MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negeqi Structured version   Visualization version   GIF version

Theorem negeqi 11529
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
negeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
negeqi -𝐴 = -𝐵

Proof of Theorem negeqi
StepHypRef Expression
1 negeqi.1 . 2 𝐴 = 𝐵
2 negeq 11528 . 2 (𝐴 = 𝐵 → -𝐴 = -𝐵)
31, 2ax-mp 5 1 -𝐴 = -𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  -cneg 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-neg 11523
This theorem is referenced by:  negsubdii  11621  recgt0ii  12201  m1expcl2  14136  crreczi  14277  absi  15335  geo2sum2  15922  bpoly2  16105  bpoly3  16106  sinhval  16202  coshval  16203  cos2bnd  16236  divalglem2  16443  m1expaddsub  19540  cnmsgnsubg  21618  psgninv  21623  ncvspi  25209  cphipval2  25294  ditg0  25908  cbvditg  25909  ang180lem2  26871  ang180lem3  26872  ang180lem4  26873  1cubrlem  26902  dcubic2  26905  atandm2  26938  efiasin  26949  asinsinlem  26952  asinsin  26953  asin1  26955  reasinsin  26957  atancj  26971  atantayl2  26999  ppiub  27266  lgseisenlem1  27437  lgseisenlem2  27438  lgsquadlem1  27442  ostth3  27700  nvpi  30699  ipidsq  30742  ipasslem10  30871  normlem1  31142  polid2i  31189  lnophmlem2  32049  archirngz  33169  xrge0iif1  33884  ballotlem2  34453  ditgeq123i  36173  cbvditgvw2  36215  itg2addnclem3  37633  dvasin  37664  areacirc  37673  lhe4.4ex1a  44298  itgsin0pilem1  45871  stoweidlem26  45947  dirkertrigeqlem3  46021  fourierdlem103  46130  sqwvfourb  46150  fourierswlem  46151  proththd  47488
  Copyright terms: Public domain W3C validator