Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim2d Structured version   Visualization version   GIF version

Theorem clim2d 45596
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
clim2d.k 𝑘𝜑
clim2d.f 𝑘𝐹
clim2d.m (𝜑𝑀 ∈ ℤ)
clim2d.z 𝑍 = (ℤ𝑀)
clim2d.c (𝜑𝐹𝐴)
clim2d.b ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim2d.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
clim2d (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem clim2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 clim2d.x . 2 (𝜑𝑋 ∈ ℝ+)
2 clim2d.c . . . 4 (𝜑𝐹𝐴)
3 clim2d.k . . . . 5 𝑘𝜑
4 clim2d.f . . . . 5 𝑘𝐹
5 clim2d.z . . . . 5 𝑍 = (ℤ𝑀)
6 clim2d.m . . . . 5 (𝜑𝑀 ∈ ℤ)
7 climrel 15540 . . . . . . 7 Rel ⇝
87a1i 11 . . . . . 6 (𝜑 → Rel ⇝ )
9 brrelex1 5753 . . . . . 6 ((Rel ⇝ ∧ 𝐹𝐴) → 𝐹 ∈ V)
108, 2, 9syl2anc 583 . . . . 5 (𝜑𝐹 ∈ V)
11 clim2d.b . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
123, 4, 5, 6, 10, 11clim2f2 45593 . . . 4 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
132, 12mpbid 232 . . 3 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1413simprd 495 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))
15 breq2 5170 . . . . . 6 (𝑥 = 𝑋 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑋))
1615anbi2d 629 . . . . 5 (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1716ralbidv 3184 . . . 4 (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1817rexbidv 3185 . . 3 (𝑥 = 𝑋 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋)))
1918rspcva 3633 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
201, 14, 19syl2anc 583 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  Rel wrel 5705  cfv 6575  (class class class)co 7450  cc 11184   < clt 11326  cmin 11522  cz 12641  cuz 12905  +crp 13059  abscabs 15285  cli 15532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-pre-lttri 11260  ax-pre-lttrn 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-neg 11525  df-z 12642  df-uz 12906  df-clim 15536
This theorem is referenced by:  climleltrp  45599
  Copyright terms: Public domain W3C validator