Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clim2d | Structured version Visualization version GIF version |
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
clim2d.k | ⊢ Ⅎ𝑘𝜑 |
clim2d.f | ⊢ Ⅎ𝑘𝐹 |
clim2d.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
clim2d.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
clim2d.c | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
clim2d.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
clim2d.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
clim2d | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
2 | clim2d.c | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
3 | clim2d.k | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
4 | clim2d.f | . . . . 5 ⊢ Ⅎ𝑘𝐹 | |
5 | clim2d.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | clim2d.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climrel 15210 | . . . . . . 7 ⊢ Rel ⇝ | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → Rel ⇝ ) |
9 | brrelex1 5641 | . . . . . 6 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ V) | |
10 | 8, 2, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
11 | clim2d.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
12 | 3, 4, 5, 6, 10, 11 | clim2f2 43218 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
13 | 2, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
14 | 13 | simprd 496 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
15 | breq2 5079 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑋)) | |
16 | 15 | anbi2d 629 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
17 | 16 | ralbidv 3113 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
18 | 17 | rexbidv 3227 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
19 | 18 | rspcva 3560 | . 2 ⊢ ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
20 | 1, 14, 19 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2888 ∀wral 3065 ∃wrex 3066 Vcvv 3433 class class class wbr 5075 Rel wrel 5595 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 < clt 11018 − cmin 11214 ℤcz 12328 ℤ≥cuz 12591 ℝ+crp 12739 abscabs 14954 ⇝ cli 15202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-neg 11217 df-z 12329 df-uz 12592 df-clim 15206 |
This theorem is referenced by: climleltrp 43224 |
Copyright terms: Public domain | W3C validator |