MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5 Structured version   Visualization version   GIF version

Theorem mplcoe5 21241
Description: Decompose a monomial into a finite product of powers of variables. Instead of assuming that 𝑅 is a commutative ring (as in mplcoe2 21242), it is sufficient that 𝑅 is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
Assertion
Ref Expression
mplcoe5 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5
Dummy variables 𝑖 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe5.y . . . . . . . . 9 (𝜑𝑌𝐷)
2 mplcoe1.i . . . . . . . . . 10 (𝜑𝐼𝑊)
3 mplcoe1.d . . . . . . . . . . 11 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbag 21120 . . . . . . . . . 10 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
52, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
61, 5mpbid 231 . . . . . . . 8 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
76simpld 495 . . . . . . 7 (𝜑𝑌:𝐼⟶ℕ0)
87feqmptd 6837 . . . . . 6 (𝜑𝑌 = (𝑖𝐼 ↦ (𝑌𝑖)))
9 iftrue 4465 . . . . . . . . 9 (𝑖 ∈ (𝑌 “ ℕ) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
109adantl 482 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
11 eldif 3897 . . . . . . . . . 10 (𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ)) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)))
12 frnnn0supp 12289 . . . . . . . . . . . . . . 15 ((𝐼𝑊𝑌:𝐼⟶ℕ0) → (𝑌 supp 0) = (𝑌 “ ℕ))
132, 7, 12syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 supp 0) = (𝑌 “ ℕ))
14 eqimss 3977 . . . . . . . . . . . . . 14 ((𝑌 supp 0) = (𝑌 “ ℕ) → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
1513, 14syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
16 c0ex 10969 . . . . . . . . . . . . . 14 0 ∈ V
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ V)
187, 15, 2, 17suppssr 8012 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑖) = 0)
1918ifeq2d 4479 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
20 ifid 4499 . . . . . . . . . . 11 if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = (𝑌𝑖)
2119, 20eqtr3di 2793 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2211, 21sylan2br 595 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2322anassrs 468 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2410, 23pm2.61dan 810 . . . . . . 7 ((𝜑𝑖𝐼) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2524mpteq2dva 5174 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)) = (𝑖𝐼 ↦ (𝑌𝑖)))
268, 25eqtr4d 2781 . . . . 5 (𝜑𝑌 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
2726eqeq2d 2749 . . . 4 (𝜑 → (𝑦 = 𝑌𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
2827ifbid 4482 . . 3 (𝜑 → if(𝑦 = 𝑌, 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
2928mpteq2dv 5176 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
30 cnvimass 5989 . . . . 5 (𝑌 “ ℕ) ⊆ dom 𝑌
3130, 7fssdm 6620 . . . 4 (𝜑 → (𝑌 “ ℕ) ⊆ 𝐼)
326simprd 496 . . . . 5 (𝜑 → (𝑌 “ ℕ) ∈ Fin)
33 sseq1 3946 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐼 ↔ ∅ ⊆ 𝐼))
34 noel 4264 . . . . . . . . . . . . . . . 16 ¬ 𝑖 ∈ ∅
35 eleq2 2827 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑖𝑤𝑖 ∈ ∅))
3634, 35mtbiri 327 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ¬ 𝑖𝑤)
3736iffalsed 4470 . . . . . . . . . . . . . 14 (𝑤 = ∅ → if(𝑖𝑤, (𝑌𝑖), 0) = 0)
3837mpteq2dv 5176 . . . . . . . . . . . . 13 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ 0))
39 fconstmpt 5649 . . . . . . . . . . . . 13 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
4038, 39eqtr4di 2796 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝐼 × {0}))
4140eqeq2d 2749 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝐼 × {0})))
4241ifbid 4482 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 ))
4342mpteq2dv 5176 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
44 mpteq1 5167 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))))
45 mpt0 6575 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅
4644, 45eqtrdi 2794 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅)
4746oveq2d 7291 . . . . . . . . . 10 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg ∅))
48 mplcoe2.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑃)
49 eqid 2738 . . . . . . . . . . . 12 (1r𝑃) = (1r𝑃)
5048, 49ringidval 19739 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
5150gsum0 18368 . . . . . . . . . 10 (𝐺 Σg ∅) = (1r𝑃)
5247, 51eqtrdi 2794 . . . . . . . . 9 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (1r𝑃))
5343, 52eqeq12d 2754 . . . . . . . 8 (𝑤 = ∅ → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
5433, 53imbi12d 345 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))))
5554imbi2d 341 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))))
56 sseq1 3946 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐼𝑥𝐼))
57 eleq2 2827 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑖𝑤𝑖𝑥))
5857ifbid 4482 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
5958mpteq2dv 5176 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
6059eqeq2d 2749 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0))))
6160ifbid 4482 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))
6261mpteq2dv 5176 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )))
63 mpteq1 5167 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))
6463oveq2d 7291 . . . . . . . . 9 (𝑤 = 𝑥 → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))
6562, 64eqeq12d 2754 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
6656, 65imbi12d 345 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))))
6766imbi2d 341 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))))
68 sseq1 3946 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
69 eleq2 2827 . . . . . . . . . . . . . 14 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝑤𝑖 ∈ (𝑥 ∪ {𝑧})))
7069ifbid 4482 . . . . . . . . . . . . 13 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
7170mpteq2dv 5176 . . . . . . . . . . . 12 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
7271eqeq2d 2749 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
7372ifbid 4482 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
7473mpteq2dv 5176 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
75 mpteq1 5167 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))
7675oveq2d 7291 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
7774, 76eqeq12d 2754 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
7868, 77imbi12d 345 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
7978imbi2d 341 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
80 sseq1 3946 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → (𝑤𝐼 ↔ (𝑌 “ ℕ) ⊆ 𝐼))
81 eleq2 2827 . . . . . . . . . . . . . 14 (𝑤 = (𝑌 “ ℕ) → (𝑖𝑤𝑖 ∈ (𝑌 “ ℕ)))
8281ifbid 4482 . . . . . . . . . . . . 13 (𝑤 = (𝑌 “ ℕ) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
8382mpteq2dv 5176 . . . . . . . . . . . 12 (𝑤 = (𝑌 “ ℕ) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
8483eqeq2d 2749 . . . . . . . . . . 11 (𝑤 = (𝑌 “ ℕ) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
8584ifbid 4482 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
8685mpteq2dv 5176 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
87 mpteq1 5167 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
8887oveq2d 7291 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
8986, 88eqeq12d 2754 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
9080, 89imbi12d 345 . . . . . . 7 (𝑤 = (𝑌 “ ℕ) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
9190imbi2d 341 . . . . . 6 (𝑤 = (𝑌 “ ℕ) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
92 mplcoe1.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
93 mplcoe1.z . . . . . . . . 9 0 = (0g𝑅)
94 mplcoe1.o . . . . . . . . 9 1 = (1r𝑅)
95 mplcoe5.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9692, 3, 93, 94, 49, 2, 95mpl1 21216 . . . . . . . 8 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
9796, 49eqtr3di 2793 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))
9897a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
99 ssun1 4106 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
100 sstr2 3928 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼))
10199, 100ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
102101imim1i 63 . . . . . . . . 9 ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
103 oveq1 7282 . . . . . . . . . . . 12 ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
104 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1052adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼𝑊)
10695adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ Ring)
1077adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌:𝐼⟶ℕ0)
108107ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑖) ∈ ℕ0)
109 0nn0 12248 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
110 ifcl 4504 . . . . . . . . . . . . . . . . . 18 (((𝑌𝑖) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
111108, 109, 110sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
112111fmpttd 6989 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0)
113 frnnn0supp 12289 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊 ∧ (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
114105, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
115 simprll 776 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
116 eldifn 4062 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝐼𝑥) → ¬ 𝑖𝑥)
117116adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → ¬ 𝑖𝑥)
118117iffalsed 4470 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
119118, 105suppss2 8016 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ⊆ 𝑥)
120115, 119ssfid 9042 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ∈ Fin)
121114, 120eqeltrrd 2840 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)
1223psrbag 21120 . . . . . . . . . . . . . . . . 17 (𝐼𝑊 → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
123105, 122syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
124112, 121, 123mpbir2and 710 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷)
125 eqid 2738 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
126 ssun2 4107 . . . . . . . . . . . . . . . . . . 19 {𝑧} ⊆ (𝑥 ∪ {𝑧})
127 simprr 770 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑥 ∪ {𝑧}) ⊆ 𝐼)
128126, 127sstrid 3932 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → {𝑧} ⊆ 𝐼)
129 vex 3436 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ V
130129snss 4719 . . . . . . . . . . . . . . . . . 18 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
131128, 130sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
132107, 131ffvelrnd 6962 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑌𝑧) ∈ ℕ0)
1333snifpsrbag 21125 . . . . . . . . . . . . . . . 16 ((𝐼𝑊 ∧ (𝑌𝑧) ∈ ℕ0) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
134105, 132, 133syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
13592, 104, 93, 94, 3, 105, 106, 124, 125, 134mplmonmul 21237 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )))
136 mplcoe2.m . . . . . . . . . . . . . . . 16 = (.g𝐺)
137 mplcoe2.v . . . . . . . . . . . . . . . 16 𝑉 = (𝐼 mVar 𝑅)
13892, 3, 93, 94, 105, 48, 136, 137, 106, 131, 132mplcoe3 21239 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 )) = ((𝑌𝑧) (𝑉𝑧)))
139138oveq2d 7291 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
140132adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑧) ∈ ℕ0)
141 ifcl 4504 . . . . . . . . . . . . . . . . . . . 20 (((𝑌𝑧) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
142140, 109, 141sylancl 586 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
143 eqidd 2739 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
144 eqidd 2739 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)))
145105, 111, 142, 143, 144offval2 7553 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))))
146108adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℕ0)
147146nn0cnd 12295 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℂ)
148147addid2d 11176 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (0 + (𝑌𝑖)) = (𝑌𝑖))
149 elsni 4578 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ {𝑧} → 𝑖 = 𝑧)
150149adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 = 𝑧)
151 simprlr 777 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ¬ 𝑧𝑥)
152151ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑧𝑥)
153150, 152eqneltrd 2858 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑖𝑥)
154153iffalsed 4470 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
155150iftrued 4467 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑧))
156150fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) = (𝑌𝑧))
157155, 156eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑖))
158154, 157oveq12d 7293 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (0 + (𝑌𝑖)))
159 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ {𝑧})
160126, 159sselid 3919 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ (𝑥 ∪ {𝑧}))
161160iftrued 4467 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = (𝑌𝑖))
162148, 158, 1613eqtr4d 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
163111adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
164163nn0cnd 12295 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℂ)
165164addid1d 11175 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + 0) = if(𝑖𝑥, (𝑌𝑖), 0))
166 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ {𝑧})
167 velsn 4577 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
168166, 167sylnib 328 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 = 𝑧)
169168iffalsed 4470 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = 0)
170169oveq2d 7291 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (if(𝑖𝑥, (𝑌𝑖), 0) + 0))
171 elun 4083 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖𝑥𝑖 ∈ {𝑧}))
172 orcom 867 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖𝑥𝑖 ∈ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
173171, 172bitri 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
174 biorf 934 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖 ∈ {𝑧} → (𝑖𝑥 ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥)))
175173, 174bitr4id 290 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖 ∈ {𝑧} → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
176175adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
177176ifbid 4482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
178165, 170, 1773eqtr4d 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
179162, 178pm2.61dan 810 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
180179mpteq2dva 5174 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
181145, 180eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
182181eqeq2d 2749 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
183182ifbid 4482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
184183mpteq2dv 5176 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
185135, 139, 1843eqtr3rd 2787 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
18648, 104mgpbas 19726 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝐺)
18748, 125mgpplusg 19724 . . . . . . . . . . . . . 14 (.r𝑃) = (+g𝐺)
188 eqid 2738 . . . . . . . . . . . . . 14 (Cntz‘𝐺) = (Cntz‘𝐺)
189 eqid 2738 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))
19092mplring 21224 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
1912, 95, 190syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
19248ringmgp 19789 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
193191, 192syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Mnd)
194193adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐺 ∈ Mnd)
1951adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌𝐷)
196 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
197 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑉𝑥) = (𝑉𝑎))
198197oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑎)))
199197oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)))
200198, 199eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦))))
201 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑉𝑦) = (𝑉𝑏))
202201oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑏)(+g𝐺)(𝑉𝑎)))
203201oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
204202, 203eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏))))
205200, 204cbvral2vw 3396 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
206196, 205sylib 217 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
207206adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
20892, 3, 93, 94, 105, 48, 136, 137, 106, 195, 207, 127mplcoe5lem 21240 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
20999, 127sstrid 3932 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥𝐼)
210209sselda 3921 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → 𝑘𝐼)
211193adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → 𝐺 ∈ Mnd)
2127ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
2132adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝐼𝑊)
21495adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑅 ∈ Ring)
215 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑘𝐼)
21692, 137, 104, 213, 214, 215mvrcl 21221 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑉𝑘) ∈ (Base‘𝑃))
217186, 136mulgnn0cl 18720 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Mnd ∧ (𝑌𝑘) ∈ ℕ0 ∧ (𝑉𝑘) ∈ (Base‘𝑃)) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
218211, 212, 216, 217syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
219218adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
220210, 219syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
22192, 137, 104, 105, 106, 131mvrcl 21221 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑉𝑧) ∈ (Base‘𝑃))
222186, 136mulgnn0cl 18720 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Mnd ∧ (𝑌𝑧) ∈ ℕ0 ∧ (𝑉𝑧) ∈ (Base‘𝑃)) → ((𝑌𝑧) (𝑉𝑧)) ∈ (Base‘𝑃))
223194, 132, 221, 222syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑌𝑧) (𝑉𝑧)) ∈ (Base‘𝑃))
224 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑌𝑘) = (𝑌𝑧))
225 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑉𝑘) = (𝑉𝑧))
226224, 225oveq12d 7293 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
227226adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 = 𝑧) → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
228186, 187, 188, 189, 194, 115, 208, 220, 131, 151, 223, 227gsumzunsnd 19557 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
229185, 228eqeq12d 2754 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧)))))
230103, 229syl5ibr 245 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
231230expr 457 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
232231a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
233102, 232syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
234233expcom 414 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
235234a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
23655, 67, 79, 91, 98, 235findcard2s 8948 . . . . 5 ((𝑌 “ ℕ) ∈ Fin → (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
23732, 236mpcom 38 . . . 4 (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
23831, 237mpd 15 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
23931resmptd 5948 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ)) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
240239oveq2d 7291 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
241218fmpttd 6989 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))):𝐼⟶(Base‘𝑃))
242 ssidd 3944 . . . . 5 (𝜑𝐼𝐼)
24392, 3, 93, 94, 2, 48, 136, 137, 95, 1, 196, 242mplcoe5lem 21240 . . . 4 (𝜑 → ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
2447, 15, 2, 17suppssr 8012 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑘) = 0)
245244oveq1d 7290 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (0 (𝑉𝑘)))
246 eldifi 4061 . . . . . . . 8 (𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ)) → 𝑘𝐼)
247246, 216sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑉𝑘) ∈ (Base‘𝑃))
248186, 50, 136mulg0 18707 . . . . . . 7 ((𝑉𝑘) ∈ (Base‘𝑃) → (0 (𝑉𝑘)) = (1r𝑃))
249247, 248syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (0 (𝑉𝑘)) = (1r𝑃))
250245, 249eqtrd 2778 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (1r𝑃))
251250, 2suppss2 8016 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))
2522mptexd 7100 . . . . 5 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V)
253 funmpt 6472 . . . . . 6 Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))
254253a1i 11 . . . . 5 (𝜑 → Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))))
255 fvexd 6789 . . . . 5 (𝜑 → (1r𝑃) ∈ V)
256 suppssfifsupp 9143 . . . . 5 ((((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V ∧ Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ (1r𝑃) ∈ V) ∧ ((𝑌 “ ℕ) ∈ Fin ∧ ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))) → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
257252, 254, 255, 32, 251, 256syl32anc 1377 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
258186, 50, 188, 193, 2, 241, 243, 251, 257gsumzres 19510 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
259238, 240, 2583eqtr2d 2784 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
26029, 259eqtrd 2778 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  ccnv 5588  cres 5591  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  0cc0 10871   + caddc 10874  cn 11973  0cn0 12233  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  .gcmg 18700  Cntzccntz 18921  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783   mVar cmvr 21108   mPoly cmpl 21109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-subrg 20022  df-psr 21112  df-mvr 21113  df-mpl 21114
This theorem is referenced by:  mplcoe2  21242  ply1coe  21467
  Copyright terms: Public domain W3C validator