| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| negeqi | ⊢ -𝐴 = -𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | negeq 11352 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11347 |
| This theorem is referenced by: negsubdii 11446 recgt0ii 12028 m1expcl2 13992 crreczi 14135 absi 15193 geo2sum2 15781 bpoly2 15964 bpoly3 15965 sinhval 16063 coshval 16064 cos2bnd 16097 divalglem2 16306 m1expaddsub 19410 cnmsgnsubg 21514 psgninv 21519 ncvspi 25083 cphipval2 25168 ditg0 25781 cbvditg 25782 ang180lem2 26747 ang180lem3 26748 ang180lem4 26749 1cubrlem 26778 dcubic2 26781 atandm2 26814 efiasin 26825 asinsinlem 26828 asinsin 26829 asin1 26831 reasinsin 26833 atancj 26847 atantayl2 26875 ppiub 27142 lgseisenlem1 27313 lgseisenlem2 27314 lgsquadlem1 27318 ostth3 27576 nvpi 30647 ipidsq 30690 ipasslem10 30819 normlem1 31090 polid2i 31137 lnophmlem2 31997 archirngz 33158 cos9thpiminplylem1 33795 cos9thpiminplylem5 33799 xrge0iif1 33951 ballotlem2 34502 ditgeq123i 36253 cbvditgvw2 36293 itg2addnclem3 37723 dvasin 37754 areacirc 37763 cos2t3rdpi 42457 sin4t3rdpi 42458 cos4t3rdpi 42459 lhe4.4ex1a 44432 itgsin0pilem1 46058 stoweidlem26 46134 dirkertrigeqlem3 46208 fourierdlem103 46317 sqwvfourb 46337 fourierswlem 46338 proththd 47724 |
| Copyright terms: Public domain | W3C validator |