Step | Hyp | Ref
| Expression |
1 | | mplcoe5.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
2 | | mplcoe1.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
3 | | mplcoe1.d |
. . . . . . . . . . 11
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
4 | 3 | psrbag 21120 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑊 → (𝑌 ∈ 𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin))) |
5 | 2, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ 𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin))) |
6 | 1, 5 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin)) |
7 | 6 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → 𝑌:𝐼⟶ℕ0) |
8 | 7 | feqmptd 6837 |
. . . . . 6
⊢ (𝜑 → 𝑌 = (𝑖 ∈ 𝐼 ↦ (𝑌‘𝑖))) |
9 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑖 ∈ (◡𝑌 “ ℕ) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
10 | 9 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ (◡𝑌 “ ℕ)) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
11 | | eldif 3897 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ)) ↔ (𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ))) |
12 | | frnnn0supp 12289 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑌:𝐼⟶ℕ0) → (𝑌 supp 0) = (◡𝑌 “ ℕ)) |
13 | 2, 7, 12 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑌 supp 0) = (◡𝑌 “ ℕ)) |
14 | | eqimss 3977 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 supp 0) = (◡𝑌 “ ℕ) → (𝑌 supp 0) ⊆ (◡𝑌 “ ℕ)) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑌 supp 0) ⊆ (◡𝑌 “ ℕ)) |
16 | | c0ex 10969 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
17 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
V) |
18 | 7, 15, 2, 17 | suppssr 8012 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑌‘𝑖) = 0) |
19 | 18 | ifeq2d 4479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), (𝑌‘𝑖)) = if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) |
20 | | ifid 4499 |
. . . . . . . . . . 11
⊢ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), (𝑌‘𝑖)) = (𝑌‘𝑖) |
21 | 19, 20 | eqtr3di 2793 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
22 | 11, 21 | sylan2br 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
23 | 22 | anassrs 468 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ)) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
24 | 10, 23 | pm2.61dan 810 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
25 | 24 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ (𝑌‘𝑖))) |
26 | 8, 25 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → 𝑌 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0))) |
27 | 26 | eqeq2d 2749 |
. . . 4
⊢ (𝜑 → (𝑦 = 𝑌 ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)))) |
28 | 27 | ifbid 4482 |
. . 3
⊢ (𝜑 → if(𝑦 = 𝑌, 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) |
29 | 28 | mpteq2dv 5176 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 ))) |
30 | | cnvimass 5989 |
. . . . 5
⊢ (◡𝑌 “ ℕ) ⊆ dom 𝑌 |
31 | 30, 7 | fssdm 6620 |
. . . 4
⊢ (𝜑 → (◡𝑌 “ ℕ) ⊆ 𝐼) |
32 | 6 | simprd 496 |
. . . . 5
⊢ (𝜑 → (◡𝑌 “ ℕ) ∈
Fin) |
33 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
34 | | noel 4264 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑖 ∈
∅ |
35 | | eleq2 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ∅)) |
36 | 34, 35 | mtbiri 327 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = ∅ → ¬ 𝑖 ∈ 𝑤) |
37 | 36 | iffalsed 4470 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = ∅ → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = 0) |
38 | 37 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ 0)) |
39 | | fconstmpt 5649 |
. . . . . . . . . . . . 13
⊢ (𝐼 × {0}) = (𝑖 ∈ 𝐼 ↦ 0) |
40 | 38, 39 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝐼 × {0})) |
41 | 40 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝐼 × {0}))) |
42 | 41 | ifbid 4482 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 )) |
43 | 42 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
44 | | mpteq1 5167 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ ∅ ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
45 | | mpt0 6575 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ∅ ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = ∅ |
46 | 44, 45 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = ∅) |
47 | 46 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg
∅)) |
48 | | mplcoe2.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (mulGrp‘𝑃) |
49 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(1r‘𝑃) = (1r‘𝑃) |
50 | 48, 49 | ringidval 19739 |
. . . . . . . . . . 11
⊢
(1r‘𝑃) = (0g‘𝐺) |
51 | 50 | gsum0 18368 |
. . . . . . . . . 10
⊢ (𝐺 Σg
∅) = (1r‘𝑃) |
52 | 47, 51 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (1r‘𝑃)) |
53 | 43, 52 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))) |
54 | 33, 53 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃)))) |
55 | 54 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))))) |
56 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐼 ↔ 𝑥 ⊆ 𝐼)) |
57 | | eleq2 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ 𝑥)) |
58 | 57 | ifbid 4482 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
59 | 58 | mpteq2dv 5176 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0))) |
60 | 59 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)))) |
61 | 60 | ifbid 4482 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) |
62 | 61 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 ))) |
63 | | mpteq1 5167 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
64 | 63 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
65 | 62, 64 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
66 | 56, 65 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
67 | 66 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
68 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤 ⊆ 𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) |
69 | | eleq2 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ (𝑥 ∪ {𝑧}))) |
70 | 69 | ifbid 4482 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
71 | 70 | mpteq2dv 5176 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
72 | 71 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)))) |
73 | 72 | ifbid 4482 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) |
74 | 73 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 ))) |
75 | | mpteq1 5167 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
76 | 75 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
77 | 74, 76 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
78 | 68, 77 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
79 | 78 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
80 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑤 ⊆ 𝐼 ↔ (◡𝑌 “ ℕ) ⊆ 𝐼)) |
81 | | eleq2 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ (◡𝑌 “ ℕ))) |
82 | 81 | ifbid 4482 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (◡𝑌 “ ℕ) → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) |
83 | 82 | mpteq2dv 5176 |
. . . . . . . . . . . 12
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0))) |
84 | 83 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)))) |
85 | 84 | ifbid 4482 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝑌 “ ℕ) → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) |
86 | 85 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 ))) |
87 | | mpteq1 5167 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
88 | 87 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
89 | 86, 88 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
90 | 80, 89 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
91 | 90 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
92 | | mplcoe1.p |
. . . . . . . . 9
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
93 | | mplcoe1.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
94 | | mplcoe1.o |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
95 | | mplcoe5.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
96 | 92, 3, 93, 94, 49, 2, 95 | mpl1 21216 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑃) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
97 | 96, 49 | eqtr3di 2793 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃)) |
98 | 97 | a1d 25 |
. . . . . 6
⊢ (𝜑 → (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))) |
99 | | ssun1 4106 |
. . . . . . . . . . 11
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
100 | | sstr2 3928 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼)) |
101 | 99, 100 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼) |
102 | 101 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
103 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
104 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑃) =
(Base‘𝑃) |
105 | 2 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ 𝑊) |
106 | 95 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ Ring) |
107 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌:𝐼⟶ℕ0) |
108 | 107 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (𝑌‘𝑖) ∈
ℕ0) |
109 | | 0nn0 12248 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℕ0 |
110 | | ifcl 4504 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑌‘𝑖) ∈ ℕ0 ∧ 0 ∈
ℕ0) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
111 | 108, 109,
110 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
112 | 111 | fmpttd 6989 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0) |
113 | | frnnn0supp 12289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) = (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ)) |
114 | 105, 112,
113 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) = (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ)) |
115 | | simprll 776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin) |
116 | | eldifn 4062 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (𝐼 ∖ 𝑥) → ¬ 𝑖 ∈ 𝑥) |
117 | 116 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼 ∖ 𝑥)) → ¬ 𝑖 ∈ 𝑥) |
118 | 117 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼 ∖ 𝑥)) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) = 0) |
119 | 118, 105 | suppss2 8016 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ⊆ 𝑥) |
120 | 115, 119 | ssfid 9042 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ∈ Fin) |
121 | 114, 120 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin) |
122 | 3 | psrbag 21120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ 𝑊 → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷 ↔ ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0 ∧ (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin))) |
123 | 105, 122 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷 ↔ ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0 ∧ (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin))) |
124 | 112, 121,
123 | mpbir2and 710 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷) |
125 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) = (.r‘𝑃) |
126 | | ssun2 4107 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑧} ⊆ (𝑥 ∪ {𝑧}) |
127 | | simprr 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑥 ∪ {𝑧}) ⊆ 𝐼) |
128 | 126, 127 | sstrid 3932 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → {𝑧} ⊆ 𝐼) |
129 | | vex 3436 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑧 ∈ V |
130 | 129 | snss 4719 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐼 ↔ {𝑧} ⊆ 𝐼) |
131 | 128, 130 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧 ∈ 𝐼) |
132 | 107, 131 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑌‘𝑧) ∈
ℕ0) |
133 | 3 | snifpsrbag 21125 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑌‘𝑧) ∈ ℕ0) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) ∈ 𝐷) |
134 | 105, 132,
133 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) ∈ 𝐷) |
135 | 92, 104, 93, 94, 3, 105, 106, 124, 125, 134 | mplmonmul 21237 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 ))) |
136 | | mplcoe2.m |
. . . . . . . . . . . . . . . 16
⊢ ↑ =
(.g‘𝐺) |
137 | | mplcoe2.v |
. . . . . . . . . . . . . . . 16
⊢ 𝑉 = (𝐼 mVar 𝑅) |
138 | 92, 3, 93, 94, 105, 48, 136, 137, 106, 131, 132 | mplcoe3 21239 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 )) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
139 | 138 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 ))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
140 | 132 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
141 | | ifcl 4504 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑌‘𝑧) ∈ ℕ0 ∧ 0 ∈
ℕ0) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) ∈
ℕ0) |
142 | 140, 109,
141 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) ∈
ℕ0) |
143 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0))) |
144 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) |
145 | 105, 111,
142, 143, 144 | offval2 7553 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)))) |
146 | 108 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) ∈
ℕ0) |
147 | 146 | nn0cnd 12295 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) ∈ ℂ) |
148 | 147 | addid2d 11176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (0 + (𝑌‘𝑖)) = (𝑌‘𝑖)) |
149 | | elsni 4578 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ {𝑧} → 𝑖 = 𝑧) |
150 | 149 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 = 𝑧) |
151 | | simprlr 777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ¬ 𝑧 ∈ 𝑥) |
152 | 151 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑧 ∈ 𝑥) |
153 | 150, 152 | eqneltrd 2858 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ 𝑥) |
154 | 153 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) = 0) |
155 | 150 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = (𝑌‘𝑧)) |
156 | 150 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) = (𝑌‘𝑧)) |
157 | 155, 156 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = (𝑌‘𝑖)) |
158 | 154, 157 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (0 + (𝑌‘𝑖))) |
159 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ {𝑧}) |
160 | 126, 159 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
161 | 160 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
162 | 148, 158,
161 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
163 | 111 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
164 | 163 | nn0cnd 12295 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈ ℂ) |
165 | 164 | addid1d 11175 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
166 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ {𝑧}) |
167 | | velsn 4577 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧) |
168 | 166, 167 | sylnib 328 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 = 𝑧) |
169 | 168 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = 0) |
170 | 169 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + 0)) |
171 | | elun 4083 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ 𝑥 ∨ 𝑖 ∈ {𝑧})) |
172 | | orcom 867 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ 𝑥 ∨ 𝑖 ∈ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥)) |
173 | 171, 172 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥)) |
174 | | biorf 934 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑖 ∈ {𝑧} → (𝑖 ∈ 𝑥 ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥))) |
175 | 173, 174 | bitr4id 290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑖 ∈ {𝑧} → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖 ∈ 𝑥)) |
176 | 175 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖 ∈ 𝑥)) |
177 | 176 | ifbid 4482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
178 | 165, 170,
177 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
179 | 162, 178 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
180 | 179 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
181 | 145, 180 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
182 | 181 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)))) |
183 | 182 | ifbid 4482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) |
184 | 183 | mpteq2dv 5176 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 ))) |
185 | 135, 139,
184 | 3eqtr3rd 2787 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
186 | 48, 104 | mgpbas 19726 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑃) =
(Base‘𝐺) |
187 | 48, 125 | mgpplusg 19724 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑃) = (+g‘𝐺) |
188 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
189 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) |
190 | 92 | mplring 21224 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
191 | 2, 95, 190 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ Ring) |
192 | 48 | ringmgp 19789 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) |
193 | 191, 192 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ Mnd) |
194 | 193 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐺 ∈ Mnd) |
195 | 1 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌 ∈ 𝐷) |
196 | | mplcoe5.c |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
197 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑉‘𝑥) = (𝑉‘𝑎)) |
198 | 197 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎))) |
199 | 197 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦))) |
200 | 198, 199 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) ↔ ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)))) |
201 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → (𝑉‘𝑦) = (𝑉‘𝑏)) |
202 | 201 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎))) |
203 | 201 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
204 | 202, 203 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑏 → (((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)) ↔ ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏)))) |
205 | 200, 204 | cbvral2vw 3396 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) ↔ ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
206 | 196, 205 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
207 | 206 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
208 | 92, 3, 93, 94, 105, 48, 136, 137, 106, 195, 207, 127 | mplcoe5lem 21240 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
209 | 99, 127 | sstrid 3932 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ⊆ 𝐼) |
210 | 209 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐼) |
211 | 193 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐺 ∈ Mnd) |
212 | 7 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑌‘𝑘) ∈
ℕ0) |
213 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
214 | 95 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
215 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
216 | 92, 137, 104, 213, 214, 215 | mvrcl 21221 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑉‘𝑘) ∈ (Base‘𝑃)) |
217 | 186, 136 | mulgnn0cl 18720 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Mnd ∧ (𝑌‘𝑘) ∈ ℕ0 ∧ (𝑉‘𝑘) ∈ (Base‘𝑃)) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
218 | 211, 212,
216, 217 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
219 | 218 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
220 | 210, 219 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝑥) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
221 | 92, 137, 104, 105, 106, 131 | mvrcl 21221 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑉‘𝑧) ∈ (Base‘𝑃)) |
222 | 186, 136 | mulgnn0cl 18720 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Mnd ∧ (𝑌‘𝑧) ∈ ℕ0 ∧ (𝑉‘𝑧) ∈ (Base‘𝑃)) → ((𝑌‘𝑧) ↑ (𝑉‘𝑧)) ∈ (Base‘𝑃)) |
223 | 194, 132,
221, 222 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑌‘𝑧) ↑ (𝑉‘𝑧)) ∈ (Base‘𝑃)) |
224 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑌‘𝑘) = (𝑌‘𝑧)) |
225 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑉‘𝑘) = (𝑉‘𝑧)) |
226 | 224, 225 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
227 | 226 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 = 𝑧) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
228 | 186, 187,
188, 189, 194, 115, 208, 220, 131, 151, 223, 227 | gsumzunsnd 19557 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
229 | 185, 228 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))))) |
230 | 103, 229 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
231 | 230 | expr 457 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
232 | 231 | a2d 29 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
233 | 102, 232 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
234 | 233 | expcom 414 |
. . . . . . 7
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → (𝜑 → ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
235 | 234 | a2d 29 |
. . . . . 6
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
236 | 55, 67, 79, 91, 98, 235 | findcard2s 8948 |
. . . . 5
⊢ ((◡𝑌 “ ℕ) ∈ Fin → (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
237 | 32, 236 | mpcom 38 |
. . . 4
⊢ (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
238 | 31, 237 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
239 | 31 | resmptd 5948 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ)) = (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
240 | 239 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
241 | 218 | fmpttd 6989 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))):𝐼⟶(Base‘𝑃)) |
242 | | ssidd 3944 |
. . . . 5
⊢ (𝜑 → 𝐼 ⊆ 𝐼) |
243 | 92, 3, 93, 94, 2, 48, 136, 137, 95, 1, 196, 242 | mplcoe5lem 21240 |
. . . 4
⊢ (𝜑 → ran (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
244 | 7, 15, 2, 17 | suppssr 8012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑌‘𝑘) = 0) |
245 | 244 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = (0 ↑ (𝑉‘𝑘))) |
246 | | eldifi 4061 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ)) → 𝑘 ∈ 𝐼) |
247 | 246, 216 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑉‘𝑘) ∈ (Base‘𝑃)) |
248 | 186, 50, 136 | mulg0 18707 |
. . . . . . 7
⊢ ((𝑉‘𝑘) ∈ (Base‘𝑃) → (0 ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
249 | 247, 248 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (0 ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
250 | 245, 249 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
251 | 250, 2 | suppss2 8016 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) supp (1r‘𝑃)) ⊆ (◡𝑌 “ ℕ)) |
252 | 2 | mptexd 7100 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∈ V) |
253 | | funmpt 6472 |
. . . . . 6
⊢ Fun
(𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) |
254 | 253 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
255 | | fvexd 6789 |
. . . . 5
⊢ (𝜑 → (1r‘𝑃) ∈ V) |
256 | | suppssfifsupp 9143 |
. . . . 5
⊢ ((((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∈ V ∧ Fun (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∧ (1r‘𝑃) ∈ V) ∧ ((◡𝑌 “ ℕ) ∈ Fin ∧ ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) supp (1r‘𝑃)) ⊆ (◡𝑌 “ ℕ))) → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) finSupp (1r‘𝑃)) |
257 | 252, 254,
255, 32, 251, 256 | syl32anc 1377 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) finSupp (1r‘𝑃)) |
258 | 186, 50, 188, 193, 2, 241, 243, 251, 257 | gsumzres 19510 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
259 | 238, 240,
258 | 3eqtr2d 2784 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
260 | 29, 259 | eqtrd 2778 |
1
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |