Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 11143 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 |
This theorem is referenced by: negsubdii 11236 recgt0ii 11811 m1expcl2 13732 crreczi 13871 absi 14926 geo2sum2 15514 bpoly2 15695 bpoly3 15696 sinhval 15791 coshval 15792 cos2bnd 15825 divalglem2 16032 m1expaddsub 19021 cnmsgnsubg 20694 psgninv 20699 ncvspi 24225 cphipval2 24310 ditg0 24922 cbvditg 24923 ang180lem2 25865 ang180lem3 25866 ang180lem4 25867 1cubrlem 25896 dcubic2 25899 atandm2 25932 efiasin 25943 asinsinlem 25946 asinsin 25947 asin1 25949 reasinsin 25951 atancj 25965 atantayl2 25993 ppiub 26257 lgseisenlem1 26428 lgseisenlem2 26429 lgsquadlem1 26433 ostth3 26691 nvpi 28930 ipidsq 28973 ipasslem10 29102 normlem1 29373 polid2i 29420 lnophmlem2 30280 archirngz 31345 xrge0iif1 31790 ballotlem2 32355 itg2addnclem3 35757 dvasin 35788 areacirc 35797 lhe4.4ex1a 41836 itgsin0pilem1 43381 stoweidlem26 43457 dirkertrigeqlem3 43531 fourierdlem103 43640 sqwvfourb 43660 fourierswlem 43661 proththd 44954 |
Copyright terms: Public domain | W3C validator |