| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunicl | Structured version Visualization version GIF version | ||
| Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenunicl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenunicl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragenunicl.y | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| caragenunicl.ctb | ⊢ (𝜑 → 𝑋 ≼ ω) |
| Ref | Expression |
|---|---|
| caragenunicl | ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4869 | . . . . 5 ⊢ (𝑋 = ∅ → ∪ 𝑋 = ∪ ∅) | |
| 2 | uni0 4886 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 3 | 1, 2 | eqtrdi 2780 | . . . 4 ⊢ (𝑋 = ∅ → ∪ 𝑋 = ∅) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑋 = ∅) |
| 5 | caragenunicl.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 6 | caragenunicl.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 7 | 5, 6 | caragen0 46507 | . . . 4 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈ 𝑆) |
| 9 | 4, 8 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑋 ∈ 𝑆) |
| 10 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑) | |
| 11 | neqne 2933 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
| 14 | caragenunicl.ctb | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ≼ ω) | |
| 15 | reldom 8878 | . . . . . . . . . 10 ⊢ Rel ≼ | |
| 16 | brrelex1 5672 | . . . . . . . . . 10 ⊢ ((Rel ≼ ∧ 𝑋 ≼ ω) → 𝑋 ∈ V) | |
| 17 | 15, 16 | mpan 690 | . . . . . . . . 9 ⊢ (𝑋 ≼ ω → 𝑋 ∈ V) |
| 18 | 14, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ V) |
| 19 | 18 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ V) |
| 20 | 0sdomg 9023 | . . . . . . 7 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
| 22 | 13, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∅ ≺ 𝑋) |
| 23 | nnenom 13887 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
| 24 | 23 | ensymi 8929 | . . . . . . . 8 ⊢ ω ≈ ℕ |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ω ≈ ℕ) |
| 26 | domentr 8938 | . . . . . . 7 ⊢ ((𝑋 ≼ ω ∧ ω ≈ ℕ) → 𝑋 ≼ ℕ) | |
| 27 | 14, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑋 ≼ ℕ) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≼ ℕ) |
| 29 | fodomr 9045 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto→𝑋) | |
| 30 | 22, 28, 29 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝑋) |
| 31 | founiiun 45177 | . . . . . . . . 9 ⊢ (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) | |
| 32 | 31 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) |
| 33 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑂 ∈ OutMeas) |
| 34 | 1zzd 12506 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 1 ∈ ℤ) | |
| 35 | nnuz 12778 | . . . . . . . . 9 ⊢ ℕ = (ℤ≥‘1) | |
| 36 | fof 6736 | . . . . . . . . . . 11 ⊢ (𝑓:ℕ–onto→𝑋 → 𝑓:ℕ⟶𝑋) | |
| 37 | 36 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑓:ℕ⟶𝑋) |
| 38 | caragenunicl.y | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 39 | 38 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑋 ⊆ 𝑆) |
| 40 | 37, 39 | fssd 6669 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑓:ℕ⟶𝑆) |
| 41 | 33, 6, 34, 35, 40 | carageniuncl 46524 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) ∈ 𝑆) |
| 42 | 32, 41 | eqeltrd 2828 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑋 ∈ 𝑆) |
| 43 | 42 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 44 | 43 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 45 | 44 | exlimdv 1933 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∃𝑓 𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 46 | 30, 45 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∪ 𝑋 ∈ 𝑆) |
| 47 | 10, 12, 46 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∪ 𝑋 ∈ 𝑆) |
| 48 | 9, 47 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5092 Rel wrel 5624 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 ωcom 7799 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 1c1 11010 ℕcn 12128 OutMeascome 46490 CaraGenccaragen 46492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xadd 13015 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-sumge0 46364 df-ome 46491 df-caragen 46493 |
| This theorem is referenced by: caragensal 46526 |
| Copyright terms: Public domain | W3C validator |