Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfd Structured version   Visualization version   GIF version

Theorem limsuppnfd 45673
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfd.j 𝑗𝐹
limsuppnfd.a (𝜑𝐴 ⊆ ℝ)
limsuppnfd.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfd.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
Assertion
Ref Expression
limsuppnfd (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnfd
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsuppnfd.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsuppnfd.f . 2 (𝜑𝐹:𝐴⟶ℝ*)
3 limsuppnfd.u . . 3 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 breq1 5118 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
54anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
65rexbidv 3159 . . . 4 (𝑥 = 𝑦 → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
7 breq1 5118 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
87anbi1d 631 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
98rexbidv 3159 . . . . 5 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
10 nfv 1914 . . . . . . 7 𝑙(𝑖𝑗𝑦 ≤ (𝐹𝑗))
11 nfv 1914 . . . . . . . 8 𝑗 𝑖𝑙
12 nfcv 2893 . . . . . . . . 9 𝑗𝑦
13 nfcv 2893 . . . . . . . . 9 𝑗
14 limsuppnfd.j . . . . . . . . . 10 𝑗𝐹
15 nfcv 2893 . . . . . . . . . 10 𝑗𝑙
1614, 15nffv 6875 . . . . . . . . 9 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5162 . . . . . . . 8 𝑗 𝑦 ≤ (𝐹𝑙)
1811, 17nfan 1899 . . . . . . 7 𝑗(𝑖𝑙𝑦 ≤ (𝐹𝑙))
19 breq2 5119 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
20 fveq2 6865 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
2120breq2d 5127 . . . . . . . 8 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
2219, 21anbi12d 632 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
2310, 18, 22cbvrexw 3284 . . . . . 6 (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
2423a1i 11 . . . . 5 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
259, 24bitrd 279 . . . 4 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
266, 25cbvral2vw 3221 . . 3 (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
273, 26sylib 218 . 2 (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
28 eqid 2730 . 2 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
291, 2, 27, 28limsuppnfdlem 45672 1 (𝜑 → (lim sup‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnfc 2878  wral 3046  wrex 3055  cin 3921  wss 3922   class class class wbr 5115  cmpt 5196  cima 5649  wf 6515  cfv 6519  (class class class)co 7394  supcsup 9409  cr 11085  +∞cpnf 11223  *cxr 11225   < clt 11226  cle 11227  [,)cico 13321  lim supclsp 15443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9411  df-inf 9412  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-ico 13325  df-limsup 15444
This theorem is referenced by:  limsupub  45675  limsuppnflem  45681
  Copyright terms: Public domain W3C validator