MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negeqi Structured version   Visualization version   GIF version

Theorem negeqi 11353
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
negeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
negeqi -𝐴 = -𝐵

Proof of Theorem negeqi
StepHypRef Expression
1 negeqi.1 . 2 𝐴 = 𝐵
2 negeq 11352 . 2 (𝐴 = 𝐵 → -𝐴 = -𝐵)
31, 2ax-mp 5 1 -𝐴 = -𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  -cneg 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-neg 11347
This theorem is referenced by:  negsubdii  11446  recgt0ii  12028  m1expcl2  13992  crreczi  14135  absi  15193  geo2sum2  15781  bpoly2  15964  bpoly3  15965  sinhval  16063  coshval  16064  cos2bnd  16097  divalglem2  16306  m1expaddsub  19410  cnmsgnsubg  21514  psgninv  21519  ncvspi  25083  cphipval2  25168  ditg0  25781  cbvditg  25782  ang180lem2  26747  ang180lem3  26748  ang180lem4  26749  1cubrlem  26778  dcubic2  26781  atandm2  26814  efiasin  26825  asinsinlem  26828  asinsin  26829  asin1  26831  reasinsin  26833  atancj  26847  atantayl2  26875  ppiub  27142  lgseisenlem1  27313  lgseisenlem2  27314  lgsquadlem1  27318  ostth3  27576  nvpi  30647  ipidsq  30690  ipasslem10  30819  normlem1  31090  polid2i  31137  lnophmlem2  31997  archirngz  33158  cos9thpiminplylem1  33795  cos9thpiminplylem5  33799  xrge0iif1  33951  ballotlem2  34502  ditgeq123i  36253  cbvditgvw2  36293  itg2addnclem3  37723  dvasin  37754  areacirc  37763  cos2t3rdpi  42457  sin4t3rdpi  42458  cos4t3rdpi  42459  lhe4.4ex1a  44432  itgsin0pilem1  46058  stoweidlem26  46134  dirkertrigeqlem3  46208  fourierdlem103  46317  sqwvfourb  46337  fourierswlem  46338  proththd  47724
  Copyright terms: Public domain W3C validator