MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5 Structured version   Visualization version   GIF version

Theorem mplcoe5 22000
Description: Decompose a monomial into a finite product of powers of variables. Instead of assuming that 𝑅 is a commutative ring (as in mplcoe2 22001), it is sufficient that 𝑅 is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
Assertion
Ref Expression
mplcoe5 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5
Dummy variables 𝑖 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe5.y . . . . . . . . 9 (𝜑𝑌𝐷)
2 mplcoe1.i . . . . . . . . . 10 (𝜑𝐼𝑊)
3 mplcoe1.d . . . . . . . . . . 11 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbag 21867 . . . . . . . . . 10 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
52, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
61, 5mpbid 231 . . . . . . . 8 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
76simpld 493 . . . . . . 7 (𝜑𝑌:𝐼⟶ℕ0)
87feqmptd 6966 . . . . . 6 (𝜑𝑌 = (𝑖𝐼 ↦ (𝑌𝑖)))
9 iftrue 4536 . . . . . . . . 9 (𝑖 ∈ (𝑌 “ ℕ) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
109adantl 480 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
11 eldif 3954 . . . . . . . . . 10 (𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ)) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)))
12 fcdmnn0supp 12561 . . . . . . . . . . . . . . 15 ((𝐼𝑊𝑌:𝐼⟶ℕ0) → (𝑌 supp 0) = (𝑌 “ ℕ))
132, 7, 12syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 supp 0) = (𝑌 “ ℕ))
14 eqimss 4035 . . . . . . . . . . . . . 14 ((𝑌 supp 0) = (𝑌 “ ℕ) → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
1513, 14syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
16 c0ex 11240 . . . . . . . . . . . . . 14 0 ∈ V
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ V)
187, 15, 2, 17suppssr 8201 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑖) = 0)
1918ifeq2d 4550 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
20 ifid 4570 . . . . . . . . . . 11 if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = (𝑌𝑖)
2119, 20eqtr3di 2780 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2211, 21sylan2br 593 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2322anassrs 466 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2410, 23pm2.61dan 811 . . . . . . 7 ((𝜑𝑖𝐼) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2524mpteq2dva 5249 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)) = (𝑖𝐼 ↦ (𝑌𝑖)))
268, 25eqtr4d 2768 . . . . 5 (𝜑𝑌 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
2726eqeq2d 2736 . . . 4 (𝜑 → (𝑦 = 𝑌𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
2827ifbid 4553 . . 3 (𝜑 → if(𝑦 = 𝑌, 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
2928mpteq2dv 5251 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
30 cnvimass 6086 . . . . 5 (𝑌 “ ℕ) ⊆ dom 𝑌
3130, 7fssdm 6742 . . . 4 (𝜑 → (𝑌 “ ℕ) ⊆ 𝐼)
326simprd 494 . . . . 5 (𝜑 → (𝑌 “ ℕ) ∈ Fin)
33 sseq1 4002 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐼 ↔ ∅ ⊆ 𝐼))
34 noel 4330 . . . . . . . . . . . . . . . 16 ¬ 𝑖 ∈ ∅
35 eleq2 2814 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑖𝑤𝑖 ∈ ∅))
3634, 35mtbiri 326 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ¬ 𝑖𝑤)
3736iffalsed 4541 . . . . . . . . . . . . . 14 (𝑤 = ∅ → if(𝑖𝑤, (𝑌𝑖), 0) = 0)
3837mpteq2dv 5251 . . . . . . . . . . . . 13 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ 0))
39 fconstmpt 5740 . . . . . . . . . . . . 13 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
4038, 39eqtr4di 2783 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝐼 × {0}))
4140eqeq2d 2736 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝐼 × {0})))
4241ifbid 4553 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 ))
4342mpteq2dv 5251 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
44 mpteq1 5242 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))))
45 mpt0 6698 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅
4644, 45eqtrdi 2781 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅)
4746oveq2d 7435 . . . . . . . . . 10 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg ∅))
48 mplcoe2.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑃)
49 eqid 2725 . . . . . . . . . . . 12 (1r𝑃) = (1r𝑃)
5048, 49ringidval 20135 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
5150gsum0 18647 . . . . . . . . . 10 (𝐺 Σg ∅) = (1r𝑃)
5247, 51eqtrdi 2781 . . . . . . . . 9 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (1r𝑃))
5343, 52eqeq12d 2741 . . . . . . . 8 (𝑤 = ∅ → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
5433, 53imbi12d 343 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))))
5554imbi2d 339 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))))
56 sseq1 4002 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐼𝑥𝐼))
57 eleq2 2814 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑖𝑤𝑖𝑥))
5857ifbid 4553 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
5958mpteq2dv 5251 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
6059eqeq2d 2736 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0))))
6160ifbid 4553 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))
6261mpteq2dv 5251 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )))
63 mpteq1 5242 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))
6463oveq2d 7435 . . . . . . . . 9 (𝑤 = 𝑥 → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))
6562, 64eqeq12d 2741 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
6656, 65imbi12d 343 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))))
6766imbi2d 339 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))))
68 sseq1 4002 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
69 eleq2 2814 . . . . . . . . . . . . . 14 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝑤𝑖 ∈ (𝑥 ∪ {𝑧})))
7069ifbid 4553 . . . . . . . . . . . . 13 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
7170mpteq2dv 5251 . . . . . . . . . . . 12 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
7271eqeq2d 2736 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
7372ifbid 4553 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
7473mpteq2dv 5251 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
75 mpteq1 5242 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))
7675oveq2d 7435 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
7774, 76eqeq12d 2741 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
7868, 77imbi12d 343 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
7978imbi2d 339 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
80 sseq1 4002 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → (𝑤𝐼 ↔ (𝑌 “ ℕ) ⊆ 𝐼))
81 eleq2 2814 . . . . . . . . . . . . . 14 (𝑤 = (𝑌 “ ℕ) → (𝑖𝑤𝑖 ∈ (𝑌 “ ℕ)))
8281ifbid 4553 . . . . . . . . . . . . 13 (𝑤 = (𝑌 “ ℕ) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
8382mpteq2dv 5251 . . . . . . . . . . . 12 (𝑤 = (𝑌 “ ℕ) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
8483eqeq2d 2736 . . . . . . . . . . 11 (𝑤 = (𝑌 “ ℕ) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
8584ifbid 4553 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
8685mpteq2dv 5251 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
87 mpteq1 5242 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
8887oveq2d 7435 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
8986, 88eqeq12d 2741 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
9080, 89imbi12d 343 . . . . . . 7 (𝑤 = (𝑌 “ ℕ) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
9190imbi2d 339 . . . . . 6 (𝑤 = (𝑌 “ ℕ) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
92 mplcoe1.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
93 mplcoe1.z . . . . . . . . 9 0 = (0g𝑅)
94 mplcoe1.o . . . . . . . . 9 1 = (1r𝑅)
95 mplcoe5.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9692, 3, 93, 94, 49, 2, 95mpl1 21974 . . . . . . . 8 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
9796, 49eqtr3di 2780 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))
9897a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
99 ssun1 4170 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
100 sstr2 3983 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼))
10199, 100ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
102101imim1i 63 . . . . . . . . 9 ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
103 oveq1 7426 . . . . . . . . . . . 12 ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
104 eqid 2725 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1052adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼𝑊)
10695adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ Ring)
1077adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌:𝐼⟶ℕ0)
108107ffvelcdmda 7093 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑖) ∈ ℕ0)
109 0nn0 12520 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
110 ifcl 4575 . . . . . . . . . . . . . . . . . 18 (((𝑌𝑖) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
111108, 109, 110sylancl 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
112111fmpttd 7124 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0)
113 fcdmnn0supp 12561 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊 ∧ (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
114105, 112, 113syl2anc 582 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
115 simprll 777 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
116 eldifn 4124 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝐼𝑥) → ¬ 𝑖𝑥)
117116adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → ¬ 𝑖𝑥)
118117iffalsed 4541 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
119118, 105suppss2 8206 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ⊆ 𝑥)
120115, 119ssfid 9292 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ∈ Fin)
121114, 120eqeltrrd 2826 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)
1223psrbag 21867 . . . . . . . . . . . . . . . . 17 (𝐼𝑊 → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
123105, 122syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
124112, 121, 123mpbir2and 711 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷)
125 eqid 2725 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
126 ssun2 4171 . . . . . . . . . . . . . . . . . . 19 {𝑧} ⊆ (𝑥 ∪ {𝑧})
127 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑥 ∪ {𝑧}) ⊆ 𝐼)
128126, 127sstrid 3988 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → {𝑧} ⊆ 𝐼)
129 vex 3465 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ V
130129snss 4791 . . . . . . . . . . . . . . . . . 18 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
131128, 130sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
132107, 131ffvelcdmd 7094 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑌𝑧) ∈ ℕ0)
1333snifpsrbag 21872 . . . . . . . . . . . . . . . 16 ((𝐼𝑊 ∧ (𝑌𝑧) ∈ ℕ0) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
134105, 132, 133syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
13592, 104, 93, 94, 3, 105, 106, 124, 125, 134mplmonmul 21996 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )))
136 mplcoe2.m . . . . . . . . . . . . . . . 16 = (.g𝐺)
137 mplcoe2.v . . . . . . . . . . . . . . . 16 𝑉 = (𝐼 mVar 𝑅)
13892, 3, 93, 94, 105, 48, 136, 137, 106, 131, 132mplcoe3 21998 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 )) = ((𝑌𝑧) (𝑉𝑧)))
139138oveq2d 7435 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
140132adantr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑧) ∈ ℕ0)
141 ifcl 4575 . . . . . . . . . . . . . . . . . . . 20 (((𝑌𝑧) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
142140, 109, 141sylancl 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
143 eqidd 2726 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
144 eqidd 2726 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)))
145105, 111, 142, 143, 144offval2 7705 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))))
146108adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℕ0)
147146nn0cnd 12567 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℂ)
148147addlidd 11447 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (0 + (𝑌𝑖)) = (𝑌𝑖))
149 elsni 4647 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ {𝑧} → 𝑖 = 𝑧)
150149adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 = 𝑧)
151 simprlr 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ¬ 𝑧𝑥)
152151ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑧𝑥)
153150, 152eqneltrd 2845 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑖𝑥)
154153iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
155150iftrued 4538 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑧))
156150fveq2d 6900 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) = (𝑌𝑧))
157155, 156eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑖))
158154, 157oveq12d 7437 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (0 + (𝑌𝑖)))
159 simpr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ {𝑧})
160126, 159sselid 3974 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ (𝑥 ∪ {𝑧}))
161160iftrued 4538 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = (𝑌𝑖))
162148, 158, 1613eqtr4d 2775 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
163111adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
164163nn0cnd 12567 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℂ)
165164addridd 11446 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + 0) = if(𝑖𝑥, (𝑌𝑖), 0))
166 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ {𝑧})
167 velsn 4646 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
168166, 167sylnib 327 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 = 𝑧)
169168iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = 0)
170169oveq2d 7435 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (if(𝑖𝑥, (𝑌𝑖), 0) + 0))
171 elun 4145 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖𝑥𝑖 ∈ {𝑧}))
172 orcom 868 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖𝑥𝑖 ∈ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
173171, 172bitri 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
174 biorf 934 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖 ∈ {𝑧} → (𝑖𝑥 ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥)))
175173, 174bitr4id 289 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖 ∈ {𝑧} → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
176175adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
177176ifbid 4553 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
178165, 170, 1773eqtr4d 2775 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
179162, 178pm2.61dan 811 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
180179mpteq2dva 5249 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
181145, 180eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
182181eqeq2d 2736 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
183182ifbid 4553 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
184183mpteq2dv 5251 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘f + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
185135, 139, 1843eqtr3rd 2774 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
18648, 104mgpbas 20092 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝐺)
18748, 125mgpplusg 20090 . . . . . . . . . . . . . 14 (.r𝑃) = (+g𝐺)
188 eqid 2725 . . . . . . . . . . . . . 14 (Cntz‘𝐺) = (Cntz‘𝐺)
189 eqid 2725 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))
19092, 2, 95mplringd 21985 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
19148ringmgp 20191 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
192190, 191syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Mnd)
193192adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐺 ∈ Mnd)
1941adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌𝐷)
195 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
196 fveq2 6896 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑉𝑥) = (𝑉𝑎))
197196oveq2d 7435 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑎)))
198196oveq1d 7434 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)))
199197, 198eqeq12d 2741 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦))))
200 fveq2 6896 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑉𝑦) = (𝑉𝑏))
201200oveq1d 7434 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑏)(+g𝐺)(𝑉𝑎)))
202200oveq2d 7435 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
203201, 202eqeq12d 2741 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏))))
204199, 203cbvral2vw 3228 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
205195, 204sylib 217 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
206205adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
20792, 3, 93, 94, 105, 48, 136, 137, 106, 194, 206, 127mplcoe5lem 21999 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
20899, 127sstrid 3988 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥𝐼)
209208sselda 3976 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → 𝑘𝐼)
210192adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → 𝐺 ∈ Mnd)
2117ffvelcdmda 7093 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
2122adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝐼𝑊)
21395adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑅 ∈ Ring)
214 simpr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑘𝐼)
21592, 137, 104, 212, 213, 214mvrcl 21954 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑉𝑘) ∈ (Base‘𝑃))
216186, 136, 210, 211, 215mulgnn0cld 19058 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
217216adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
218209, 217syldan 589 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
21992, 137, 104, 105, 106, 131mvrcl 21954 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑉𝑧) ∈ (Base‘𝑃))
220186, 136, 193, 132, 219mulgnn0cld 19058 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑌𝑧) (𝑉𝑧)) ∈ (Base‘𝑃))
221 fveq2 6896 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑌𝑘) = (𝑌𝑧))
222 fveq2 6896 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑉𝑘) = (𝑉𝑧))
223221, 222oveq12d 7437 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
224223adantl 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 = 𝑧) → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
225186, 187, 188, 189, 193, 115, 207, 218, 131, 151, 220, 224gsumzunsnd 19923 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
226185, 225eqeq12d 2741 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧)))))
227103, 226imbitrrid 245 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
228227expr 455 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
229228a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
230102, 229syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
231230expcom 412 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
232231a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
23355, 67, 79, 91, 98, 232findcard2s 9190 . . . . 5 ((𝑌 “ ℕ) ∈ Fin → (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
23432, 233mpcom 38 . . . 4 (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
23531, 234mpd 15 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
23631resmptd 6045 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ)) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
237236oveq2d 7435 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
238216fmpttd 7124 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))):𝐼⟶(Base‘𝑃))
239 ssidd 4000 . . . . 5 (𝜑𝐼𝐼)
24092, 3, 93, 94, 2, 48, 136, 137, 95, 1, 195, 239mplcoe5lem 21999 . . . 4 (𝜑 → ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
2417, 15, 2, 17suppssr 8201 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑘) = 0)
242241oveq1d 7434 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (0 (𝑉𝑘)))
243 eldifi 4123 . . . . . . . 8 (𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ)) → 𝑘𝐼)
244243, 215sylan2 591 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑉𝑘) ∈ (Base‘𝑃))
245186, 50, 136mulg0 19038 . . . . . . 7 ((𝑉𝑘) ∈ (Base‘𝑃) → (0 (𝑉𝑘)) = (1r𝑃))
246244, 245syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (0 (𝑉𝑘)) = (1r𝑃))
247242, 246eqtrd 2765 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (1r𝑃))
248247, 2suppss2 8206 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))
2492mptexd 7236 . . . . 5 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V)
250 funmpt 6592 . . . . . 6 Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))
251250a1i 11 . . . . 5 (𝜑 → Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))))
252 fvexd 6911 . . . . 5 (𝜑 → (1r𝑃) ∈ V)
253 suppssfifsupp 9405 . . . . 5 ((((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V ∧ Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ (1r𝑃) ∈ V) ∧ ((𝑌 “ ℕ) ∈ Fin ∧ ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))) → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
254249, 251, 252, 32, 248, 253syl32anc 1375 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
255186, 50, 188, 192, 2, 238, 240, 248, 254gsumzres 19876 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
256235, 237, 2553eqtr2d 2771 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
25729, 256eqtrd 2765 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wral 3050  {crab 3418  Vcvv 3461  cdif 3941  cun 3942  wss 3944  c0 4322  ifcif 4530  {csn 4630   class class class wbr 5149  cmpt 5232   × cxp 5676  ccnv 5677  cres 5680  cima 5681  Fun wfun 6543  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683   supp csupp 8165  m cmap 8845  Fincfn 8964   finSupp cfsupp 9387  0cc0 11140   + caddc 11143  cn 12245  0cn0 12505  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  0gc0g 17424   Σg cgsu 17425  Mndcmnd 18697  .gcmg 19031  Cntzccntz 19278  mulGrpcmgp 20086  1rcur 20133  Ringcrg 20185   mVar cmvr 21855   mPoly cmpl 21856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-srg 20139  df-ring 20187  df-subrng 20495  df-subrg 20520  df-psr 21859  df-mvr 21860  df-mpl 21861
This theorem is referenced by:  mplcoe2  22001  ply1coe  22242
  Copyright terms: Public domain W3C validator