Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submarchi Structured version   Visualization version   GIF version

Theorem submarchi 31342
Description: A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
Assertion
Ref Expression
submarchi (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)

Proof of Theorem submarchi
Dummy variables 𝑥 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18356 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → 𝑊 ∈ Mnd)
2 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2738 . . . . . . 7 (0g𝑊) = (0g𝑊)
4 eqid 2738 . . . . . . 7 (.g𝑊) = (.g𝑊)
5 eqid 2738 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
6 eqid 2738 . . . . . . 7 (lt‘𝑊) = (lt‘𝑊)
72, 3, 4, 5, 6isarchi2 31341 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
81, 7sylan2 592 . . . . 5 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
98biimpa 476 . . . 4 (((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
109an32s 648 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
11 eqid 2738 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1211submbas 18368 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 = (Base‘(𝑊s 𝐴)))
132submss 18363 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 ⊆ (Base‘𝑊))
1412, 13eqsstrrd 3956 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → (Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊))
15 ssralv 3983 . . . . . . . 8 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1615ralimdv 3103 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
17 ssralv 3983 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1816, 17syld 47 . . . . . 6 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1914, 18syl 17 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2019adantl 481 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2111, 3subm0 18369 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2221ad2antrr 722 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2311, 5ressle 17013 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
2423difeq1d 4052 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → ((le‘𝑊) ∖ I ) = ((le‘(𝑊s 𝐴)) ∖ I ))
255, 6pltfval 17964 . . . . . . . . . . . 12 (𝑊 ∈ Mnd → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
261, 25syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
2711submmnd 18367 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (𝑊s 𝐴) ∈ Mnd)
28 eqid 2738 . . . . . . . . . . . . 13 (le‘(𝑊s 𝐴)) = (le‘(𝑊s 𝐴))
29 eqid 2738 . . . . . . . . . . . . 13 (lt‘(𝑊s 𝐴)) = (lt‘(𝑊s 𝐴))
3028, 29pltfval 17964 . . . . . . . . . . . 12 ((𝑊s 𝐴) ∈ Mnd → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3127, 30syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3224, 26, 313eqtr4d 2788 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
3332ad2antrr 722 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
34 eqidd 2739 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → 𝑥 = 𝑥)
3522, 33, 34breq123d 5084 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → ((0g𝑊)(lt‘𝑊)𝑥 ↔ (0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥))
36 eqidd 2739 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑦)
3723ad3antrrr 726 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
38 simplll 771 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (SubMnd‘𝑊))
39 simpr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4039nnnn0d 12223 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
41 simpllr 772 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (Base‘(𝑊s 𝐴)))
4238, 12syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 = (Base‘(𝑊s 𝐴)))
4341, 42eleqtrrd 2842 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
44 eqid 2738 . . . . . . . . . . . 12 (.g‘(𝑊s 𝐴)) = (.g‘(𝑊s 𝐴))
454, 11, 44submmulg 18662 . . . . . . . . . . 11 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑛 ∈ ℕ0𝑥𝐴) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4638, 40, 43, 45syl3anc 1369 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4736, 37, 46breq123d 5084 . . . . . . . . 9 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4847rexbidva 3224 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4935, 48imbi12d 344 . . . . . . 7 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5049ralbidva 3119 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) → (∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5150ralbidva 3119 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5251adantl 481 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5320, 52sylibd 238 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5410, 53mpd 15 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
55 resstos 31147 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Toset)
5627adantl 481 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Mnd)
57 eqid 2738 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
58 eqid 2738 . . . . 5 (0g‘(𝑊s 𝐴)) = (0g‘(𝑊s 𝐴))
5957, 58, 44, 28, 29isarchi2 31341 . . . 4 (((𝑊s 𝐴) ∈ Toset ∧ (𝑊s 𝐴) ∈ Mnd) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6055, 56, 59syl2anc 583 . . 3 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6160adantlr 711 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6254, 61mpbird 256 1 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  wss 3883   class class class wbr 5070   I cid 5479  cfv 6418  (class class class)co 7255  cn 11903  0cn0 12163  Basecbs 16840  s cress 16867  lecple 16895  0gc0g 17067  ltcplt 17941  Tosetctos 18049  Mndcmnd 18300  SubMndcsubmnd 18344  .gcmg 18615  Archicarchi 31333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-ple 16908  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-toset 18050  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-inftm 31334  df-archi 31335
This theorem is referenced by:  nn0archi  31449
  Copyright terms: Public domain W3C validator