| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| negeqi | ⊢ -𝐴 = -𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | negeq 11389 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-neg 11384 |
| This theorem is referenced by: negsubdii 11483 recgt0ii 12065 m1expcl2 14026 crreczi 14169 absi 15228 geo2sum2 15816 bpoly2 15999 bpoly3 16000 sinhval 16098 coshval 16099 cos2bnd 16132 divalglem2 16341 m1expaddsub 19412 cnmsgnsubg 21519 psgninv 21524 ncvspi 25089 cphipval2 25174 ditg0 25787 cbvditg 25788 ang180lem2 26753 ang180lem3 26754 ang180lem4 26755 1cubrlem 26784 dcubic2 26787 atandm2 26820 efiasin 26831 asinsinlem 26834 asinsin 26835 asin1 26837 reasinsin 26839 atancj 26853 atantayl2 26881 ppiub 27148 lgseisenlem1 27319 lgseisenlem2 27320 lgsquadlem1 27324 ostth3 27582 nvpi 30646 ipidsq 30689 ipasslem10 30818 normlem1 31089 polid2i 31136 lnophmlem2 31996 archirngz 33158 cos9thpiminplylem1 33765 cos9thpiminplylem5 33769 xrge0iif1 33921 ballotlem2 34473 ditgeq123i 36190 cbvditgvw2 36230 itg2addnclem3 37660 dvasin 37691 areacirc 37700 cos2t3rdpi 42335 sin4t3rdpi 42336 cos4t3rdpi 42337 lhe4.4ex1a 44311 itgsin0pilem1 45941 stoweidlem26 46017 dirkertrigeqlem3 46091 fourierdlem103 46200 sqwvfourb 46220 fourierswlem 46221 proththd 47608 |
| Copyright terms: Public domain | W3C validator |