Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim2d Structured version   Visualization version   GIF version

Theorem clim2d 45644
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
clim2d.k 𝑘𝜑
clim2d.f 𝑘𝐹
clim2d.m (𝜑𝑀 ∈ ℤ)
clim2d.z 𝑍 = (ℤ𝑀)
clim2d.c (𝜑𝐹𝐴)
clim2d.b ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim2d.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
clim2d (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem clim2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clim2d.x . 2 (𝜑𝑋 ∈ ℝ+)
2 clim2d.c . . . 4 (𝜑𝐹𝐴)
3 clim2d.k . . . . 5 𝑘𝜑
4 clim2d.f . . . . 5 𝑘𝐹
5 clim2d.z . . . . 5 𝑍 = (ℤ𝑀)
6 clim2d.m . . . . 5 (𝜑𝑀 ∈ ℤ)
7 climrel 15465 . . . . . . 7 Rel ⇝
87a1i 11 . . . . . 6 (𝜑 → Rel ⇝ )
9 brrelex1 5699 . . . . . 6 ((Rel ⇝ ∧ 𝐹𝐴) → 𝐹 ∈ V)
108, 2, 9syl2anc 584 . . . . 5 (𝜑𝐹 ∈ V)
11 clim2d.b . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
123, 4, 5, 6, 10, 11clim2f2 45641 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
132, 12mpbid 232 . . 3 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1413simprd 495 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))
15 breq2 5119 . . . . . 6 (𝑥 = 𝑋 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑋))
1615anbi2d 630 . . . . 5 (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1716ralbidv 3158 . . . 4 (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1817rexbidv 3159 . . 3 (𝑥 = 𝑋 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1918rspcva 3595 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
201, 14, 19syl2anc 584 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2878  wral 3046  wrex 3055  Vcvv 3455   class class class wbr 5115  Rel wrel 5651  cfv 6519  (class class class)co 7394  cc 11084   < clt 11226  cmin 11423  cz 12545  cuz 12809  +crp 12965  abscabs 15210  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-pre-lttri 11160  ax-pre-lttrn 11161
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-neg 11426  df-z 12546  df-uz 12810  df-clim 15461
This theorem is referenced by:  climleltrp  45647
  Copyright terms: Public domain W3C validator