HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3i Structured version   Visualization version   GIF version

Theorem cdj3i 32385
Description: Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3.1 𝐴S
cdj3.2 𝐵S
cdj3.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
cdj3.4 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
cdj3.5 (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
cdj3.6 (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Assertion
Ref Expression
cdj3i (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ((𝐴𝐵) = 0𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑆,𝑢   𝑣,𝑇,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3i
Dummy variables 𝑡 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3.1 . . . 4 𝐴S
2 cdj3.2 . . . 4 𝐵S
31, 2cdj3lem1 32378 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (𝐴𝐵) = 0)
4 cdj3.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem2b 32381 . . . 4 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
6 cdj3.5 . . . 4 (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
75, 6sylibr 234 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → 𝜑)
8 cdj3.4 . . . . 5 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
91, 2, 8cdj3lem3b 32384 . . . 4 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
10 cdj3.6 . . . 4 (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
119, 10sylibr 234 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → 𝜓)
123, 7, 113jca 1128 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ((𝐴𝐵) = 0𝜑𝜓))
13 breq2 5096 . . . . . . . . 9 (𝑣 = 𝑓 → (0 < 𝑣 ↔ 0 < 𝑓))
14 oveq1 7356 . . . . . . . . . . 11 (𝑣 = 𝑓 → (𝑣 · (norm𝑢)) = (𝑓 · (norm𝑢)))
1514breq2d 5104 . . . . . . . . . 10 (𝑣 = 𝑓 → ((norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
1615ralbidv 3152 . . . . . . . . 9 (𝑣 = 𝑓 → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
1713, 16anbi12d 632 . . . . . . . 8 (𝑣 = 𝑓 → ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)))))
1817cbvrexvw 3208 . . . . . . 7 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
196, 18bitri 275 . . . . . 6 (𝜑 ↔ ∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
20 breq2 5096 . . . . . . . . 9 (𝑣 = 𝑔 → (0 < 𝑣 ↔ 0 < 𝑔))
21 oveq1 7356 . . . . . . . . . . 11 (𝑣 = 𝑔 → (𝑣 · (norm𝑢)) = (𝑔 · (norm𝑢)))
2221breq2d 5104 . . . . . . . . . 10 (𝑣 = 𝑔 → ((norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2322ralbidv 3152 . . . . . . . . 9 (𝑣 = 𝑔 → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2420, 23anbi12d 632 . . . . . . . 8 (𝑣 = 𝑔 → ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
2524cbvrexvw 3208 . . . . . . 7 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2610, 25bitri 275 . . . . . 6 (𝜓 ↔ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2719, 26anbi12i 628 . . . . 5 ((𝜑𝜓) ↔ (∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
28 reeanv 3201 . . . . 5 (∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) ↔ (∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
2927, 28bitr4i 278 . . . 4 ((𝜑𝜓) ↔ ∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
30 an4 656 . . . . . 6 (((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) ↔ ((0 < 𝑓 ∧ 0 < 𝑔) ∧ (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
31 addgt0 11606 . . . . . . . . 9 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (0 < 𝑓 ∧ 0 < 𝑔)) → 0 < (𝑓 + 𝑔))
3231ex 412 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → ((0 < 𝑓 ∧ 0 < 𝑔) → 0 < (𝑓 + 𝑔)))
3332adantl 481 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((0 < 𝑓 ∧ 0 < 𝑔) → 0 < (𝑓 + 𝑔)))
341, 2shsvai 31308 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ (𝐴 + 𝐵))
35 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) = (norm‘(𝑆‘(𝑡 + ))))
36 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑢 = (𝑡 + ) → (norm𝑢) = (norm‘(𝑡 + )))
3736oveq2d 7365 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑓 · (norm𝑢)) = (𝑓 · (norm‘(𝑡 + ))))
3835, 37breq12d 5105 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ↔ (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + )))))
3938rspcv 3573 . . . . . . . . . . . 12 ((𝑡 + ) ∈ (𝐴 + 𝐵) → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) → (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + )))))
40 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑇𝑢)) = (norm‘(𝑇‘(𝑡 + ))))
4136oveq2d 7365 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑔 · (norm𝑢)) = (𝑔 · (norm‘(𝑡 + ))))
4240, 41breq12d 5105 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)) ↔ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))))
4342rspcv 3573 . . . . . . . . . . . 12 ((𝑡 + ) ∈ (𝐴 + 𝐵) → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)) → (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))))
4439, 43anim12d 609 . . . . . . . . . . 11 ((𝑡 + ) ∈ (𝐴 + 𝐵) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
4534, 44syl 17 . . . . . . . . . 10 ((𝑡𝐴𝐵) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
4645adantl 481 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
471sheli 31158 . . . . . . . . . . . . . . 15 (𝑡𝐴𝑡 ∈ ℋ)
48 normcl 31069 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℋ → (norm𝑡) ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . . 14 (𝑡𝐴 → (norm𝑡) ∈ ℝ)
502sheli 31158 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℋ)
51 normcl 31069 . . . . . . . . . . . . . . 15 ( ∈ ℋ → (norm) ∈ ℝ)
5250, 51syl 17 . . . . . . . . . . . . . 14 (𝐵 → (norm) ∈ ℝ)
5349, 52anim12i 613 . . . . . . . . . . . . 13 ((𝑡𝐴𝐵) → ((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ))
5453adantl 481 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → ((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ))
55 hvaddcl 30956 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℋ ∧ ∈ ℋ) → (𝑡 + ) ∈ ℋ)
5647, 50, 55syl2an 596 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ ℋ)
57 normcl 31069 . . . . . . . . . . . . . . 15 ((𝑡 + ) ∈ ℋ → (norm‘(𝑡 + )) ∈ ℝ)
5856, 57syl 17 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℝ)
59 remulcl 11094 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
6058, 59sylan2 593 . . . . . . . . . . . . 13 ((𝑓 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
6160adantlr 715 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
62 remulcl 11094 . . . . . . . . . . . . . 14 ((𝑔 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
6358, 62sylan2 593 . . . . . . . . . . . . 13 ((𝑔 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
6463adantll 714 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
65 le2add 11602 . . . . . . . . . . . 12 ((((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) ∧ ((𝑓 · (norm‘(𝑡 + ))) ∈ ℝ ∧ (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
6654, 61, 64, 65syl12anc 836 . . . . . . . . . . 11 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
6766adantll 714 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
681, 2, 4cdj3lem2 32379 . . . . . . . . . . . . . . . 16 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
6968fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
7069breq1d 5102 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ↔ (norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + )))))
711, 2, 8cdj3lem3 32382 . . . . . . . . . . . . . . . 16 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑡 + )) = )
7271fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (norm‘(𝑇‘(𝑡 + ))) = (norm))
7372breq1d 5102 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → ((norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))) ↔ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))))
7470, 73anbi12d 632 . . . . . . . . . . . . 13 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
75743expa 1118 . . . . . . . . . . . 12 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
7675ancoms 458 . . . . . . . . . . 11 (((𝐴𝐵) = 0 ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
7776adantlr 715 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
78 recn 11099 . . . . . . . . . . . . . 14 (𝑓 ∈ ℝ → 𝑓 ∈ ℂ)
79 recn 11099 . . . . . . . . . . . . . 14 (𝑔 ∈ ℝ → 𝑔 ∈ ℂ)
8058recnd 11143 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℂ)
81 adddir 11106 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ (norm‘(𝑡 + )) ∈ ℂ) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
8278, 79, 80, 81syl3an 1160 . . . . . . . . . . . . 13 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ (𝑡𝐴𝐵)) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
83823expa 1118 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
8483breq2d 5104 . . . . . . . . . . 11 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
8584adantll 714 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
8667, 77, 853imtr4d 294 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
8746, 86syld 47 . . . . . . . 8 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
8887ralrimdvva 3184 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
89 readdcl 11092 . . . . . . . . 9 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 + 𝑔) ∈ ℝ)
90 breq2 5096 . . . . . . . . . . . 12 (𝑣 = (𝑓 + 𝑔) → (0 < 𝑣 ↔ 0 < (𝑓 + 𝑔)))
91 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
9291oveq1d 7364 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
93 fvoveq1 7372 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
9493oveq2d 7365 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
9592, 94breq12d 5105 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
96 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑦 = → (norm𝑦) = (norm))
9796oveq2d 7365 . . . . . . . . . . . . . . 15 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
98 oveq2 7357 . . . . . . . . . . . . . . . . 17 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
9998fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
10099oveq2d 7365 . . . . . . . . . . . . . . 15 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
10197, 100breq12d 5105 . . . . . . . . . . . . . 14 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
10295, 101cbvral2vw 3211 . . . . . . . . . . . . 13 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
103 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑣 = (𝑓 + 𝑔) → (𝑣 · (norm‘(𝑡 + ))) = ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))
104103breq2d 5104 . . . . . . . . . . . . . 14 (𝑣 = (𝑓 + 𝑔) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
1051042ralbidv 3193 . . . . . . . . . . . . 13 (𝑣 = (𝑓 + 𝑔) → (∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
106102, 105bitrid 283 . . . . . . . . . . . 12 (𝑣 = (𝑓 + 𝑔) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
10790, 106anbi12d 632 . . . . . . . . . . 11 (𝑣 = (𝑓 + 𝑔) → ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ (0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))))
108107rspcev 3577 . . . . . . . . . 10 (((𝑓 + 𝑔) ∈ ℝ ∧ (0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
109108ex 412 . . . . . . . . 9 ((𝑓 + 𝑔) ∈ ℝ → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11089, 109syl 17 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
111110adantl 481 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11233, 88, 111syl2and 608 . . . . . 6 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (((0 < 𝑓 ∧ 0 < 𝑔) ∧ (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11330, 112biimtrid 242 . . . . 5 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
114113rexlimdvva 3186 . . . 4 ((𝐴𝐵) = 0 → (∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11529, 114biimtrid 242 . . 3 ((𝐴𝐵) = 0 → ((𝜑𝜓) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
1161153impib 1116 . 2 (((𝐴𝐵) = 0𝜑𝜓) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
11712, 116impbii 209 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ((𝐴𝐵) = 0𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3902   class class class wbr 5092  cmpt 5173  cfv 6482  crio 7305  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  chba 30863   + cva 30864  normcno 30867   S csh 30872   + cph 30875  0c0h 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30437  df-ablo 30489  df-hnorm 30912  df-hvsub 30915  df-sh 31151  df-ch0 31197  df-shs 31252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator