| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| negeqi | ⊢ -𝐴 = -𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | negeq 11413 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 |
| This theorem is referenced by: negsubdii 11507 recgt0ii 12089 m1expcl2 14050 crreczi 14193 absi 15252 geo2sum2 15840 bpoly2 16023 bpoly3 16024 sinhval 16122 coshval 16123 cos2bnd 16156 divalglem2 16365 m1expaddsub 19428 cnmsgnsubg 21486 psgninv 21491 ncvspi 25056 cphipval2 25141 ditg0 25754 cbvditg 25755 ang180lem2 26720 ang180lem3 26721 ang180lem4 26722 1cubrlem 26751 dcubic2 26754 atandm2 26787 efiasin 26798 asinsinlem 26801 asinsin 26802 asin1 26804 reasinsin 26806 atancj 26820 atantayl2 26848 ppiub 27115 lgseisenlem1 27286 lgseisenlem2 27287 lgsquadlem1 27291 ostth3 27549 nvpi 30596 ipidsq 30639 ipasslem10 30768 normlem1 31039 polid2i 31086 lnophmlem2 31946 archirngz 33143 cos9thpiminplylem1 33772 cos9thpiminplylem5 33776 xrge0iif1 33928 ballotlem2 34480 ditgeq123i 36197 cbvditgvw2 36237 itg2addnclem3 37667 dvasin 37698 areacirc 37707 cos2t3rdpi 42342 sin4t3rdpi 42343 cos4t3rdpi 42344 lhe4.4ex1a 44318 itgsin0pilem1 45948 stoweidlem26 46024 dirkertrigeqlem3 46098 fourierdlem103 46207 sqwvfourb 46227 fourierswlem 46228 proththd 47615 |
| Copyright terms: Public domain | W3C validator |