| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clim2d | Structured version Visualization version GIF version | ||
| Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| clim2d.k | ⊢ Ⅎ𝑘𝜑 |
| clim2d.f | ⊢ Ⅎ𝑘𝐹 |
| clim2d.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| clim2d.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| clim2d.c | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| clim2d.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| clim2d.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| clim2d | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
| 2 | clim2d.c | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 3 | clim2d.k | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 4 | clim2d.f | . . . . 5 ⊢ Ⅎ𝑘𝐹 | |
| 5 | clim2d.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | clim2d.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | climrel 15403 | . . . . . . 7 ⊢ Rel ⇝ | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → Rel ⇝ ) |
| 9 | brrelex1 5674 | . . . . . 6 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ V) | |
| 10 | 8, 2, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 11 | clim2d.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 12 | 3, 4, 5, 6, 10, 11 | clim2f2 45795 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
| 13 | 2, 12 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 14 | 13 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
| 15 | breq2 5099 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑋)) | |
| 16 | 15 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 17 | 16 | ralbidv 3156 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 18 | 17 | rexbidv 3157 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 19 | 18 | rspcva 3571 | . 2 ⊢ ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| 20 | 1, 14, 19 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 ∃wrex 3057 Vcvv 3437 class class class wbr 5095 Rel wrel 5626 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 < clt 11155 − cmin 11353 ℤcz 12477 ℤ≥cuz 12740 ℝ+crp 12894 abscabs 15145 ⇝ cli 15395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-neg 11356 df-z 12478 df-uz 12741 df-clim 15399 |
| This theorem is referenced by: climleltrp 45801 |
| Copyright terms: Public domain | W3C validator |