![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 11528 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 |
This theorem is referenced by: negsubdii 11621 recgt0ii 12201 m1expcl2 14136 crreczi 14277 absi 15335 geo2sum2 15922 bpoly2 16105 bpoly3 16106 sinhval 16202 coshval 16203 cos2bnd 16236 divalglem2 16443 m1expaddsub 19540 cnmsgnsubg 21618 psgninv 21623 ncvspi 25209 cphipval2 25294 ditg0 25908 cbvditg 25909 ang180lem2 26871 ang180lem3 26872 ang180lem4 26873 1cubrlem 26902 dcubic2 26905 atandm2 26938 efiasin 26949 asinsinlem 26952 asinsin 26953 asin1 26955 reasinsin 26957 atancj 26971 atantayl2 26999 ppiub 27266 lgseisenlem1 27437 lgseisenlem2 27438 lgsquadlem1 27442 ostth3 27700 nvpi 30699 ipidsq 30742 ipasslem10 30871 normlem1 31142 polid2i 31189 lnophmlem2 32049 archirngz 33169 xrge0iif1 33884 ballotlem2 34453 ditgeq123i 36173 cbvditgvw2 36215 itg2addnclem3 37633 dvasin 37664 areacirc 37673 lhe4.4ex1a 44298 itgsin0pilem1 45871 stoweidlem26 45947 dirkertrigeqlem3 46021 fourierdlem103 46130 sqwvfourb 46150 fourierswlem 46151 proththd 47488 |
Copyright terms: Public domain | W3C validator |