| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenunicl | Structured version Visualization version GIF version | ||
| Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenunicl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenunicl.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragenunicl.y | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| caragenunicl.ctb | ⊢ (𝜑 → 𝑋 ≼ ω) |
| Ref | Expression |
|---|---|
| caragenunicl | ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4878 | . . . . 5 ⊢ (𝑋 = ∅ → ∪ 𝑋 = ∪ ∅) | |
| 2 | uni0 4895 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 3 | 1, 2 | eqtrdi 2780 | . . . 4 ⊢ (𝑋 = ∅ → ∪ 𝑋 = ∅) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑋 = ∅) |
| 5 | caragenunicl.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 6 | caragenunicl.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 7 | 5, 6 | caragen0 46497 | . . . 4 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈ 𝑆) |
| 9 | 4, 8 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑋 ∈ 𝑆) |
| 10 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑) | |
| 11 | neqne 2933 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
| 14 | caragenunicl.ctb | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ≼ ω) | |
| 15 | reldom 8901 | . . . . . . . . . 10 ⊢ Rel ≼ | |
| 16 | brrelex1 5684 | . . . . . . . . . 10 ⊢ ((Rel ≼ ∧ 𝑋 ≼ ω) → 𝑋 ∈ V) | |
| 17 | 15, 16 | mpan 690 | . . . . . . . . 9 ⊢ (𝑋 ≼ ω → 𝑋 ∈ V) |
| 18 | 14, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ V) |
| 19 | 18 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ V) |
| 20 | 0sdomg 9047 | . . . . . . 7 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
| 22 | 13, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∅ ≺ 𝑋) |
| 23 | nnenom 13921 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
| 24 | 23 | ensymi 8952 | . . . . . . . 8 ⊢ ω ≈ ℕ |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ω ≈ ℕ) |
| 26 | domentr 8961 | . . . . . . 7 ⊢ ((𝑋 ≼ ω ∧ ω ≈ ℕ) → 𝑋 ≼ ℕ) | |
| 27 | 14, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑋 ≼ ℕ) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≼ ℕ) |
| 29 | fodomr 9069 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto→𝑋) | |
| 30 | 22, 28, 29 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝑋) |
| 31 | founiiun 45166 | . . . . . . . . 9 ⊢ (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) | |
| 32 | 31 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ (𝑓‘𝑛)) |
| 33 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑂 ∈ OutMeas) |
| 34 | 1zzd 12540 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 1 ∈ ℤ) | |
| 35 | nnuz 12812 | . . . . . . . . 9 ⊢ ℕ = (ℤ≥‘1) | |
| 36 | fof 6754 | . . . . . . . . . . 11 ⊢ (𝑓:ℕ–onto→𝑋 → 𝑓:ℕ⟶𝑋) | |
| 37 | 36 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑓:ℕ⟶𝑋) |
| 38 | caragenunicl.y | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 39 | 38 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑋 ⊆ 𝑆) |
| 40 | 37, 39 | fssd 6687 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → 𝑓:ℕ⟶𝑆) |
| 41 | 33, 6, 34, 35, 40 | carageniuncl 46514 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) ∈ 𝑆) |
| 42 | 32, 41 | eqeltrd 2828 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓:ℕ–onto→𝑋) → ∪ 𝑋 ∈ 𝑆) |
| 43 | 42 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 44 | 43 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 45 | 44 | exlimdv 1933 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∃𝑓 𝑓:ℕ–onto→𝑋 → ∪ 𝑋 ∈ 𝑆)) |
| 46 | 30, 45 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∪ 𝑋 ∈ 𝑆) |
| 47 | 10, 12, 46 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ∪ 𝑋 ∈ 𝑆) |
| 48 | 9, 47 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 ∪ cuni 4867 ∪ ciun 4951 class class class wbr 5102 Rel wrel 5636 ⟶wf 6495 –onto→wfo 6497 ‘cfv 6499 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 1c1 11045 ℕcn 12162 OutMeascome 46480 CaraGenccaragen 46482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xadd 13049 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-sumge0 46354 df-ome 46481 df-caragen 46483 |
| This theorem is referenced by: caragensal 46516 |
| Copyright terms: Public domain | W3C validator |