HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3i Structured version   Visualization version   GIF version

Theorem cdj3i 31383
Description: Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3.1 𝐴S
cdj3.2 𝐵S
cdj3.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
cdj3.4 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
cdj3.5 (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
cdj3.6 (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Assertion
Ref Expression
cdj3i (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ((𝐴𝐵) = 0𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑆,𝑢   𝑣,𝑇,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3i
Dummy variables 𝑡 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3.1 . . . 4 𝐴S
2 cdj3.2 . . . 4 𝐵S
31, 2cdj3lem1 31376 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → (𝐴𝐵) = 0)
4 cdj3.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem2b 31379 . . . 4 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
6 cdj3.5 . . . 4 (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))))
75, 6sylibr 233 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → 𝜑)
8 cdj3.4 . . . . 5 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
91, 2, 8cdj3lem3b 31382 . . . 4 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
10 cdj3.6 . . . 4 (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
119, 10sylibr 233 . . 3 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → 𝜓)
123, 7, 113jca 1128 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ((𝐴𝐵) = 0𝜑𝜓))
13 breq2 5109 . . . . . . . . 9 (𝑣 = 𝑓 → (0 < 𝑣 ↔ 0 < 𝑓))
14 oveq1 7364 . . . . . . . . . . 11 (𝑣 = 𝑓 → (𝑣 · (norm𝑢)) = (𝑓 · (norm𝑢)))
1514breq2d 5117 . . . . . . . . . 10 (𝑣 = 𝑓 → ((norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
1615ralbidv 3174 . . . . . . . . 9 (𝑣 = 𝑓 → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
1713, 16anbi12d 631 . . . . . . . 8 (𝑣 = 𝑓 → ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)))))
1817cbvrexvw 3226 . . . . . . 7 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
196, 18bitri 274 . . . . . 6 (𝜑 ↔ ∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))))
20 breq2 5109 . . . . . . . . 9 (𝑣 = 𝑔 → (0 < 𝑣 ↔ 0 < 𝑔))
21 oveq1 7364 . . . . . . . . . . 11 (𝑣 = 𝑔 → (𝑣 · (norm𝑢)) = (𝑔 · (norm𝑢)))
2221breq2d 5117 . . . . . . . . . 10 (𝑣 = 𝑔 → ((norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ (norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2322ralbidv 3174 . . . . . . . . 9 (𝑣 = 𝑔 → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2420, 23anbi12d 631 . . . . . . . 8 (𝑣 = 𝑔 → ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
2524cbvrexvw 3226 . . . . . . 7 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2610, 25bitri 274 . . . . . 6 (𝜓 ↔ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))))
2719, 26anbi12i 627 . . . . 5 ((𝜑𝜓) ↔ (∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
28 reeanv 3217 . . . . 5 (∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) ↔ (∃𝑓 ∈ ℝ (0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ ∃𝑔 ∈ ℝ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
2927, 28bitr4i 277 . . . 4 ((𝜑𝜓) ↔ ∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
30 an4 654 . . . . . 6 (((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) ↔ ((0 < 𝑓 ∧ 0 < 𝑔) ∧ (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))))
31 addgt0 11641 . . . . . . . . 9 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (0 < 𝑓 ∧ 0 < 𝑔)) → 0 < (𝑓 + 𝑔))
3231ex 413 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → ((0 < 𝑓 ∧ 0 < 𝑔) → 0 < (𝑓 + 𝑔)))
3332adantl 482 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((0 < 𝑓 ∧ 0 < 𝑔) → 0 < (𝑓 + 𝑔)))
341, 2shsvai 30306 . . . . . . . . . . 11 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ (𝐴 + 𝐵))
35 2fveq3 6847 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑆𝑢)) = (norm‘(𝑆‘(𝑡 + ))))
36 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑢 = (𝑡 + ) → (norm𝑢) = (norm‘(𝑡 + )))
3736oveq2d 7373 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑓 · (norm𝑢)) = (𝑓 · (norm‘(𝑡 + ))))
3835, 37breq12d 5118 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ↔ (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + )))))
3938rspcv 3577 . . . . . . . . . . . 12 ((𝑡 + ) ∈ (𝐴 + 𝐵) → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) → (norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + )))))
40 2fveq3 6847 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (norm‘(𝑇𝑢)) = (norm‘(𝑇‘(𝑡 + ))))
4136oveq2d 7373 . . . . . . . . . . . . . 14 (𝑢 = (𝑡 + ) → (𝑔 · (norm𝑢)) = (𝑔 · (norm‘(𝑡 + ))))
4240, 41breq12d 5118 . . . . . . . . . . . . 13 (𝑢 = (𝑡 + ) → ((norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)) ↔ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))))
4342rspcv 3577 . . . . . . . . . . . 12 ((𝑡 + ) ∈ (𝐴 + 𝐵) → (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)) → (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))))
4439, 43anim12d 609 . . . . . . . . . . 11 ((𝑡 + ) ∈ (𝐴 + 𝐵) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
4534, 44syl 17 . . . . . . . . . 10 ((𝑡𝐴𝐵) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
4645adantl 482 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))))))
471sheli 30156 . . . . . . . . . . . . . . 15 (𝑡𝐴𝑡 ∈ ℋ)
48 normcl 30067 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℋ → (norm𝑡) ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . . 14 (𝑡𝐴 → (norm𝑡) ∈ ℝ)
502sheli 30156 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℋ)
51 normcl 30067 . . . . . . . . . . . . . . 15 ( ∈ ℋ → (norm) ∈ ℝ)
5250, 51syl 17 . . . . . . . . . . . . . 14 (𝐵 → (norm) ∈ ℝ)
5349, 52anim12i 613 . . . . . . . . . . . . 13 ((𝑡𝐴𝐵) → ((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ))
5453adantl 482 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → ((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ))
55 hvaddcl 29954 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℋ ∧ ∈ ℋ) → (𝑡 + ) ∈ ℋ)
5647, 50, 55syl2an 596 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵) → (𝑡 + ) ∈ ℋ)
57 normcl 30067 . . . . . . . . . . . . . . 15 ((𝑡 + ) ∈ ℋ → (norm‘(𝑡 + )) ∈ ℝ)
5856, 57syl 17 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℝ)
59 remulcl 11136 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
6058, 59sylan2 593 . . . . . . . . . . . . 13 ((𝑓 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
6160adantlr 713 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (𝑓 · (norm‘(𝑡 + ))) ∈ ℝ)
62 remulcl 11136 . . . . . . . . . . . . . 14 ((𝑔 ∈ ℝ ∧ (norm‘(𝑡 + )) ∈ ℝ) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
6358, 62sylan2 593 . . . . . . . . . . . . 13 ((𝑔 ∈ ℝ ∧ (𝑡𝐴𝐵)) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
6463adantll 712 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)
65 le2add 11637 . . . . . . . . . . . 12 ((((norm𝑡) ∈ ℝ ∧ (norm) ∈ ℝ) ∧ ((𝑓 · (norm‘(𝑡 + ))) ∈ ℝ ∧ (𝑔 · (norm‘(𝑡 + ))) ∈ ℝ)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
6654, 61, 64, 65syl12anc 835 . . . . . . . . . . 11 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
6766adantll 712 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
681, 2, 4cdj3lem2 31377 . . . . . . . . . . . . . . . 16 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑡 + )) = 𝑡)
6968fveq2d 6846 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (norm‘(𝑆‘(𝑡 + ))) = (norm𝑡))
7069breq1d 5115 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → ((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ↔ (norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + )))))
711, 2, 8cdj3lem3 31380 . . . . . . . . . . . . . . . 16 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑡 + )) = )
7271fveq2d 6846 . . . . . . . . . . . . . . 15 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (norm‘(𝑇‘(𝑡 + ))) = (norm))
7372breq1d 5115 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → ((norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + ))) ↔ (norm) ≤ (𝑔 · (norm‘(𝑡 + )))))
7470, 73anbi12d 631 . . . . . . . . . . . . 13 ((𝑡𝐴𝐵 ∧ (𝐴𝐵) = 0) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
75743expa 1118 . . . . . . . . . . . 12 (((𝑡𝐴𝐵) ∧ (𝐴𝐵) = 0) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
7675ancoms 459 . . . . . . . . . . 11 (((𝐴𝐵) = 0 ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
7776adantlr 713 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) ↔ ((norm𝑡) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm) ≤ (𝑔 · (norm‘(𝑡 + ))))))
78 recn 11141 . . . . . . . . . . . . . 14 (𝑓 ∈ ℝ → 𝑓 ∈ ℂ)
79 recn 11141 . . . . . . . . . . . . . 14 (𝑔 ∈ ℝ → 𝑔 ∈ ℂ)
8058recnd 11183 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐵) → (norm‘(𝑡 + )) ∈ ℂ)
81 adddir 11146 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ ∧ (norm‘(𝑡 + )) ∈ ℂ) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
8278, 79, 80, 81syl3an 1160 . . . . . . . . . . . . 13 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ ∧ (𝑡𝐴𝐵)) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
83823expa 1118 . . . . . . . . . . . 12 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) = ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + )))))
8483breq2d 5117 . . . . . . . . . . 11 (((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
8584adantll 712 . . . . . . . . . 10 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 · (norm‘(𝑡 + ))) + (𝑔 · (norm‘(𝑡 + ))))))
8667, 77, 853imtr4d 293 . . . . . . . . 9 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → (((norm‘(𝑆‘(𝑡 + ))) ≤ (𝑓 · (norm‘(𝑡 + ))) ∧ (norm‘(𝑇‘(𝑡 + ))) ≤ (𝑔 · (norm‘(𝑡 + )))) → ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
8746, 86syld 47 . . . . . . . 8 ((((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) ∧ (𝑡𝐴𝐵)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
8887ralrimdvva 3203 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢))) → ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
89 readdcl 11134 . . . . . . . . 9 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 + 𝑔) ∈ ℝ)
90 breq2 5109 . . . . . . . . . . . 12 (𝑣 = (𝑓 + 𝑔) → (0 < 𝑣 ↔ 0 < (𝑓 + 𝑔)))
91 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
9291oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
93 fvoveq1 7380 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
9493oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
9592, 94breq12d 5118 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
96 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑦 = → (norm𝑦) = (norm))
9796oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
98 oveq2 7365 . . . . . . . . . . . . . . . . 17 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
9998fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
10099oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
10197, 100breq12d 5118 . . . . . . . . . . . . . 14 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
10295, 101cbvral2vw 3227 . . . . . . . . . . . . 13 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
103 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑣 = (𝑓 + 𝑔) → (𝑣 · (norm‘(𝑡 + ))) = ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))
104103breq2d 5117 . . . . . . . . . . . . . 14 (𝑣 = (𝑓 + 𝑔) → (((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
1051042ralbidv 3212 . . . . . . . . . . . . 13 (𝑣 = (𝑓 + 𝑔) → (∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
106102, 105bitrid 282 . . . . . . . . . . . 12 (𝑣 = (𝑓 + 𝑔) → (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))))
10790, 106anbi12d 631 . . . . . . . . . . 11 (𝑣 = (𝑓 + 𝑔) → ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ (0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))))
108107rspcev 3581 . . . . . . . . . 10 (((𝑓 + 𝑔) ∈ ℝ ∧ (0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + ))))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
109108ex 413 . . . . . . . . 9 ((𝑓 + 𝑔) ∈ ℝ → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11089, 109syl 17 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
111110adantl 482 . . . . . . 7 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → ((0 < (𝑓 + 𝑔) ∧ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ ((𝑓 + 𝑔) · (norm‘(𝑡 + )))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11233, 88, 111syl2and 608 . . . . . 6 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (((0 < 𝑓 ∧ 0 < 𝑔) ∧ (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢)) ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11330, 112biimtrid 241 . . . . 5 (((𝐴𝐵) = 0 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
114113rexlimdvva 3205 . . . 4 ((𝐴𝐵) = 0 → (∃𝑓 ∈ ℝ ∃𝑔 ∈ ℝ ((0 < 𝑓 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑆𝑢)) ≤ (𝑓 · (norm𝑢))) ∧ (0 < 𝑔 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑔 · (norm𝑢)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
11529, 114biimtrid 241 . . 3 ((𝐴𝐵) = 0 → ((𝜑𝜓) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))))
1161153impib 1116 . 2 (((𝐴𝐵) = 0𝜑𝜓) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
11712, 116impbii 208 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ((𝐴𝐵) = 0𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cin 3909   class class class wbr 5105  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  chba 29861   + cva 29862  normcno 29865   S csh 29870   + cph 29873  0c0h 29877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-grpo 29435  df-ablo 29487  df-hnorm 29910  df-hvsub 29913  df-sh 30149  df-ch0 30195  df-shs 30250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator