MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5 Structured version   Visualization version   GIF version

Theorem mplcoe5 19876
Description: Decompose a monomial into a finite product of powers of variables. Instead of assuming that 𝑅 is a commutative ring (as in mplcoe2 19877), it is sufficient that 𝑅 is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
Assertion
Ref Expression
mplcoe5 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5
Dummy variables 𝑖 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe5.y . . . . . . . . 9 (𝜑𝑌𝐷)
2 mplcoe1.i . . . . . . . . . 10 (𝜑𝐼𝑊)
3 mplcoe1.d . . . . . . . . . . 11 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbag 19772 . . . . . . . . . 10 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
52, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
61, 5mpbid 224 . . . . . . . 8 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
76simpld 490 . . . . . . 7 (𝜑𝑌:𝐼⟶ℕ0)
87feqmptd 6511 . . . . . 6 (𝜑𝑌 = (𝑖𝐼 ↦ (𝑌𝑖)))
9 iftrue 4313 . . . . . . . . 9 (𝑖 ∈ (𝑌 “ ℕ) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
109adantl 475 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
11 eldif 3802 . . . . . . . . . 10 (𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ)) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)))
12 ifid 4346 . . . . . . . . . . 11 if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = (𝑌𝑖)
13 frnnn0supp 11705 . . . . . . . . . . . . . . 15 ((𝐼𝑊𝑌:𝐼⟶ℕ0) → (𝑌 supp 0) = (𝑌 “ ℕ))
142, 7, 13syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 supp 0) = (𝑌 “ ℕ))
15 eqimss 3876 . . . . . . . . . . . . . 14 ((𝑌 supp 0) = (𝑌 “ ℕ) → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
1614, 15syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
17 c0ex 10372 . . . . . . . . . . . . . 14 0 ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ V)
197, 16, 2, 18suppssr 7610 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑖) = 0)
2019ifeq2d 4326 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
2112, 20syl5reqr 2829 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2211, 21sylan2br 588 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2322anassrs 461 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2410, 23pm2.61dan 803 . . . . . . 7 ((𝜑𝑖𝐼) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2524mpteq2dva 4981 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)) = (𝑖𝐼 ↦ (𝑌𝑖)))
268, 25eqtr4d 2817 . . . . 5 (𝜑𝑌 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
2726eqeq2d 2788 . . . 4 (𝜑 → (𝑦 = 𝑌𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
2827ifbid 4329 . . 3 (𝜑 → if(𝑦 = 𝑌, 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
2928mpteq2dv 4982 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
30 cnvimass 5741 . . . . 5 (𝑌 “ ℕ) ⊆ dom 𝑌
3130, 7fssdm 6309 . . . 4 (𝜑 → (𝑌 “ ℕ) ⊆ 𝐼)
326simprd 491 . . . . 5 (𝜑 → (𝑌 “ ℕ) ∈ Fin)
33 sseq1 3845 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐼 ↔ ∅ ⊆ 𝐼))
34 noel 4146 . . . . . . . . . . . . . . . 16 ¬ 𝑖 ∈ ∅
35 eleq2 2848 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑖𝑤𝑖 ∈ ∅))
3634, 35mtbiri 319 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ¬ 𝑖𝑤)
3736iffalsed 4318 . . . . . . . . . . . . . 14 (𝑤 = ∅ → if(𝑖𝑤, (𝑌𝑖), 0) = 0)
3837mpteq2dv 4982 . . . . . . . . . . . . 13 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ 0))
39 fconstmpt 5413 . . . . . . . . . . . . 13 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
4038, 39syl6eqr 2832 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝐼 × {0}))
4140eqeq2d 2788 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝐼 × {0})))
4241ifbid 4329 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 ))
4342mpteq2dv 4982 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
44 mpteq1 4974 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))))
45 mpt0 6269 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅
4644, 45syl6eq 2830 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅)
4746oveq2d 6940 . . . . . . . . . 10 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg ∅))
48 mplcoe2.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑃)
49 eqid 2778 . . . . . . . . . . . 12 (1r𝑃) = (1r𝑃)
5048, 49ringidval 18901 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
5150gsum0 17675 . . . . . . . . . 10 (𝐺 Σg ∅) = (1r𝑃)
5247, 51syl6eq 2830 . . . . . . . . 9 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (1r𝑃))
5343, 52eqeq12d 2793 . . . . . . . 8 (𝑤 = ∅ → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
5433, 53imbi12d 336 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))))
5554imbi2d 332 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))))
56 sseq1 3845 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐼𝑥𝐼))
57 eleq2 2848 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑖𝑤𝑖𝑥))
5857ifbid 4329 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
5958mpteq2dv 4982 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
6059eqeq2d 2788 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0))))
6160ifbid 4329 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))
6261mpteq2dv 4982 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )))
63 mpteq1 4974 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))
6463oveq2d 6940 . . . . . . . . 9 (𝑤 = 𝑥 → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))
6562, 64eqeq12d 2793 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
6656, 65imbi12d 336 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))))
6766imbi2d 332 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))))
68 sseq1 3845 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
69 eleq2 2848 . . . . . . . . . . . . . 14 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝑤𝑖 ∈ (𝑥 ∪ {𝑧})))
7069ifbid 4329 . . . . . . . . . . . . 13 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
7170mpteq2dv 4982 . . . . . . . . . . . 12 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
7271eqeq2d 2788 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
7372ifbid 4329 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
7473mpteq2dv 4982 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
75 mpteq1 4974 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))
7675oveq2d 6940 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
7774, 76eqeq12d 2793 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
7868, 77imbi12d 336 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
7978imbi2d 332 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
80 sseq1 3845 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → (𝑤𝐼 ↔ (𝑌 “ ℕ) ⊆ 𝐼))
81 eleq2 2848 . . . . . . . . . . . . . 14 (𝑤 = (𝑌 “ ℕ) → (𝑖𝑤𝑖 ∈ (𝑌 “ ℕ)))
8281ifbid 4329 . . . . . . . . . . . . 13 (𝑤 = (𝑌 “ ℕ) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
8382mpteq2dv 4982 . . . . . . . . . . . 12 (𝑤 = (𝑌 “ ℕ) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
8483eqeq2d 2788 . . . . . . . . . . 11 (𝑤 = (𝑌 “ ℕ) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
8584ifbid 4329 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
8685mpteq2dv 4982 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
87 mpteq1 4974 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
8887oveq2d 6940 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
8986, 88eqeq12d 2793 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
9080, 89imbi12d 336 . . . . . . 7 (𝑤 = (𝑌 “ ℕ) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
9190imbi2d 332 . . . . . 6 (𝑤 = (𝑌 “ ℕ) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
92 mplcoe1.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
93 mplcoe1.z . . . . . . . . 9 0 = (0g𝑅)
94 mplcoe1.o . . . . . . . . 9 1 = (1r𝑅)
95 mplcoe5.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9692, 3, 93, 94, 49, 2, 95mpl1 19852 . . . . . . . 8 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
9796eqcomd 2784 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))
9897a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
99 ssun1 3999 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
100 sstr2 3828 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼))
10199, 100ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
102101imim1i 63 . . . . . . . . 9 ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
103 oveq1 6931 . . . . . . . . . . . 12 ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
104 eqid 2778 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1052adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼𝑊)
10695adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ Ring)
1077adantr 474 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌:𝐼⟶ℕ0)
108107ffvelrnda 6625 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑖) ∈ ℕ0)
109 0nn0 11664 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
110 ifcl 4351 . . . . . . . . . . . . . . . . . 18 (((𝑌𝑖) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
111108, 109, 110sylancl 580 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
112111fmpttd 6651 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0)
113 frnnn0supp 11705 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊 ∧ (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
114105, 112, 113syl2anc 579 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
115 simprll 769 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
116 eldifn 3956 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝐼𝑥) → ¬ 𝑖𝑥)
117116adantl 475 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → ¬ 𝑖𝑥)
118117iffalsed 4318 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
119118, 105suppss2 7613 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ⊆ 𝑥)
120115, 119ssfid 8473 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ∈ Fin)
121114, 120eqeltrrd 2860 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)
1223psrbag 19772 . . . . . . . . . . . . . . . . 17 (𝐼𝑊 → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
123105, 122syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
124112, 121, 123mpbir2and 703 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷)
125 eqid 2778 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
126 ssun2 4000 . . . . . . . . . . . . . . . . . . 19 {𝑧} ⊆ (𝑥 ∪ {𝑧})
127 simprr 763 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑥 ∪ {𝑧}) ⊆ 𝐼)
128126, 127syl5ss 3832 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → {𝑧} ⊆ 𝐼)
129 vex 3401 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ V
130129snss 4549 . . . . . . . . . . . . . . . . . 18 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
131128, 130sylibr 226 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
132107, 131ffvelrnd 6626 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑌𝑧) ∈ ℕ0)
1333snifpsrbag 19774 . . . . . . . . . . . . . . . 16 ((𝐼𝑊 ∧ (𝑌𝑧) ∈ ℕ0) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
134105, 132, 133syl2anc 579 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
13592, 104, 93, 94, 3, 105, 106, 124, 125, 134mplmonmul 19872 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )))
136 mplcoe2.m . . . . . . . . . . . . . . . 16 = (.g𝐺)
137 mplcoe2.v . . . . . . . . . . . . . . . 16 𝑉 = (𝐼 mVar 𝑅)
13892, 3, 93, 94, 105, 48, 136, 137, 106, 131, 132mplcoe3 19874 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 )) = ((𝑌𝑧) (𝑉𝑧)))
139138oveq2d 6940 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
140132adantr 474 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑧) ∈ ℕ0)
141 ifcl 4351 . . . . . . . . . . . . . . . . . . . 20 (((𝑌𝑧) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
142140, 109, 141sylancl 580 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
143 eqidd 2779 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
144 eqidd 2779 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)))
145105, 111, 142, 143, 144offval2 7193 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))))
146108adantr 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℕ0)
147146nn0cnd 11709 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℂ)
148147addid2d 10579 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (0 + (𝑌𝑖)) = (𝑌𝑖))
149 elsni 4415 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ {𝑧} → 𝑖 = 𝑧)
150149adantl 475 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 = 𝑧)
151 simprlr 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ¬ 𝑧𝑥)
152151ad2antrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑧𝑥)
153150, 152eqneltrd 2878 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑖𝑥)
154153iffalsed 4318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
155150iftrued 4315 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑧))
156150fveq2d 6452 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) = (𝑌𝑧))
157155, 156eqtr4d 2817 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑖))
158154, 157oveq12d 6942 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (0 + (𝑌𝑖)))
159 simpr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ {𝑧})
160126, 159sseldi 3819 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ (𝑥 ∪ {𝑧}))
161160iftrued 4315 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = (𝑌𝑖))
162148, 158, 1613eqtr4d 2824 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
163111adantr 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
164163nn0cnd 11709 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℂ)
165164addid1d 10578 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + 0) = if(𝑖𝑥, (𝑌𝑖), 0))
166 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ {𝑧})
167 velsn 4414 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
168166, 167sylnib 320 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 = 𝑧)
169168iffalsed 4318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = 0)
170169oveq2d 6940 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (if(𝑖𝑥, (𝑌𝑖), 0) + 0))
171 biorf 923 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖 ∈ {𝑧} → (𝑖𝑥 ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥)))
172 elun 3976 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖𝑥𝑖 ∈ {𝑧}))
173 orcom 859 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖𝑥𝑖 ∈ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
174172, 173bitri 267 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
175171, 174syl6rbbr 282 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖 ∈ {𝑧} → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
176175adantl 475 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
177176ifbid 4329 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
178165, 170, 1773eqtr4d 2824 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
179162, 178pm2.61dan 803 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
180179mpteq2dva 4981 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
181145, 180eqtrd 2814 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
182181eqeq2d 2788 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
183182ifbid 4329 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
184183mpteq2dv 4982 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
185135, 139, 1843eqtr3rd 2823 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
18648, 104mgpbas 18893 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝐺)
18748, 125mgpplusg 18891 . . . . . . . . . . . . . 14 (.r𝑃) = (+g𝐺)
188 eqid 2778 . . . . . . . . . . . . . 14 (Cntz‘𝐺) = (Cntz‘𝐺)
189 eqid 2778 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))
19092mplring 19860 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
1912, 95, 190syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
19248ringmgp 18951 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
193191, 192syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Mnd)
194193adantr 474 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐺 ∈ Mnd)
1951adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌𝐷)
196 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
197 fveq2 6448 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑉𝑥) = (𝑉𝑎))
198197oveq2d 6940 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑎)))
199197oveq1d 6939 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)))
200198, 199eqeq12d 2793 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦))))
201 fveq2 6448 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑉𝑦) = (𝑉𝑏))
202201oveq1d 6939 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑏)(+g𝐺)(𝑉𝑎)))
203201oveq2d 6940 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
204202, 203eqeq12d 2793 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏))))
205200, 204cbvral2v 3375 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
206196, 205sylib 210 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
207206adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
20892, 3, 93, 94, 105, 48, 136, 137, 106, 195, 207, 127mplcoe5lem 19875 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
20999, 127syl5ss 3832 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥𝐼)
210209sselda 3821 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → 𝑘𝐼)
211193adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → 𝐺 ∈ Mnd)
2127ffvelrnda 6625 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
2132adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝐼𝑊)
21495adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑅 ∈ Ring)
215 simpr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑘𝐼)
21692, 137, 104, 213, 214, 215mvrcl 19857 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑉𝑘) ∈ (Base‘𝑃))
217186, 136mulgnn0cl 17955 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Mnd ∧ (𝑌𝑘) ∈ ℕ0 ∧ (𝑉𝑘) ∈ (Base‘𝑃)) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
218211, 212, 216, 217syl3anc 1439 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
219218adantlr 705 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
220210, 219syldan 585 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
22192, 137, 104, 105, 106, 131mvrcl 19857 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑉𝑧) ∈ (Base‘𝑃))
222186, 136mulgnn0cl 17955 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Mnd ∧ (𝑌𝑧) ∈ ℕ0 ∧ (𝑉𝑧) ∈ (Base‘𝑃)) → ((𝑌𝑧) (𝑉𝑧)) ∈ (Base‘𝑃))
223194, 132, 221, 222syl3anc 1439 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑌𝑧) (𝑉𝑧)) ∈ (Base‘𝑃))
224 fveq2 6448 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑌𝑘) = (𝑌𝑧))
225 fveq2 6448 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑉𝑘) = (𝑉𝑧))
226224, 225oveq12d 6942 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
227226adantl 475 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 = 𝑧) → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
228186, 187, 188, 189, 194, 115, 208, 220, 131, 151, 223, 227gsumzunsnd 18752 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
229185, 228eqeq12d 2793 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧)))))
230103, 229syl5ibr 238 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
231230expr 450 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
232231a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
233102, 232syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
234233expcom 404 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
235234a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
23655, 67, 79, 91, 98, 235findcard2s 8491 . . . . 5 ((𝑌 “ ℕ) ∈ Fin → (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
23732, 236mpcom 38 . . . 4 (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
23831, 237mpd 15 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
23931resmptd 5704 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ)) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
240239oveq2d 6940 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
241218fmpttd 6651 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))):𝐼⟶(Base‘𝑃))
242 ssidd 3843 . . . . 5 (𝜑𝐼𝐼)
24392, 3, 93, 94, 2, 48, 136, 137, 95, 1, 196, 242mplcoe5lem 19875 . . . 4 (𝜑 → ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
2447, 16, 2, 18suppssr 7610 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑘) = 0)
245244oveq1d 6939 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (0 (𝑉𝑘)))
246 eldifi 3955 . . . . . . . 8 (𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ)) → 𝑘𝐼)
247246, 216sylan2 586 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑉𝑘) ∈ (Base‘𝑃))
248186, 50, 136mulg0 17944 . . . . . . 7 ((𝑉𝑘) ∈ (Base‘𝑃) → (0 (𝑉𝑘)) = (1r𝑃))
249247, 248syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (0 (𝑉𝑘)) = (1r𝑃))
250245, 249eqtrd 2814 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (1r𝑃))
251250, 2suppss2 7613 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))
2522mptexd 6761 . . . . 5 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V)
253 funmpt 6175 . . . . . 6 Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))
254253a1i 11 . . . . 5 (𝜑 → Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))))
255 fvexd 6463 . . . . 5 (𝜑 → (1r𝑃) ∈ V)
256 suppssfifsupp 8580 . . . . 5 ((((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V ∧ Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ (1r𝑃) ∈ V) ∧ ((𝑌 “ ℕ) ∈ Fin ∧ ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))) → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
257252, 254, 255, 32, 251, 256syl32anc 1446 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
258186, 50, 188, 193, 2, 241, 243, 251, 257gsumzres 18707 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
259238, 240, 2583eqtr2d 2820 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
26029, 259eqtrd 2814 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wral 3090  {crab 3094  Vcvv 3398  cdif 3789  cun 3790  wss 3792  c0 4141  ifcif 4307  {csn 4398   class class class wbr 4888  cmpt 4967   × cxp 5355  ccnv 5356  cres 5359  cima 5360  Fun wfun 6131  wf 6133  cfv 6137  (class class class)co 6924  𝑓 cof 7174   supp csupp 7578  𝑚 cmap 8142  Fincfn 8243   finSupp cfsupp 8565  0cc0 10274   + caddc 10277  cn 11379  0cn0 11647  Basecbs 16266  +gcplusg 16349  .rcmulr 16350  0gc0g 16497   Σg cgsu 16498  Mndcmnd 17691  .gcmg 17938  Cntzccntz 18142  mulGrpcmgp 18887  1rcur 18899  Ringcrg 18945   mVar cmvr 19760   mPoly cmpl 19761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-ofr 7177  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-fzo 12790  df-seq 13125  df-hash 13442  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-sca 16365  df-vsca 16366  df-tset 16368  df-0g 16499  df-gsum 16500  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-mhm 17732  df-submnd 17733  df-grp 17823  df-minusg 17824  df-mulg 17939  df-subg 17986  df-ghm 18053  df-cntz 18144  df-cmn 18592  df-abl 18593  df-mgp 18888  df-ur 18900  df-srg 18904  df-ring 18947  df-subrg 19181  df-psr 19764  df-mvr 19765  df-mpl 19766
This theorem is referenced by:  mplcoe2  19877  ply1coe  20073
  Copyright terms: Public domain W3C validator