![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 11498 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 -cneg 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-neg 11493 |
This theorem is referenced by: negsubdii 11592 recgt0ii 12172 m1expcl2 14123 crreczi 14264 absi 15322 geo2sum2 15907 bpoly2 16090 bpoly3 16091 sinhval 16187 coshval 16188 cos2bnd 16221 divalglem2 16429 m1expaddsub 19531 cnmsgnsubg 21613 psgninv 21618 ncvspi 25204 cphipval2 25289 ditg0 25903 cbvditg 25904 ang180lem2 26868 ang180lem3 26869 ang180lem4 26870 1cubrlem 26899 dcubic2 26902 atandm2 26935 efiasin 26946 asinsinlem 26949 asinsin 26950 asin1 26952 reasinsin 26954 atancj 26968 atantayl2 26996 ppiub 27263 lgseisenlem1 27434 lgseisenlem2 27435 lgsquadlem1 27439 ostth3 27697 nvpi 30696 ipidsq 30739 ipasslem10 30868 normlem1 31139 polid2i 31186 lnophmlem2 32046 archirngz 33179 xrge0iif1 33899 ballotlem2 34470 ditgeq123i 36191 cbvditgvw2 36232 itg2addnclem3 37660 dvasin 37691 areacirc 37700 lhe4.4ex1a 44325 itgsin0pilem1 45906 stoweidlem26 45982 dirkertrigeqlem3 46056 fourierdlem103 46165 sqwvfourb 46185 fourierswlem 46186 proththd 47539 |
Copyright terms: Public domain | W3C validator |