| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunicl | Structured version Visualization version GIF version | ||
| Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenunicl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenunicl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragenunicl.y | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| caragenunicl.ctb | ⊢ (𝜑 → 𝑋 ≼ ω) |
| Ref | Expression |
|---|---|
| caragenunicl | ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4882 | . . . . 5 ⊢ (𝑋 = ∅ → ∪ 𝑋 = ∪ ∅) | |
| 2 | uni0 4899 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 3 | 1, 2 | eqtrdi 2780 | . . . 4 ⊢ (𝑋 = ∅ → ∪ 𝑋 = ∅) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑋 = ∅) |
| 5 | caragenunicl.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 6 | caragenunicl.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 7 | 5, 6 | caragen0 46504 | . . . 4 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈ 𝑆) |
| 9 | 4, 8 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑋 ∈ 𝑆) |
| 10 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑) | |
| 11 | neqne 2933 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
| 14 | caragenunicl.ctb | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ≼ ω) | |
| 15 | reldom 8924 | . . . . . . . . . 10 ⊢ Rel ≼ | |
| 16 | brrelex1 5691 | . . . . . . . . . 10 ⊢ ((Rel ≼ ∧ 𝑋 ≼ ω) → 𝑋 ∈ V) | |
| 17 | 15, 16 | mpan 690 | . . . . . . . . 9 ⊢ (𝑋 ≼ ω → 𝑋 ∈ V) |
| 18 | 14, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ V) |
| 19 | 18 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ V) |
| 20 | 0sdomg 9070 | . . . . . . 7 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
| 22 | 13, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∅ ≺ 𝑋) |
| 23 | nnenom 13945 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
| 24 | 23 | ensymi 8975 | . . . . . . . 8 ⊢ ω ≈ ℕ |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ω ≈ ℕ) |
| 26 | domentr 8984 | . . . . . . 7 ⊢ ((𝑋 ≼ ω ∧ ω ≈ ℕ) → 𝑋 ≼ ℕ) | |
| 27 | 14, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑋 ≼ ℕ) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≼ ℕ) |
| 29 | fodomr 9092 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto→𝑋) | |
| 30 | 22, 28, 29 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝑋) |
| 31 | founiiun 45173 | . . . . . . . . 9 ⊢ (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) | |
| 32 | 31 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) |
| 33 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑂 ∈ OutMeas) |
| 34 | 1zzd 12564 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 1 ∈ ℤ) | |
| 35 | nnuz 12836 | . . . . . . . . 9 ⊢ ℕ = (ℤ≥‘1) | |
| 36 | fof 6772 | . . . . . . . . . . 11 ⊢ (𝑓:ℕ–onto→𝑋 → 𝑓:ℕ⟶𝑋) | |
| 37 | 36 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑓:ℕ⟶𝑋) |
| 38 | caragenunicl.y | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 39 | 38 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑋 ⊆ 𝑆) |
| 40 | 37, 39 | fssd 6705 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑓:ℕ⟶𝑆) |
| 41 | 33, 6, 34, 35, 40 | carageniuncl 46521 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) ∈ 𝑆) |
| 42 | 32, 41 | eqeltrd 2828 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑋 ∈ 𝑆) |
| 43 | 42 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 44 | 43 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 45 | 44 | exlimdv 1933 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∃𝑓 𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 46 | 30, 45 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∪ 𝑋 ∈ 𝑆) |
| 47 | 10, 12, 46 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∪ 𝑋 ∈ 𝑆) |
| 48 | 9, 47 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ∪ ciun 4955 class class class wbr 5107 Rel wrel 5643 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 1c1 11069 ℕcn 12186 OutMeascome 46487 CaraGenccaragen 46489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-sumge0 46361 df-ome 46488 df-caragen 46490 |
| This theorem is referenced by: caragensal 46523 |
| Copyright terms: Public domain | W3C validator |