MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem3 Structured version   Visualization version   GIF version

Theorem opphllem3 26252
Description: Lemma for opphl 26257: We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphl.k 𝐾 = (hlG‘𝐺)
opphllem5.n 𝑁 = ((pInvG‘𝐺)‘𝑀)
opphllem5.a (𝜑𝐴𝑃)
opphllem5.c (𝜑𝐶𝑃)
opphllem5.r (𝜑𝑅𝐷)
opphllem5.s (𝜑𝑆𝐷)
opphllem5.m (𝜑𝑀𝑃)
opphllem5.o (𝜑𝐴𝑂𝐶)
opphllem5.p (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
opphllem5.q (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
opphllem3.t (𝜑𝑅𝑆)
opphllem3.l (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
opphllem3.u (𝜑𝑈𝑃)
opphllem3.v (𝜑 → (𝑁𝑅) = 𝑆)
Assertion
Ref Expression
opphllem3 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝑈   𝑡,𝐼   𝑡,𝐾   𝑡,𝑀   𝑡,𝑂   𝑡,𝑁   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑁(𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem3
Dummy variables 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 hpg.i . . . . 5 𝐼 = (Itv‘𝐺)
3 opphl.k . . . . 5 𝐾 = (hlG‘𝐺)
4 opphllem3.u . . . . . 6 (𝜑𝑈𝑃)
54ad4antr 720 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑈𝑃)
6 opphllem5.a . . . . . 6 (𝜑𝐴𝑃)
76ad4antr 720 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐴𝑃)
8 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
9 opphl.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
10 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
11 opphllem5.r . . . . . . 7 (𝜑𝑅𝐷)
121, 8, 2, 9, 10, 11tglnpt 26052 . . . . . 6 (𝜑𝑅𝑃)
1312ad4antr 720 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑅𝑃)
149ad4antr 720 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐺 ∈ TarskiG)
15 simplr 757 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑝𝑃)
16 simprl 759 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑝 ∈ (𝑅𝐼𝐴))
17 opphllem5.p . . . . . . . 8 (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
188, 9, 17perpln2 26214 . . . . . . 7 (𝜑 → (𝐴𝐿𝑅) ∈ ran 𝐿)
191, 2, 8, 9, 6, 12, 18tglnne 26131 . . . . . 6 (𝜑𝐴𝑅)
2019ad4antr 720 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐴𝑅)
21 hpg.d . . . . . 6 = (dist‘𝐺)
22 opphllem5.c . . . . . . 7 (𝜑𝐶𝑃)
2322ad4antr 720 . . . . . 6 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐶𝑃)
24 opphllem5.s . . . . . . . 8 (𝜑𝑆𝐷)
251, 8, 2, 9, 10, 24tglnpt 26052 . . . . . . 7 (𝜑𝑆𝑃)
2625ad4antr 720 . . . . . 6 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑆𝑃)
27 simprr 761 . . . . . . 7 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝑆 𝐶) = (𝑅 𝑝))
281, 21, 2, 14, 26, 23, 13, 15, 27tgcgrcomlr 25983 . . . . . 6 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝐶 𝑆) = (𝑝 𝑅))
29 opphllem5.q . . . . . . . . 9 (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
3029ad4antr 720 . . . . . . . 8 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))
318, 14, 30perpln2 26214 . . . . . . 7 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝐶𝐿𝑆) ∈ ran 𝐿)
321, 2, 8, 14, 23, 26, 31tglnne 26131 . . . . . 6 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐶𝑆)
331, 21, 2, 14, 23, 26, 15, 13, 28, 32tgcgrneq 25986 . . . . 5 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑝𝑅)
341, 2, 3, 5, 7, 13, 14, 15, 16, 20, 33hlbtwn 26114 . . . 4 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝑈(𝐾𝑅)𝐴𝑈(𝐾𝑅)𝑝))
35 eqid 2771 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
3614adantr 473 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → 𝐺 ∈ TarskiG)
37 opphllem5.n . . . . . . 7 𝑁 = ((pInvG‘𝐺)‘𝑀)
38 opphllem5.m . . . . . . . 8 (𝜑𝑀𝑃)
3938ad5antr 722 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → 𝑀𝑃)
405adantr 473 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → 𝑈𝑃)
41 simpllr 764 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → 𝑝𝑃)
4213adantr 473 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → 𝑅𝑃)
43 simpr 477 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → 𝑈(𝐾𝑅)𝑝)
441, 21, 2, 8, 35, 36, 37, 3, 39, 40, 41, 42, 43mirhl 26182 . . . . . 6 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → (𝑁𝑈)(𝐾‘(𝑁𝑅))(𝑁𝑝))
45 eqidd 2772 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → (𝑁𝑈) = (𝑁𝑈))
46 opphllem3.v . . . . . . . . 9 (𝜑 → (𝑁𝑅) = 𝑆)
4746ad5antr 722 . . . . . . . 8 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → (𝑁𝑅) = 𝑆)
4847fveq2d 6500 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → (𝐾‘(𝑁𝑅)) = (𝐾𝑆))
49 simprr 761 . . . . . . . . . 10 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))
5014ad2antrr 714 . . . . . . . . . . . . . 14 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝐺 ∈ TarskiG)
51 simplr 757 . . . . . . . . . . . . . 14 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝑚𝑃)
5238ad6antr 724 . . . . . . . . . . . . . 14 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝑀𝑃)
5326ad2antrr 714 . . . . . . . . . . . . . 14 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝑆𝑃)
5413ad2antrr 714 . . . . . . . . . . . . . 14 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝑅𝑃)
55 simprl 759 . . . . . . . . . . . . . . 15 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆))
5655eqcomd 2777 . . . . . . . . . . . . . 14 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → (((pInvG‘𝐺)‘𝑚)‘𝑆) = 𝑅)
5737fveq1i 6497 . . . . . . . . . . . . . . . 16 (𝑁𝑆) = (((pInvG‘𝐺)‘𝑀)‘𝑆)
581, 21, 2, 8, 35, 9, 38, 37, 12, 46mircom 26166 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁𝑆) = 𝑅)
5957, 58syl5eqr 2821 . . . . . . . . . . . . . . 15 (𝜑 → (((pInvG‘𝐺)‘𝑀)‘𝑆) = 𝑅)
6059ad6antr 724 . . . . . . . . . . . . . 14 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → (((pInvG‘𝐺)‘𝑀)‘𝑆) = 𝑅)
611, 21, 2, 8, 35, 50, 51, 52, 53, 54, 56, 60miduniq 26188 . . . . . . . . . . . . 13 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → 𝑚 = 𝑀)
6261fveq2d 6500 . . . . . . . . . . . 12 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → ((pInvG‘𝐺)‘𝑚) = ((pInvG‘𝐺)‘𝑀))
6362, 37syl6eqr 2825 . . . . . . . . . . 11 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → ((pInvG‘𝐺)‘𝑚) = 𝑁)
6463fveq1d 6498 . . . . . . . . . 10 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → (((pInvG‘𝐺)‘𝑚)‘𝑝) = (𝑁𝑝))
6549, 64eqtr2d 2808 . . . . . . . . 9 (((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑚𝑃) ∧ (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝))) → (𝑁𝑝) = 𝐶)
66 opphllem3.t . . . . . . . . . . . 12 (𝜑𝑅𝑆)
6766ad4antr 720 . . . . . . . . . . 11 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑅𝑆)
6867necomd 3015 . . . . . . . . . 10 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑆𝑅)
6910ad4antr 720 . . . . . . . . . . 11 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐷 ∈ ran 𝐿)
70 simp-4r 772 . . . . . . . . . . 11 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑡𝐷)
711, 8, 2, 14, 69, 70tglnpt 26052 . . . . . . . . . 10 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑡𝑃)
7224ad4antr 720 . . . . . . . . . . . 12 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑆𝐷)
7311ad4antr 720 . . . . . . . . . . . 12 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑅𝐷)
741, 2, 8, 14, 26, 13, 68, 68, 69, 72, 73tglinethru 26139 . . . . . . . . . . 11 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐷 = (𝑆𝐿𝑅))
7517ad4antr 720 . . . . . . . . . . 11 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))
7674, 75eqbrtrrd 4949 . . . . . . . . . 10 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝑆𝐿𝑅)(⟂G‘𝐺)(𝐴𝐿𝑅))
771, 2, 8, 14, 23, 26, 32tglinecom 26138 . . . . . . . . . . 11 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝐶𝐿𝑆) = (𝑆𝐿𝐶))
7830, 74, 773brtr3d 4956 . . . . . . . . . 10 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝑆𝐿𝑅)(⟂G‘𝐺)(𝑆𝐿𝐶))
7970, 74eleqtrd 2861 . . . . . . . . . 10 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑡 ∈ (𝑆𝐿𝑅))
80 simpllr 764 . . . . . . . . . 10 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → 𝑡 ∈ (𝐴𝐼𝐶))
811, 21, 2, 8, 14, 35, 26, 13, 68, 7, 23, 71, 76, 78, 79, 80, 15, 16, 27opphllem 26238 . . . . . . . . 9 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → ∃𝑚𝑃 (𝑅 = (((pInvG‘𝐺)‘𝑚)‘𝑆) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑚)‘𝑝)))
8265, 81r19.29a 3227 . . . . . . . 8 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝑁𝑝) = 𝐶)
8382adantr 473 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → (𝑁𝑝) = 𝐶)
8445, 48, 83breq123d 4939 . . . . . 6 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → ((𝑁𝑈)(𝐾‘(𝑁𝑅))(𝑁𝑝) ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
8544, 84mpbid 224 . . . . 5 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ 𝑈(𝐾𝑅)𝑝) → (𝑁𝑈)(𝐾𝑆)𝐶)
8614adantr 473 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝐺 ∈ TarskiG)
8738ad5antr 722 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝑀𝑃)
881, 21, 2, 8, 35, 9, 38, 37, 4mircl 26164 . . . . . . . 8 (𝜑 → (𝑁𝑈) ∈ 𝑃)
8988ad5antr 722 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁𝑈) ∈ 𝑃)
9023adantr 473 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝐶𝑃)
9126adantr 473 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝑆𝑃)
92 simpr 477 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁𝑈)(𝐾𝑆)𝐶)
931, 21, 2, 8, 35, 86, 37, 3, 87, 89, 90, 91, 92mirhl 26182 . . . . . 6 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁‘(𝑁𝑈))(𝐾‘(𝑁𝑆))(𝑁𝐶))
945adantr 473 . . . . . . . 8 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝑈𝑃)
951, 21, 2, 8, 35, 86, 87, 37, 94mirmir 26165 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁‘(𝑁𝑈)) = 𝑈)
9613adantr 473 . . . . . . . . 9 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝑅𝑃)
9746ad5antr 722 . . . . . . . . 9 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁𝑅) = 𝑆)
981, 21, 2, 8, 35, 86, 87, 37, 96, 97mircom 26166 . . . . . . . 8 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁𝑆) = 𝑅)
9998fveq2d 6500 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝐾‘(𝑁𝑆)) = (𝐾𝑅))
100 simpllr 764 . . . . . . . 8 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝑝𝑃)
10182adantr 473 . . . . . . . 8 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁𝑝) = 𝐶)
1021, 21, 2, 8, 35, 86, 87, 37, 100, 101mircom 26166 . . . . . . 7 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → (𝑁𝐶) = 𝑝)
10395, 99, 102breq123d 4939 . . . . . 6 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → ((𝑁‘(𝑁𝑈))(𝐾‘(𝑁𝑆))(𝑁𝐶) ↔ 𝑈(𝐾𝑅)𝑝))
10493, 103mpbid 224 . . . . 5 ((((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) ∧ (𝑁𝑈)(𝐾𝑆)𝐶) → 𝑈(𝐾𝑅)𝑝)
10585, 104impbida 789 . . . 4 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝑈(𝐾𝑅)𝑝 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
10634, 105bitrd 271 . . 3 (((((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) ∧ 𝑝𝑃) ∧ (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
107 opphllem3.l . . . . 5 (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))
108 eqid 2771 . . . . . 6 (≤G‘𝐺) = (≤G‘𝐺)
1091, 21, 2, 108, 9, 25, 22, 12, 6legov 26088 . . . . 5 (𝜑 → ((𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴) ↔ ∃𝑝𝑃 (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝))))
110107, 109mpbid 224 . . . 4 (𝜑 → ∃𝑝𝑃 (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝)))
111110ad2antrr 714 . . 3 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → ∃𝑝𝑃 (𝑝 ∈ (𝑅𝐼𝐴) ∧ (𝑆 𝐶) = (𝑅 𝑝)))
112106, 111r19.29a 3227 . 2 (((𝜑𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐶)) → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
113 opphllem5.o . . . 4 (𝜑𝐴𝑂𝐶)
114 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
1151, 21, 2, 114, 6, 22islnopp 26242 . . . 4 (𝜑 → (𝐴𝑂𝐶 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))))
116113, 115mpbid 224 . . 3 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶)))
117116simprd 488 . 2 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐶))
118112, 117r19.29a 3227 1 (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wne 2960  wrex 3082  cdif 3819   class class class wbr 4925  {copab 4987  ran crn 5404  cfv 6185  (class class class)co 6974  Basecbs 16337  distcds 16428  TarskiGcstrkg 25933  Itvcitv 25939  LineGclng 25940  ≤Gcleg 26085  hlGchlg 26103  pInvGcmir 26155  ⟂Gcperpg 26198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-dju 9122  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-xnn0 11778  df-z 11792  df-uz 12057  df-fz 12707  df-fzo 12848  df-hash 13504  df-word 13671  df-concat 13732  df-s1 13757  df-s2 14070  df-s3 14071  df-trkgc 25951  df-trkgb 25952  df-trkgcb 25953  df-trkg 25956  df-cgrg 26014  df-leg 26086  df-hlg 26104  df-mir 26156  df-rag 26197  df-perpg 26199
This theorem is referenced by:  opphllem4  26253  opphllem6  26255
  Copyright terms: Public domain W3C validator