![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnfd | Structured version Visualization version GIF version |
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuppnfd.j | ⊢ Ⅎ𝑗𝐹 |
limsuppnfd.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsuppnfd.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsuppnfd.u | ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
Ref | Expression |
---|---|
limsuppnfd | ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuppnfd.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsuppnfd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
3 | limsuppnfd.u | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) | |
4 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) | |
5 | 4 | anbi2d 629 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
6 | 5 | rexbidv 3185 | . . . 4 ⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
7 | breq1 5169 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
8 | 7 | anbi1d 630 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
9 | 8 | rexbidv 3185 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
10 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
11 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
12 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝑦 | |
13 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
14 | limsuppnfd.j | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝐹 | |
15 | nfcv 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝑙 | |
16 | 14, 15 | nffv 6932 | . . . . . . . . 9 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
17 | 12, 13, 16 | nfbr 5213 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
18 | 11, 17 | nfan 1898 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
19 | breq2 5170 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
20 | fveq2 6922 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
21 | 20 | breq2d 5178 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑙))) |
22 | 19, 21 | anbi12d 631 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
23 | 10, 18, 22 | cbvrexw 3313 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
24 | 23 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
25 | 9, 24 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
26 | 6, 25 | cbvral2vw 3247 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
27 | 3, 26 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
28 | eqid 2740 | . 2 ⊢ (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
29 | 1, 2, 27, 28 | limsuppnfdlem 45624 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnfc 2893 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 “ cima 5703 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 supcsup 9511 ℝcr 11185 +∞cpnf 11323 ℝ*cxr 11325 < clt 11326 ≤ cle 11327 [,)cico 13411 lim supclsp 15518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-ico 13415 df-limsup 15519 |
This theorem is referenced by: limsupub 45627 limsuppnflem 45633 |
Copyright terms: Public domain | W3C validator |