MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negeqi Structured version   Visualization version   GIF version

Theorem negeqi 11414
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
negeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
negeqi -𝐴 = -𝐵

Proof of Theorem negeqi
StepHypRef Expression
1 negeqi.1 . 2 𝐴 = 𝐵
2 negeq 11413 . 2 (𝐴 = 𝐵 → -𝐴 = -𝐵)
31, 2ax-mp 5 1 -𝐴 = -𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  -cneg 11406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-neg 11408
This theorem is referenced by:  negsubdii  11507  recgt0ii  12089  m1expcl2  14050  crreczi  14193  absi  15252  geo2sum2  15840  bpoly2  16023  bpoly3  16024  sinhval  16122  coshval  16123  cos2bnd  16156  divalglem2  16365  m1expaddsub  19428  cnmsgnsubg  21486  psgninv  21491  ncvspi  25056  cphipval2  25141  ditg0  25754  cbvditg  25755  ang180lem2  26720  ang180lem3  26721  ang180lem4  26722  1cubrlem  26751  dcubic2  26754  atandm2  26787  efiasin  26798  asinsinlem  26801  asinsin  26802  asin1  26804  reasinsin  26806  atancj  26820  atantayl2  26848  ppiub  27115  lgseisenlem1  27286  lgseisenlem2  27287  lgsquadlem1  27291  ostth3  27549  nvpi  30596  ipidsq  30639  ipasslem10  30768  normlem1  31039  polid2i  31086  lnophmlem2  31946  archirngz  33143  cos9thpiminplylem1  33772  cos9thpiminplylem5  33776  xrge0iif1  33928  ballotlem2  34480  ditgeq123i  36197  cbvditgvw2  36237  itg2addnclem3  37667  dvasin  37698  areacirc  37707  cos2t3rdpi  42342  sin4t3rdpi  42343  cos4t3rdpi  42344  lhe4.4ex1a  44318  itgsin0pilem1  45948  stoweidlem26  46024  dirkertrigeqlem3  46098  fourierdlem103  46207  sqwvfourb  46227  fourierswlem  46228  proththd  47615
  Copyright terms: Public domain W3C validator