HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3i Structured version   Visualization version   GIF version

Theorem cdj3i 30220
Description: Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3.1 𝐴S
cdj3.2 𝐵S
cdj3.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
cdj3.4 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
cdj3.5 (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
cdj3.6 (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Assertion
Ref Expression
cdj3i (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ((𝐴𝐵) = 0𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑆,𝑢   𝑣,𝑇,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3i
Dummy variables 𝑡 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3.1 . . . 4 𝐴S
2 cdj3.2 . . . 4 𝐵S
31, 2cdj3lem1 30213 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (𝐴𝐵) = 0)
4 cdj3.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem2b 30216 . . . 4 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
6 cdj3.5 . . . 4 (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
75, 6sylibr 237 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → 𝜑)
8 cdj3.4 . . . . 5 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
91, 2, 8cdj3lem3b 30219 . . . 4 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
10 cdj3.6 . . . 4 (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
119, 10sylibr 237 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → 𝜓)
123, 7, 113jca 1125 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ((𝐴𝐵) = 0𝜑𝜓))
13 breq2 5056 . . . . . . . . 9 (𝑣 = 𝑓 → (0 < 𝑣 ↔ 0 < 𝑓))
14 oveq1 7152 . . . . . . . . . . 11 (𝑣 = 𝑓 → (𝑣 · (norm𝑢)) = (𝑓 · (norm𝑢)))
1514breq2d 5064 . . . . . . . . . 10 (𝑣 = 𝑓 → ((norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
1615ralbidv 3192 . . . . . . . . 9 (𝑣 = 𝑓 → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
1713, 16anbi12d 633 . . . . . . . 8 (𝑣 = 𝑓 → ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)))))
1817cbvrexvw 3436 . . . . . . 7 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
196, 18bitri 278 . . . . . 6 (𝜑 ↔ ∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
20 breq2 5056 . . . . . . . . 9 (𝑣 = 𝑔 → (0 < 𝑣 ↔ 0 < 𝑔))
21 oveq1 7152 . . . . . . . . . . 11 (𝑣 = 𝑔 → (𝑣 · (norm𝑢)) = (𝑔 · (norm𝑢)))
2221breq2d 5064 . . . . . . . . . 10 (𝑣 = 𝑔 → ((norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2322ralbidv 3192 . . . . . . . . 9 (𝑣 = 𝑔 → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2420, 23anbi12d 633 . . . . . . . 8 (𝑣 = 𝑔 → ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
2524cbvrexvw 3436 . . . . . . 7 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2610, 25bitri 278 . . . . . 6 (𝜓 ↔ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2719, 26anbi12i 629 . . . . 5 ((𝜑𝜓) ↔ (∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
28 reeanv 3359 . . . . 5 (∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) ↔ (∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
2927, 28bitr4i 281 . . . 4 ((𝜑𝜓) ↔ ∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
30 an4 655 . . . . . 6 (((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) ↔ ((0 < 𝑓 ∧ 0 < 𝑔) ∧ (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
31 addgt0 11118 . . . . . . . . 9 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (0 < 𝑓 ∧ 0 < 𝑔)) → 0 < (𝑓 + 𝑔))
3231ex 416 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → ((0 < 𝑓 ∧ 0 < 𝑔) → 0 < (𝑓 + 𝑔)))
3332adantl 485 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((0 < 𝑓 ∧ 0 < 𝑔) → 0 < (𝑓 + 𝑔)))
341, 2shsvai 29143 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ (𝐴 + 𝐵))
35 2fveq3 6663 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) = (norm‘(𝑆‘(𝑡 + ))))
36 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑢 = (𝑡 + ) → (norm𝑢) = (norm‘(𝑡 + )))
3736oveq2d 7161 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑓 · (norm𝑢)) = (𝑓 · (norm‘(𝑡 + ))))
3835, 37breq12d 5065 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ↔ (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + )))))
3938rspcv 3604 . . . . . . . . . . . 12 ((𝑡 + ) ∈ (𝐴 + 𝐵) → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) → (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + )))))
40 2fveq3 6663 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑇𝑢)) = (norm‘(𝑇‘(𝑡 + ))))
4136oveq2d 7161 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑔 · (norm𝑢)) = (𝑔 · (norm‘(𝑡 + ))))
4240, 41breq12d 5065 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)) ↔ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))))
4342rspcv 3604 . . . . . . . . . . . 12 ((𝑡 + ) ∈ (𝐴 + 𝐵) → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)) → (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))))
4439, 43anim12d 611 . . . . . . . . . . 11 ((𝑡 + ) ∈ (𝐴 + 𝐵) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
4534, 44syl 17 . . . . . . . . . 10 ((𝑡𝐴𝐵) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
4645adantl 485 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
471sheli 28993 . . . . . . . . . . . . . . 15 (𝑡𝐴𝑡 ∈ ℋ)
48 normcl 28904 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℋ → (norm𝑡) ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . . 14 (𝑡𝐴 → (norm𝑡) ∈ ℝ)
502sheli 28993 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℋ)
51 normcl 28904 . . . . . . . . . . . . . . 15 ( ∈ ℋ → (norm) ∈ ℝ)
5250, 51syl 17 . . . . . . . . . . . . . 14 (𝐵 → (norm) ∈ ℝ)
5349, 52anim12i 615 . . . . . . . . . . . . 13 ((𝑡𝐴𝐵) → ((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ))
5453adantl 485 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → ((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ))
55 hvaddcl 28791 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℋ ∧ ∈ ℋ) → (𝑡 + ) ∈ ℋ)
5647, 50, 55syl2an 598 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ ℋ)
57 normcl 28904 . . . . . . . . . . . . . . 15 ((𝑡 + ) ∈ ℋ → (norm‘(𝑡 + )) ∈ ℝ)
5856, 57syl 17 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℝ)
59 remulcl 10614 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
6058, 59sylan2 595 . . . . . . . . . . . . 13 ((𝑓 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
6160adantlr 714 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
62 remulcl 10614 . . . . . . . . . . . . . 14 ((𝑔 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
6358, 62sylan2 595 . . . . . . . . . . . . 13 ((𝑔 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
6463adantll 713 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
65 le2add 11114 . . . . . . . . . . . 12 ((((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) ∧ ((𝑓 · (norm‘(𝑡 + ))) ∈ ℝ ∧ (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
6654, 61, 64, 65syl12anc 835 . . . . . . . . . . 11 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
6766adantll 713 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
681, 2, 4cdj3lem2 30214 . . . . . . . . . . . . . . . 16 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
6968fveq2d 6662 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
7069breq1d 5062 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ↔ (norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + )))))
711, 2, 8cdj3lem3 30217 . . . . . . . . . . . . . . . 16 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑡 + )) = )
7271fveq2d 6662 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (norm‘(𝑇‘(𝑡 + ))) = (norm))
7372breq1d 5062 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → ((norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))) ↔ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))))
7470, 73anbi12d 633 . . . . . . . . . . . . 13 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
75743expa 1115 . . . . . . . . . . . 12 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
7675ancoms 462 . . . . . . . . . . 11 (((𝐴𝐵) = 0 ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
7776adantlr 714 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
78 recn 10619 . . . . . . . . . . . . . 14 (𝑓 ∈ ℝ → 𝑓 ∈ ℂ)
79 recn 10619 . . . . . . . . . . . . . 14 (𝑔 ∈ ℝ → 𝑔 ∈ ℂ)
8058recnd 10661 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℂ)
81 adddir 10624 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ (norm‘(𝑡 + )) ∈ ℂ) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
8278, 79, 80, 81syl3an 1157 . . . . . . . . . . . . 13 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ (𝑡𝐴𝐵)) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
83823expa 1115 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
8483breq2d 5064 . . . . . . . . . . 11 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
8584adantll 713 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
8667, 77, 853imtr4d 297 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
8746, 86syld 47 . . . . . . . 8 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
8887ralrimdvva 3189 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
89 readdcl 10612 . . . . . . . . 9 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 + 𝑔) ∈ ℝ)
90 breq2 5056 . . . . . . . . . . . 12 (𝑣 = (𝑓 + 𝑔) → (0 < 𝑣 ↔ 0 < (𝑓 + 𝑔)))
91 fveq2 6658 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
9291oveq1d 7160 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
93 fvoveq1 7168 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
9493oveq2d 7161 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
9592, 94breq12d 5065 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
96 fveq2 6658 . . . . . . . . . . . . . . . 16 (𝑦 = → (norm𝑦) = (norm))
9796oveq2d 7161 . . . . . . . . . . . . . . 15 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
98 oveq2 7153 . . . . . . . . . . . . . . . . 17 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
9998fveq2d 6662 . . . . . . . . . . . . . . . 16 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
10099oveq2d 7161 . . . . . . . . . . . . . . 15 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
10197, 100breq12d 5065 . . . . . . . . . . . . . 14 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
10295, 101cbvral2vw 3447 . . . . . . . . . . . . 13 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
103 oveq1 7152 . . . . . . . . . . . . . . 15 (𝑣 = (𝑓 + 𝑔) → (𝑣 · (norm‘(𝑡 + ))) = ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))
104103breq2d 5064 . . . . . . . . . . . . . 14 (𝑣 = (𝑓 + 𝑔) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
1051042ralbidv 3194 . . . . . . . . . . . . 13 (𝑣 = (𝑓 + 𝑔) → (∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
106102, 105syl5bb 286 . . . . . . . . . . . 12 (𝑣 = (𝑓 + 𝑔) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
10790, 106anbi12d 633 . . . . . . . . . . 11 (𝑣 = (𝑓 + 𝑔) → ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ (0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))))
108107rspcev 3609 . . . . . . . . . 10 (((𝑓 + 𝑔) ∈ ℝ ∧ (0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
109108ex 416 . . . . . . . . 9 ((𝑓 + 𝑔) ∈ ℝ → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11089, 109syl 17 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
111110adantl 485 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11233, 88, 111syl2and 610 . . . . . 6 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (((0 < 𝑓 ∧ 0 < 𝑔) ∧ (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11330, 112syl5bi 245 . . . . 5 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
114113rexlimdvva 3287 . . . 4 ((𝐴𝐵) = 0 → (∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11529, 114syl5bi 245 . . 3 ((𝐴𝐵) = 0 → ((𝜑𝜓) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
1161153impib 1113 . 2 (((𝐴𝐵) = 0𝜑𝜓) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
11712, 116impbii 212 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ((𝐴𝐵) = 0𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  wrex 3134  cin 3918   class class class wbr 5052  cmpt 5132  cfv 6343  crio 7102  (class class class)co 7145  cc 10527  cr 10528  0cc0 10529   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  chba 28698   + cva 28699  normcno 28702   S csh 28707   + cph 28710  0c0h 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-sup 8897  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-rp 12383  df-seq 13370  df-exp 13431  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-grpo 28272  df-ablo 28324  df-hnorm 28747  df-hvsub 28750  df-sh 28986  df-ch0 29032  df-shs 29087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator