| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| negeqi | ⊢ -𝐴 = -𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | negeq 11355 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-neg 11350 |
| This theorem is referenced by: negsubdii 11449 recgt0ii 12031 m1expcl2 13992 crreczi 14135 absi 15193 geo2sum2 15781 bpoly2 15964 bpoly3 15965 sinhval 16063 coshval 16064 cos2bnd 16097 divalglem2 16306 m1expaddsub 19377 cnmsgnsubg 21484 psgninv 21489 ncvspi 25054 cphipval2 25139 ditg0 25752 cbvditg 25753 ang180lem2 26718 ang180lem3 26719 ang180lem4 26720 1cubrlem 26749 dcubic2 26752 atandm2 26785 efiasin 26796 asinsinlem 26799 asinsin 26800 asin1 26802 reasinsin 26804 atancj 26818 atantayl2 26846 ppiub 27113 lgseisenlem1 27284 lgseisenlem2 27285 lgsquadlem1 27289 ostth3 27547 nvpi 30611 ipidsq 30654 ipasslem10 30783 normlem1 31054 polid2i 31101 lnophmlem2 31961 archirngz 33132 cos9thpiminplylem1 33755 cos9thpiminplylem5 33759 xrge0iif1 33911 ballotlem2 34463 ditgeq123i 36193 cbvditgvw2 36233 itg2addnclem3 37663 dvasin 37694 areacirc 37703 cos2t3rdpi 42337 sin4t3rdpi 42338 cos4t3rdpi 42339 lhe4.4ex1a 44312 itgsin0pilem1 45941 stoweidlem26 46017 dirkertrigeqlem3 46091 fourierdlem103 46200 sqwvfourb 46220 fourierswlem 46221 proththd 47608 |
| Copyright terms: Public domain | W3C validator |