| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clim2d | Structured version Visualization version GIF version | ||
| Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| clim2d.k | ⊢ Ⅎ𝑘𝜑 |
| clim2d.f | ⊢ Ⅎ𝑘𝐹 |
| clim2d.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| clim2d.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| clim2d.c | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| clim2d.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| clim2d.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| clim2d | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
| 2 | clim2d.c | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 3 | clim2d.k | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 4 | clim2d.f | . . . . 5 ⊢ Ⅎ𝑘𝐹 | |
| 5 | clim2d.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | clim2d.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | climrel 15509 | . . . . . . 7 ⊢ Rel ⇝ | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → Rel ⇝ ) |
| 9 | brrelex1 5718 | . . . . . 6 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ V) | |
| 10 | 8, 2, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 11 | clim2d.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 12 | 3, 4, 5, 6, 10, 11 | clim2f2 45618 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
| 13 | 2, 12 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
| 14 | 13 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) |
| 15 | breq2 5127 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (abs‘(𝐵 − 𝐴)) < 𝑋)) | |
| 16 | 15 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 17 | 16 | ralbidv 3165 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 18 | 17 | rexbidv 3166 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋))) |
| 19 | 18 | rspcva 3603 | . 2 ⊢ ((𝑋 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| 20 | 1, 14, 19 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ∀wral 3050 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 Rel wrel 5670 ‘cfv 6540 (class class class)co 7412 ℂcc 11134 < clt 11276 − cmin 11473 ℤcz 12595 ℤ≥cuz 12859 ℝ+crp 13015 abscabs 15254 ⇝ cli 15501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-neg 11476 df-z 12596 df-uz 12860 df-clim 15505 |
| This theorem is referenced by: climleltrp 45624 |
| Copyright terms: Public domain | W3C validator |