Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 11211 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 -cneg 11204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6389 df-fv 6439 df-ov 7272 df-neg 11206 |
This theorem is referenced by: negsubdii 11304 recgt0ii 11879 m1expcl2 13800 crreczi 13939 absi 14994 geo2sum2 15582 bpoly2 15763 bpoly3 15764 sinhval 15859 coshval 15860 cos2bnd 15893 divalglem2 16100 m1expaddsub 19102 cnmsgnsubg 20778 psgninv 20783 ncvspi 24316 cphipval2 24401 ditg0 25013 cbvditg 25014 ang180lem2 25956 ang180lem3 25957 ang180lem4 25958 1cubrlem 25987 dcubic2 25990 atandm2 26023 efiasin 26034 asinsinlem 26037 asinsin 26038 asin1 26040 reasinsin 26042 atancj 26056 atantayl2 26084 ppiub 26348 lgseisenlem1 26519 lgseisenlem2 26520 lgsquadlem1 26524 ostth3 26782 nvpi 29023 ipidsq 29066 ipasslem10 29195 normlem1 29466 polid2i 29513 lnophmlem2 30373 archirngz 31437 xrge0iif1 31882 ballotlem2 32449 itg2addnclem3 35824 dvasin 35855 areacirc 35864 lhe4.4ex1a 41915 itgsin0pilem1 43460 stoweidlem26 43536 dirkertrigeqlem3 43610 fourierdlem103 43719 sqwvfourb 43739 fourierswlem 43740 proththd 45033 |
Copyright terms: Public domain | W3C validator |