| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| negeqi | ⊢ -𝐴 = -𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | negeq 11474 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 |
| This theorem is referenced by: negsubdii 11568 recgt0ii 12148 m1expcl2 14103 crreczi 14246 absi 15305 geo2sum2 15890 bpoly2 16073 bpoly3 16074 sinhval 16172 coshval 16173 cos2bnd 16206 divalglem2 16414 m1expaddsub 19479 cnmsgnsubg 21537 psgninv 21542 ncvspi 25108 cphipval2 25193 ditg0 25806 cbvditg 25807 ang180lem2 26772 ang180lem3 26773 ang180lem4 26774 1cubrlem 26803 dcubic2 26806 atandm2 26839 efiasin 26850 asinsinlem 26853 asinsin 26854 asin1 26856 reasinsin 26858 atancj 26872 atantayl2 26900 ppiub 27167 lgseisenlem1 27338 lgseisenlem2 27339 lgsquadlem1 27343 ostth3 27601 nvpi 30648 ipidsq 30691 ipasslem10 30820 normlem1 31091 polid2i 31138 lnophmlem2 31998 archirngz 33187 cos9thpiminplylem1 33816 cos9thpiminplylem5 33820 xrge0iif1 33969 ballotlem2 34521 ditgeq123i 36227 cbvditgvw2 36267 itg2addnclem3 37697 dvasin 37728 areacirc 37737 lhe4.4ex1a 44353 itgsin0pilem1 45979 stoweidlem26 46055 dirkertrigeqlem3 46129 fourierdlem103 46238 sqwvfourb 46258 fourierswlem 46259 proththd 47628 |
| Copyright terms: Public domain | W3C validator |