Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuppnfd | Structured version Visualization version GIF version |
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuppnfd.j | ⊢ Ⅎ𝑗𝐹 |
limsuppnfd.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsuppnfd.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsuppnfd.u | ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
Ref | Expression |
---|---|
limsuppnfd | ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuppnfd.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsuppnfd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
3 | limsuppnfd.u | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) | |
4 | breq1 5056 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) | |
5 | 4 | anbi2d 632 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
6 | 5 | rexbidv 3216 | . . . 4 ⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
7 | breq1 5056 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
8 | 7 | anbi1d 633 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
9 | 8 | rexbidv 3216 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
10 | nfv 1922 | . . . . . . 7 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) | |
11 | nfv 1922 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
12 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝑦 | |
13 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
14 | limsuppnfd.j | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝐹 | |
15 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝑙 | |
16 | 14, 15 | nffv 6727 | . . . . . . . . 9 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
17 | 12, 13, 16 | nfbr 5100 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑙) |
18 | 11, 17 | nfan 1907 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)) |
19 | breq2 5057 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
20 | fveq2 6717 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
21 | 20 | breq2d 5065 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑦 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑙))) |
22 | 19, 21 | anbi12d 634 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
23 | 10, 18, 22 | cbvrexw 3350 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
24 | 23 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
25 | 9, 24 | bitrd 282 | . . . 4 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)) ↔ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙)))) |
26 | 6, 25 | cbvral2vw 3371 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
27 | 3, 26 | sylib 221 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 ∧ 𝑦 ≤ (𝐹‘𝑙))) |
28 | eqid 2737 | . 2 ⊢ (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
29 | 1, 2, 27, 28 | limsuppnfdlem 42917 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 Ⅎwnfc 2884 ∀wral 3061 ∃wrex 3062 ∩ cin 3865 ⊆ wss 3866 class class class wbr 5053 ↦ cmpt 5135 “ cima 5554 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 supcsup 9056 ℝcr 10728 +∞cpnf 10864 ℝ*cxr 10866 < clt 10867 ≤ cle 10868 [,)cico 12937 lim supclsp 15031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-ico 12941 df-limsup 15032 |
This theorem is referenced by: limsupub 42920 limsuppnflem 42926 |
Copyright terms: Public domain | W3C validator |