Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim2d Structured version   Visualization version   GIF version

Theorem clim2d 40700
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
clim2d.k 𝑘𝜑
clim2d.f 𝑘𝐹
clim2d.m (𝜑𝑀 ∈ ℤ)
clim2d.z 𝑍 = (ℤ𝑀)
clim2d.c (𝜑𝐹𝐴)
clim2d.b ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim2d.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
clim2d (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem clim2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clim2d.x . 2 (𝜑𝑋 ∈ ℝ+)
2 clim2d.c . . . 4 (𝜑𝐹𝐴)
3 clim2d.k . . . . 5 𝑘𝜑
4 clim2d.f . . . . 5 𝑘𝐹
5 clim2d.z . . . . 5 𝑍 = (ℤ𝑀)
6 clim2d.m . . . . 5 (𝜑𝑀 ∈ ℤ)
7 climrel 14600 . . . . . . 7 Rel ⇝
87a1i 11 . . . . . 6 (𝜑 → Rel ⇝ )
9 brrelex1 5390 . . . . . 6 ((Rel ⇝ ∧ 𝐹𝐴) → 𝐹 ∈ V)
108, 2, 9syl2anc 581 . . . . 5 (𝜑𝐹 ∈ V)
11 clim2d.b . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
123, 4, 5, 6, 10, 11clim2f2 40697 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
132, 12mpbid 224 . . 3 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1413simprd 491 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))
15 breq2 4877 . . . . . 6 (𝑥 = 𝑋 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑋))
1615anbi2d 624 . . . . 5 (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1716ralbidv 3195 . . . 4 (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1817rexbidv 3262 . . 3 (𝑥 = 𝑋 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1918rspcva 3524 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
201, 14, 19syl2anc 581 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wnf 1884  wcel 2166  wnfc 2956  wral 3117  wrex 3118  Vcvv 3414   class class class wbr 4873  Rel wrel 5347  cfv 6123  (class class class)co 6905  cc 10250   < clt 10391  cmin 10585  cz 11704  cuz 11968  +crp 12112  abscabs 14351  cli 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-pre-lttri 10326  ax-pre-lttrn 10327
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-neg 10588  df-z 11705  df-uz 11969  df-clim 14596
This theorem is referenced by:  climleltrp  40703
  Copyright terms: Public domain W3C validator