18828 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubMnd‘𝑊) →
(0g‘𝑊) =
(0g‘(𝑊
↾s 𝐴))) |
| 22 | 21 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (0g‘𝑊) = (0g‘(𝑊 ↾s 𝐴))) |
| 23 | 11, 5 | ressle 17424 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (le‘𝑊) = (le‘(𝑊 ↾s 𝐴))) |
| 24 | 23 | difeq1d 4125 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubMnd‘𝑊) → ((le‘𝑊) ∖ I ) =
((le‘(𝑊
↾s 𝐴))
∖ I )) |
| 25 | 5, 6 | pltfval 18376 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Mnd →
(lt‘𝑊) =
((le‘𝑊) ∖ I
)) |
| 26 | 1, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = ((le‘𝑊) ∖ I )) |
| 27 | 11 | submmnd 18826 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (𝑊 ↾s 𝐴) ∈ Mnd) |
| 28 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(le‘(𝑊
↾s 𝐴)) =
(le‘(𝑊
↾s 𝐴)) |
| 29 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(lt‘(𝑊
↾s 𝐴)) =
(lt‘(𝑊
↾s 𝐴)) |
| 30 | 28, 29 | pltfval 18376 |
. . . . . . . . . . . 12
⊢ ((𝑊 ↾s 𝐴) ∈ Mnd →
(lt‘(𝑊
↾s 𝐴)) =
((le‘(𝑊
↾s 𝐴))
∖ I )) |
| 31 | 27, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (lt‘(𝑊 ↾s 𝐴)) = ((le‘(𝑊 ↾s 𝐴)) ∖ I )) |
| 32 | 24, 26, 31 | 3eqtr4d 2787 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = (lt‘(𝑊 ↾s 𝐴))) |
| 33 | 32 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (lt‘𝑊) = (lt‘(𝑊 ↾s 𝐴))) |
| 34 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → 𝑥 = 𝑥) |
| 35 | 22, 33, 34 | breq123d 5157 |
. . . . . . . 8
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → ((0g‘𝑊)(lt‘𝑊)𝑥 ↔ (0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥)) |
| 36 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑦) |
| 37 | 23 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → (le‘𝑊) = (le‘(𝑊 ↾s 𝐴))) |
| 38 | | simplll 775 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (SubMnd‘𝑊)) |
| 39 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 40 | 39 | nnnn0d 12587 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 41 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) |
| 42 | 38, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 = (Base‘(𝑊 ↾s 𝐴))) |
| 43 | 41, 42 | eleqtrrd 2844 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ 𝐴) |
| 44 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(.g‘(𝑊 ↾s 𝐴)) = (.g‘(𝑊 ↾s 𝐴)) |
| 45 | 4, 11, 44 | submmulg 19136 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐴) → (𝑛(.g‘𝑊)𝑥) = (𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)) |
| 46 | 38, 40, 43, 45 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘𝑊)𝑥) = (𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)) |
| 47 | 36, 37, 46 | breq123d 5157 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥) ↔ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥))) |
| 48 | 47 | rexbidva 3177 |
. . . . . . . 8
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥))) |
| 49 | 35, 48 | imbi12d 344 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))) → (((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 50 | 49 | ralbidva 3176 |
. . . . . 6
⊢ ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))) → (∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 51 | 50 | ralbidva 3176 |
. . . . 5
⊢ (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 52 | 51 | adantl 481 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 53 | 20, 52 | sylibd 239 |
. . 3
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g‘𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g‘𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 54 | 10, 53 | mpd 15 |
. 2
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥))) |
| 55 | | resstos 32957 |
. . . 4
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Toset) |
| 56 | 27 | adantl 481 |
. . . 4
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Mnd) |
| 57 | | eqid 2737 |
. . . . 5
⊢
(Base‘(𝑊
↾s 𝐴)) =
(Base‘(𝑊
↾s 𝐴)) |
| 58 | | eqid 2737 |
. . . . 5
⊢
(0g‘(𝑊 ↾s 𝐴)) = (0g‘(𝑊 ↾s 𝐴)) |
| 59 | 57, 58, 44, 28, 29 | isarchi2 33192 |
. . . 4
⊢ (((𝑊 ↾s 𝐴) ∈ Toset ∧ (𝑊 ↾s 𝐴) ∈ Mnd) → ((𝑊 ↾s 𝐴) ∈ Archi ↔
∀𝑥 ∈
(Base‘(𝑊
↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 60 | 55, 56, 59 | syl2anc 584 |
. . 3
⊢ ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊 ↾s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 61 | 60 | adantlr 715 |
. 2
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊 ↾s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊 ↾s 𝐴))∀𝑦 ∈ (Base‘(𝑊 ↾s 𝐴))((0g‘(𝑊 ↾s 𝐴))(lt‘(𝑊 ↾s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊 ↾s 𝐴))(𝑛(.g‘(𝑊 ↾s 𝐴))𝑥)))) |
| 62 | 54, 61 | mpbird 257 |
1
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Archi) |