| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| negeqi | ⊢ -𝐴 = -𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | negeq 11420 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 |
| This theorem is referenced by: negsubdii 11514 recgt0ii 12096 m1expcl2 14057 crreczi 14200 absi 15259 geo2sum2 15847 bpoly2 16030 bpoly3 16031 sinhval 16129 coshval 16130 cos2bnd 16163 divalglem2 16372 m1expaddsub 19435 cnmsgnsubg 21493 psgninv 21498 ncvspi 25063 cphipval2 25148 ditg0 25761 cbvditg 25762 ang180lem2 26727 ang180lem3 26728 ang180lem4 26729 1cubrlem 26758 dcubic2 26761 atandm2 26794 efiasin 26805 asinsinlem 26808 asinsin 26809 asin1 26811 reasinsin 26813 atancj 26827 atantayl2 26855 ppiub 27122 lgseisenlem1 27293 lgseisenlem2 27294 lgsquadlem1 27298 ostth3 27556 nvpi 30603 ipidsq 30646 ipasslem10 30775 normlem1 31046 polid2i 31093 lnophmlem2 31953 archirngz 33150 cos9thpiminplylem1 33779 cos9thpiminplylem5 33783 xrge0iif1 33935 ballotlem2 34487 ditgeq123i 36204 cbvditgvw2 36244 itg2addnclem3 37674 dvasin 37705 areacirc 37714 cos2t3rdpi 42349 sin4t3rdpi 42350 cos4t3rdpi 42351 lhe4.4ex1a 44325 itgsin0pilem1 45955 stoweidlem26 46031 dirkertrigeqlem3 46105 fourierdlem103 46214 sqwvfourb 46234 fourierswlem 46235 proththd 47619 |
| Copyright terms: Public domain | W3C validator |