Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnfd Structured version   Visualization version   GIF version

Theorem limsuppnfd 45810
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnfd.j 𝑗𝐹
limsuppnfd.a (𝜑𝐴 ⊆ ℝ)
limsuppnfd.f (𝜑𝐹:𝐴⟶ℝ*)
limsuppnfd.u (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
Assertion
Ref Expression
limsuppnfd (𝜑 → (lim sup‘𝐹) = +∞)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsuppnfd
Dummy variables 𝑖 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsuppnfd.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsuppnfd.f . 2 (𝜑𝐹:𝐴⟶ℝ*)
3 limsuppnfd.u . . 3 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 breq1 5092 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
54anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
65rexbidv 3156 . . . 4 (𝑥 = 𝑦 → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
7 breq1 5092 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
87anbi1d 631 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
98rexbidv 3156 . . . . 5 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗))))
10 nfv 1915 . . . . . . 7 𝑙(𝑖𝑗𝑦 ≤ (𝐹𝑗))
11 nfv 1915 . . . . . . . 8 𝑗 𝑖𝑙
12 nfcv 2894 . . . . . . . . 9 𝑗𝑦
13 nfcv 2894 . . . . . . . . 9 𝑗
14 limsuppnfd.j . . . . . . . . . 10 𝑗𝐹
15 nfcv 2894 . . . . . . . . . 10 𝑗𝑙
1614, 15nffv 6832 . . . . . . . . 9 𝑗(𝐹𝑙)
1712, 13, 16nfbr 5136 . . . . . . . 8 𝑗 𝑦 ≤ (𝐹𝑙)
1811, 17nfan 1900 . . . . . . 7 𝑗(𝑖𝑙𝑦 ≤ (𝐹𝑙))
19 breq2 5093 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
20 fveq2 6822 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
2120breq2d 5101 . . . . . . . 8 (𝑗 = 𝑙 → (𝑦 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑙)))
2219, 21anbi12d 632 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
2310, 18, 22cbvrexw 3275 . . . . . 6 (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
2423a1i 11 . . . . 5 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑖𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
259, 24bitrd 279 . . . 4 (𝑘 = 𝑖 → (∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)) ↔ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙))))
266, 25cbvral2vw 3214 . . 3 (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
273, 26sylib 218 . 2 (𝜑 → ∀𝑦 ∈ ℝ ∀𝑖 ∈ ℝ ∃𝑙𝐴 (𝑖𝑙𝑦 ≤ (𝐹𝑙)))
28 eqid 2731 . 2 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
291, 2, 27, 28limsuppnfdlem 45809 1 (𝜑 → (lim sup‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnfc 2879  wral 3047  wrex 3056  cin 3896  wss 3897   class class class wbr 5089  cmpt 5170  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  cr 11005  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  [,)cico 13247  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-ico 13251  df-limsup 15378
This theorem is referenced by:  limsupub  45812  limsuppnflem  45818
  Copyright terms: Public domain W3C validator