![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clim2d | Structured version Visualization version GIF version |
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
clim2d.k | ⊢ Ⅎ𝑘𝜑 |
clim2d.f | ⊢ Ⅎ𝑘𝐹 |
clim2d.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
clim2d.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
clim2d.c | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
clim2d.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
clim2d.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
clim2d | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
2 | clim2d.c | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
3 | clim2d.k | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
4 | clim2d.f | . . . . 5 ⊢ Ⅎ𝑘𝐹 | |
5 | clim2d.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | clim2d.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climrel 15472 | . . . . . . 7 ⊢ Rel ⇝ | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → Rel ⇝ ) |
9 | brrelex1 5731 | . . . . . 6 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ V) | |
10 | 8, 2, 9 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
11 | clim2d.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
12 | 3, 4, 5, 6, 10, 11 | clim2f2 45196 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
13 | 2, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
14 | 13 | simprd 494 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
15 | breq2 5153 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑋)) | |
16 | 15 | anbi2d 628 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
17 | 16 | ralbidv 3167 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
18 | 17 | rexbidv 3168 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
19 | 18 | rspcva 3604 | . 2 ⊢ ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
20 | 1, 14, 19 | syl2anc 582 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3050 ∃wrex 3059 Vcvv 3461 class class class wbr 5149 Rel wrel 5683 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 < clt 11280 − cmin 11476 ℤcz 12591 ℤ≥cuz 12855 ℝ+crp 13009 abscabs 15217 ⇝ cli 15464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-neg 11479 df-z 12592 df-uz 12856 df-clim 15468 |
This theorem is referenced by: climleltrp 45202 |
Copyright terms: Public domain | W3C validator |