Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfd Structured version   Visualization version   GIF version

Theorem limsuppnfd 42918
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfd.j 𝑗𝐹
limsuppnfd.a (𝜑𝐴 ⊆ ℝ)
limsuppnfd.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfd.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
Assertion
Ref Expression
limsuppnfd (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnfd
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsuppnfd.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsuppnfd.f . 2 (𝜑𝐹:𝐴⟶ℝ*)
3 limsuppnfd.u . . 3 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 breq1 5056 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
54anbi2d 632 . . . . 5 (𝑥 = 𝑦 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
65rexbidv 3216 . . . 4 (𝑥 = 𝑦 → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
7 breq1 5056 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
87anbi1d 633 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
98rexbidv 3216 . . . . 5 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
10 nfv 1922 . . . . . . 7 𝑙(𝑖𝑗𝑦 ≤ (𝐹𝑗))
11 nfv 1922 . . . . . . . 8 𝑗 𝑖𝑙
12 nfcv 2904 . . . . . . . . 9 𝑗𝑦
13 nfcv 2904 . . . . . . . . 9 𝑗
14 limsuppnfd.j . . . . . . . . . 10 𝑗𝐹
15 nfcv 2904 . . . . . . . . . 10 𝑗𝑙
1614, 15nffv 6727 . . . . . . . . 9 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5100 . . . . . . . 8 𝑗 𝑦 ≤ (𝐹𝑙)
1811, 17nfan 1907 . . . . . . 7 𝑗(𝑖𝑙𝑦 ≤ (𝐹𝑙))
19 breq2 5057 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
20 fveq2 6717 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
2120breq2d 5065 . . . . . . . 8 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
2219, 21anbi12d 634 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
2310, 18, 22cbvrexw 3350 . . . . . 6 (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
2423a1i 11 . . . . 5 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
259, 24bitrd 282 . . . 4 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
266, 25cbvral2vw 3371 . . 3 (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
273, 26sylib 221 . 2 (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
28 eqid 2737 . 2 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
291, 2, 27, 28limsuppnfdlem 42917 1 (𝜑 → (lim sup‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wnfc 2884  wral 3061  wrex 3062  cin 3865  wss 3866   class class class wbr 5053  cmpt 5135  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  supcsup 9056  cr 10728  +∞cpnf 10864  *cxr 10866   < clt 10867  cle 10868  [,)cico 12937  lim supclsp 15031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-ico 12941  df-limsup 15032
This theorem is referenced by:  limsupub  42920  limsuppnflem  42926
  Copyright terms: Public domain W3C validator