| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnfd | Structured version Visualization version GIF version | ||
| Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsuppnfd.j | ⊢ Ⅎ𝑗𝐹 |
| limsuppnfd.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limsuppnfd.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| limsuppnfd.u | ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| Ref | Expression |
|---|---|
| limsuppnfd | ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsuppnfd.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | limsuppnfd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 3 | limsuppnfd.u | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) | |
| 4 | breq1 5118 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) | |
| 5 | 4 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 6 | 5 | rexbidv 3159 | . . . 4 ⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 7 | breq1 5118 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
| 8 | 7 | anbi1d 631 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 9 | 8 | rexbidv 3159 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 10 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
| 11 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
| 12 | nfcv 2893 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝑦 | |
| 13 | nfcv 2893 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
| 14 | limsuppnfd.j | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝐹 | |
| 15 | nfcv 2893 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝑙 | |
| 16 | 14, 15 | nffv 6875 | . . . . . . . . 9 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
| 17 | 12, 13, 16 | nfbr 5162 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
| 18 | 11, 17 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
| 19 | breq2 5119 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
| 20 | fveq2 6865 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
| 21 | 20 | breq2d 5127 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑙))) |
| 22 | 19, 21 | anbi12d 632 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
| 23 | 10, 18, 22 | cbvrexw 3284 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
| 25 | 9, 24 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
| 26 | 6, 25 | cbvral2vw 3221 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
| 27 | 3, 26 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
| 28 | eqid 2730 | . 2 ⊢ (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 29 | 1, 2, 27, 28 | limsuppnfdlem 45672 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnfc 2878 ∀wral 3046 ∃wrex 3055 ∩ cin 3921 ⊆ wss 3922 class class class wbr 5115 ↦ cmpt 5196 “ cima 5649 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 supcsup 9409 ℝcr 11085 +∞cpnf 11223 ℝ*cxr 11225 < clt 11226 ≤ cle 11227 [,)cico 13321 lim supclsp 15443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-ico 13325 df-limsup 15444 |
| This theorem is referenced by: limsupub 45675 limsuppnflem 45681 |
| Copyright terms: Public domain | W3C validator |