Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submarchi Structured version   Visualization version   GIF version

Theorem submarchi 33147
Description: A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
Assertion
Ref Expression
submarchi (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)

Proof of Theorem submarchi
Dummy variables 𝑥 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18705 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → 𝑊 ∈ Mnd)
2 eqid 2731 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2731 . . . . . . 7 (0g𝑊) = (0g𝑊)
4 eqid 2731 . . . . . . 7 (.g𝑊) = (.g𝑊)
5 eqid 2731 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
6 eqid 2731 . . . . . . 7 (lt‘𝑊) = (lt‘𝑊)
72, 3, 4, 5, 6isarchi2 33146 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
81, 7sylan2 593 . . . . 5 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
98biimpa 476 . . . 4 (((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
109an32s 652 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)))
11 eqid 2731 . . . . . . . 8 (𝑊s 𝐴) = (𝑊s 𝐴)
1211submbas 18717 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 = (Base‘(𝑊s 𝐴)))
132submss 18712 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝑊) → 𝐴 ⊆ (Base‘𝑊))
1412, 13eqsstrrd 3965 . . . . . 6 (𝐴 ∈ (SubMnd‘𝑊) → (Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊))
15 ssralv 3998 . . . . . . . 8 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1615ralimdv 3146 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
17 ssralv 3998 . . . . . . 7 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1816, 17syld 47 . . . . . 6 ((Base‘(𝑊s 𝐴)) ⊆ (Base‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
1914, 18syl 17 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2019adantl 481 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥))))
2111, 3subm0 18718 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2221ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (0g𝑊) = (0g‘(𝑊s 𝐴)))
2311, 5ressle 17279 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
2423difeq1d 4070 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → ((le‘𝑊) ∖ I ) = ((le‘(𝑊s 𝐴)) ∖ I ))
255, 6pltfval 18230 . . . . . . . . . . . 12 (𝑊 ∈ Mnd → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
261, 25syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = ((le‘𝑊) ∖ I ))
2711submmnd 18716 . . . . . . . . . . . 12 (𝐴 ∈ (SubMnd‘𝑊) → (𝑊s 𝐴) ∈ Mnd)
28 eqid 2731 . . . . . . . . . . . . 13 (le‘(𝑊s 𝐴)) = (le‘(𝑊s 𝐴))
29 eqid 2731 . . . . . . . . . . . . 13 (lt‘(𝑊s 𝐴)) = (lt‘(𝑊s 𝐴))
3028, 29pltfval 18230 . . . . . . . . . . . 12 ((𝑊s 𝐴) ∈ Mnd → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3127, 30syl 17 . . . . . . . . . . 11 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘(𝑊s 𝐴)) = ((le‘(𝑊s 𝐴)) ∖ I ))
3224, 26, 313eqtr4d 2776 . . . . . . . . . 10 (𝐴 ∈ (SubMnd‘𝑊) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
3332ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (lt‘𝑊) = (lt‘(𝑊s 𝐴)))
34 eqidd 2732 . . . . . . . . 9 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → 𝑥 = 𝑥)
3522, 33, 34breq123d 5100 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → ((0g𝑊)(lt‘𝑊)𝑥 ↔ (0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥))
36 eqidd 2732 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑦)
3723ad3antrrr 730 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (le‘𝑊) = (le‘(𝑊s 𝐴)))
38 simplll 774 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (SubMnd‘𝑊))
39 simpr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4039nnnn0d 12437 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
41 simpllr 775 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (Base‘(𝑊s 𝐴)))
4238, 12syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 = (Base‘(𝑊s 𝐴)))
4341, 42eleqtrrd 2834 . . . . . . . . . . 11 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
44 eqid 2731 . . . . . . . . . . . 12 (.g‘(𝑊s 𝐴)) = (.g‘(𝑊s 𝐴))
454, 11, 44submmulg 19026 . . . . . . . . . . 11 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑛 ∈ ℕ0𝑥𝐴) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4638, 40, 43, 45syl3anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑛(.g𝑊)𝑥) = (𝑛(.g‘(𝑊s 𝐴))𝑥))
4736, 37, 46breq123d 5100 . . . . . . . . 9 ((((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4847rexbidva 3154 . . . . . . . 8 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
4935, 48imbi12d 344 . . . . . . 7 (((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) ∧ 𝑦 ∈ (Base‘(𝑊s 𝐴))) → (((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5049ralbidva 3153 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑊) ∧ 𝑥 ∈ (Base‘(𝑊s 𝐴))) → (∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5150ralbidva 3153 . . . . 5 (𝐴 ∈ (SubMnd‘𝑊) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5251adantl 481 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5320, 52sylibd 239 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((0g𝑊)(lt‘𝑊)𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛(.g𝑊)𝑥)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
5410, 53mpd 15 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥)))
55 resstos 18331 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Toset)
5627adantl 481 . . . 4 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Mnd)
57 eqid 2731 . . . . 5 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
58 eqid 2731 . . . . 5 (0g‘(𝑊s 𝐴)) = (0g‘(𝑊s 𝐴))
5957, 58, 44, 28, 29isarchi2 33146 . . . 4 (((𝑊s 𝐴) ∈ Toset ∧ (𝑊s 𝐴) ∈ Mnd) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6055, 56, 59syl2anc 584 . . 3 ((𝑊 ∈ Toset ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6160adantlr 715 . 2 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → ((𝑊s 𝐴) ∈ Archi ↔ ∀𝑥 ∈ (Base‘(𝑊s 𝐴))∀𝑦 ∈ (Base‘(𝑊s 𝐴))((0g‘(𝑊s 𝐴))(lt‘(𝑊s 𝐴))𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘(𝑊s 𝐴))(𝑛(.g‘(𝑊s 𝐴))𝑥))))
6254, 61mpbird 257 1 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊s 𝐴) ∈ Archi)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cdif 3894  wss 3897   class class class wbr 5086   I cid 5505  cfv 6476  (class class class)co 7341  cn 12120  0cn0 12376  Basecbs 17115  s cress 17136  lecple 17163  0gc0g 17338  ltcplt 18209  Tosetctos 18315  Mndcmnd 18637  SubMndcsubmnd 18685  .gcmg 18975  Archicarchi 33138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-seq 13904  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-ple 17176  df-0g 17340  df-proset 18195  df-poset 18214  df-plt 18229  df-toset 18316  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-inftm 33139  df-archi 33140
This theorem is referenced by:  nn0archi  33304
  Copyright terms: Public domain W3C validator