| Step | Hyp | Ref
| Expression |
| 1 | | mplcoe5.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| 2 | | mplcoe1.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 3 | | mplcoe1.d |
. . . . . . . . . . 11
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 4 | 3 | psrbag 21937 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑊 → (𝑌 ∈ 𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin))) |
| 5 | 2, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ 𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin))) |
| 6 | 1, 5 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (◡𝑌 “ ℕ) ∈
Fin)) |
| 7 | 6 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝑌:𝐼⟶ℕ0) |
| 8 | 7 | feqmptd 6977 |
. . . . . 6
⊢ (𝜑 → 𝑌 = (𝑖 ∈ 𝐼 ↦ (𝑌‘𝑖))) |
| 9 | | iftrue 4531 |
. . . . . . . . 9
⊢ (𝑖 ∈ (◡𝑌 “ ℕ) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 10 | 9 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ (◡𝑌 “ ℕ)) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 11 | | eldif 3961 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ)) ↔ (𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ))) |
| 12 | | fcdmnn0supp 12583 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑌:𝐼⟶ℕ0) → (𝑌 supp 0) = (◡𝑌 “ ℕ)) |
| 13 | 2, 7, 12 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑌 supp 0) = (◡𝑌 “ ℕ)) |
| 14 | | eqimss 4042 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 supp 0) = (◡𝑌 “ ℕ) → (𝑌 supp 0) ⊆ (◡𝑌 “ ℕ)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑌 supp 0) ⊆ (◡𝑌 “ ℕ)) |
| 16 | | c0ex 11255 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 17 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
V) |
| 18 | 7, 15, 2, 17 | suppssr 8220 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑌‘𝑖) = 0) |
| 19 | 18 | ifeq2d 4546 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), (𝑌‘𝑖)) = if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) |
| 20 | | ifid 4566 |
. . . . . . . . . . 11
⊢ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), (𝑌‘𝑖)) = (𝑌‘𝑖) |
| 21 | 19, 20 | eqtr3di 2792 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 22 | 11, 21 | sylan2br 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ))) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 23 | 22 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ (◡𝑌 “ ℕ)) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 24 | 10, 23 | pm2.61dan 813 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 25 | 24 | mpteq2dva 5242 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ (𝑌‘𝑖))) |
| 26 | 8, 25 | eqtr4d 2780 |
. . . . 5
⊢ (𝜑 → 𝑌 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0))) |
| 27 | 26 | eqeq2d 2748 |
. . . 4
⊢ (𝜑 → (𝑦 = 𝑌 ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)))) |
| 28 | 27 | ifbid 4549 |
. . 3
⊢ (𝜑 → if(𝑦 = 𝑌, 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 29 | 28 | mpteq2dv 5244 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 30 | | cnvimass 6100 |
. . . . 5
⊢ (◡𝑌 “ ℕ) ⊆ dom 𝑌 |
| 31 | 30, 7 | fssdm 6755 |
. . . 4
⊢ (𝜑 → (◡𝑌 “ ℕ) ⊆ 𝐼) |
| 32 | 6 | simprd 495 |
. . . . 5
⊢ (𝜑 → (◡𝑌 “ ℕ) ∈
Fin) |
| 33 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
| 34 | | noel 4338 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑖 ∈
∅ |
| 35 | | eleq2 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ∅)) |
| 36 | 34, 35 | mtbiri 327 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = ∅ → ¬ 𝑖 ∈ 𝑤) |
| 37 | 36 | iffalsed 4536 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = ∅ → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = 0) |
| 38 | 37 | mpteq2dv 5244 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ 0)) |
| 39 | | fconstmpt 5747 |
. . . . . . . . . . . . 13
⊢ (𝐼 × {0}) = (𝑖 ∈ 𝐼 ↦ 0) |
| 40 | 38, 39 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝐼 × {0})) |
| 41 | 40 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝐼 × {0}))) |
| 42 | 41 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 )) |
| 43 | 42 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
| 44 | | mpteq1 5235 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ ∅ ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 45 | | mpt0 6710 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ∅ ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = ∅ |
| 46 | 44, 45 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = ∅) |
| 47 | 46 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg
∅)) |
| 48 | | mplcoe2.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (mulGrp‘𝑃) |
| 49 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 50 | 48, 49 | ringidval 20180 |
. . . . . . . . . . 11
⊢
(1r‘𝑃) = (0g‘𝐺) |
| 51 | 50 | gsum0 18697 |
. . . . . . . . . 10
⊢ (𝐺 Σg
∅) = (1r‘𝑃) |
| 52 | 47, 51 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝐺 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (1r‘𝑃)) |
| 53 | 43, 52 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))) |
| 54 | 33, 53 | imbi12d 344 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃)))) |
| 55 | 54 | imbi2d 340 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))))) |
| 56 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐼 ↔ 𝑥 ⊆ 𝐼)) |
| 57 | | eleq2 2830 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ 𝑥)) |
| 58 | 57 | ifbid 4549 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
| 59 | 58 | mpteq2dv 5244 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0))) |
| 60 | 59 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)))) |
| 61 | 60 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) |
| 62 | 61 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 63 | | mpteq1 5235 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 64 | 63 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 65 | 62, 64 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 66 | 56, 65 | imbi12d 344 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 67 | 66 | imbi2d 340 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 68 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤 ⊆ 𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) |
| 69 | | eleq2 2830 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ (𝑥 ∪ {𝑧}))) |
| 70 | 69 | ifbid 4549 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 71 | 70 | mpteq2dv 5244 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
| 72 | 71 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)))) |
| 73 | 72 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 74 | 73 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 75 | | mpteq1 5235 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 76 | 75 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 77 | 74, 76 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 78 | 68, 77 | imbi12d 344 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 79 | 78 | imbi2d 340 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 80 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑤 ⊆ 𝐼 ↔ (◡𝑌 “ ℕ) ⊆ 𝐼)) |
| 81 | | eleq2 2830 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑖 ∈ 𝑤 ↔ 𝑖 ∈ (◡𝑌 “ ℕ))) |
| 82 | 81 | ifbid 4549 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (◡𝑌 “ ℕ) → if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0) = if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)) |
| 83 | 82 | mpteq2dv 5244 |
. . . . . . . . . . . 12
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0))) |
| 84 | 83 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)))) |
| 85 | 84 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝑌 “ ℕ) → if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 86 | 85 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 87 | | mpteq1 5235 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 88 | 87 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝑌 “ ℕ) → (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 89 | 86, 88 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 90 | 80, 89 | imbi12d 344 |
. . . . . . 7
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) ↔ ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 91 | 90 | imbi2d 340 |
. . . . . 6
⊢ (𝑤 = (◡𝑌 “ ℕ) → ((𝜑 → (𝑤 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑤, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑤 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) ↔ (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 92 | | mplcoe1.p |
. . . . . . . . 9
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 93 | | mplcoe1.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
| 94 | | mplcoe1.o |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
| 95 | | mplcoe5.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 96 | 92, 3, 93, 94, 49, 2, 95 | mpl1 22032 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑃) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 ))) |
| 97 | 96, 49 | eqtr3di 2792 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃)) |
| 98 | 97 | a1d 25 |
. . . . . 6
⊢ (𝜑 → (∅ ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) =
(1r‘𝑃))) |
| 99 | | ssun1 4178 |
. . . . . . . . . . 11
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
| 100 | | sstr2 3990 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼)) |
| 101 | 99, 100 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼) |
| 102 | 101 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 103 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 104 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 105 | 2 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ 𝑊) |
| 106 | 95 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ Ring) |
| 107 | 7 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌:𝐼⟶ℕ0) |
| 108 | 107 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (𝑌‘𝑖) ∈
ℕ0) |
| 109 | | 0nn0 12541 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℕ0 |
| 110 | | ifcl 4571 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑌‘𝑖) ∈ ℕ0 ∧ 0 ∈
ℕ0) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
| 111 | 108, 109,
110 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
| 112 | 111 | fmpttd 7135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0) |
| 113 | | fcdmnn0supp 12583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) = (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ)) |
| 114 | 105, 112,
113 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) = (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ)) |
| 115 | | simprll 779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin) |
| 116 | | eldifn 4132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (𝐼 ∖ 𝑥) → ¬ 𝑖 ∈ 𝑥) |
| 117 | 116 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼 ∖ 𝑥)) → ¬ 𝑖 ∈ 𝑥) |
| 118 | 117 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼 ∖ 𝑥)) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) = 0) |
| 119 | 118, 105 | suppss2 8225 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ⊆ 𝑥) |
| 120 | 115, 119 | ssfid 9301 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) supp 0) ∈ Fin) |
| 121 | 114, 120 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin) |
| 122 | 3 | psrbag 21937 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ 𝑊 → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷 ↔ ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0 ∧ (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin))) |
| 123 | 105, 122 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷 ↔ ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)):𝐼⟶ℕ0 ∧ (◡(𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) “ ℕ) ∈
Fin))) |
| 124 | 112, 121,
123 | mpbir2and 713 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∈ 𝐷) |
| 125 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 126 | | ssun2 4179 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑧} ⊆ (𝑥 ∪ {𝑧}) |
| 127 | | simprr 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑥 ∪ {𝑧}) ⊆ 𝐼) |
| 128 | 126, 127 | sstrid 3995 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → {𝑧} ⊆ 𝐼) |
| 129 | | vex 3484 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑧 ∈ V |
| 130 | 129 | snss 4785 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐼 ↔ {𝑧} ⊆ 𝐼) |
| 131 | 128, 130 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧 ∈ 𝐼) |
| 132 | 107, 131 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑌‘𝑧) ∈
ℕ0) |
| 133 | 3 | snifpsrbag 21940 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑌‘𝑧) ∈ ℕ0) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) ∈ 𝐷) |
| 134 | 105, 132,
133 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) ∈ 𝐷) |
| 135 | 92, 104, 93, 94, 3, 105, 106, 124, 125, 134 | mplmonmul 22054 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 ))) |
| 136 | | mplcoe2.m |
. . . . . . . . . . . . . . . 16
⊢ ↑ =
(.g‘𝐺) |
| 137 | | mplcoe2.v |
. . . . . . . . . . . . . . . 16
⊢ 𝑉 = (𝐼 mVar 𝑅) |
| 138 | 92, 3, 93, 94, 105, 48, 136, 137, 106, 131, 132 | mplcoe3 22056 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 )) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
| 139 | 138 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)), 1 , 0 ))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 140 | 132 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
| 141 | | ifcl 4571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑌‘𝑧) ∈ ℕ0 ∧ 0 ∈
ℕ0) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) ∈
ℕ0) |
| 142 | 140, 109,
141 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) ∈
ℕ0) |
| 143 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0))) |
| 144 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) |
| 145 | 105, 111,
142, 143, 144 | offval2 7717 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)))) |
| 146 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) ∈
ℕ0) |
| 147 | 146 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) ∈ ℂ) |
| 148 | 147 | addlidd 11462 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (0 + (𝑌‘𝑖)) = (𝑌‘𝑖)) |
| 149 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ {𝑧} → 𝑖 = 𝑧) |
| 150 | 149 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 = 𝑧) |
| 151 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ¬ 𝑧 ∈ 𝑥) |
| 152 | 151 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑧 ∈ 𝑥) |
| 153 | 150, 152 | eqneltrd 2861 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ 𝑥) |
| 154 | 153 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) = 0) |
| 155 | 150 | iftrued 4533 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = (𝑌‘𝑧)) |
| 156 | 150 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌‘𝑖) = (𝑌‘𝑧)) |
| 157 | 155, 156 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = (𝑌‘𝑖)) |
| 158 | 154, 157 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (0 + (𝑌‘𝑖))) |
| 159 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ {𝑧}) |
| 160 | 126, 159 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 161 | 160 | iftrued 4533 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0) = (𝑌‘𝑖)) |
| 162 | 148, 158,
161 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 163 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈
ℕ0) |
| 164 | 163 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) ∈ ℂ) |
| 165 | 164 | addridd 11461 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
| 166 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ {𝑧}) |
| 167 | | velsn 4642 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧) |
| 168 | 166, 167 | sylnib 328 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 = 𝑧) |
| 169 | 168 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌‘𝑧), 0) = 0) |
| 170 | 169 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + 0)) |
| 171 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ 𝑥 ∨ 𝑖 ∈ {𝑧})) |
| 172 | | orcom 871 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ 𝑥 ∨ 𝑖 ∈ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥)) |
| 173 | 171, 172 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥)) |
| 174 | | biorf 937 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑖 ∈ {𝑧} → (𝑖 ∈ 𝑥 ↔ (𝑖 ∈ {𝑧} ∨ 𝑖 ∈ 𝑥))) |
| 175 | 173, 174 | bitr4id 290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑖 ∈ {𝑧} → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖 ∈ 𝑥)) |
| 176 | 175 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖 ∈ 𝑥)) |
| 177 | 176 | ifbid 4549 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0) = if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) |
| 178 | 165, 170,
177 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 179 | 162, 178 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ 𝐼) → (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)) |
| 180 | 179 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖 ∈ 𝐼 ↦ (if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0) + if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
| 181 | 145, 180 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0))) |
| 182 | 181 | eqeq2d 2748 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))) ↔ 𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)))) |
| 183 | 182 | ifbid 4549 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 ) = if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) |
| 184 | 183 | mpteq2dv 5244 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = ((𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)) ∘f + (𝑖 ∈ 𝐼 ↦ if(𝑖 = 𝑧, (𝑌‘𝑧), 0))), 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 ))) |
| 185 | 135, 139,
184 | 3eqtr3rd 2786 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 186 | 48, 104 | mgpbas 20142 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑃) =
(Base‘𝐺) |
| 187 | 48, 125 | mgpplusg 20141 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑃) = (+g‘𝐺) |
| 188 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 189 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) |
| 190 | 92, 2, 95 | mplringd 22043 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 191 | 48 | ringmgp 20236 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) |
| 192 | 190, 191 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 193 | 192 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐺 ∈ Mnd) |
| 194 | 1 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌 ∈ 𝐷) |
| 195 | | mplcoe5.c |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
| 196 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑉‘𝑥) = (𝑉‘𝑎)) |
| 197 | 196 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎))) |
| 198 | 196 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦))) |
| 199 | 197, 198 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) ↔ ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)))) |
| 200 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → (𝑉‘𝑦) = (𝑉‘𝑏)) |
| 201 | 200 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎))) |
| 202 | 200 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑏 → ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 203 | 201, 202 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑏 → (((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑦)) ↔ ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏)))) |
| 204 | 199, 203 | cbvral2vw 3241 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦)) ↔ ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 205 | 195, 204 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 206 | 205 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑉‘𝑏)(+g‘𝐺)(𝑉‘𝑎)) = ((𝑉‘𝑎)(+g‘𝐺)(𝑉‘𝑏))) |
| 207 | 92, 3, 93, 94, 105, 48, 136, 137, 106, 194, 206, 127 | mplcoe5lem 22057 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 208 | 99, 127 | sstrid 3995 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ⊆ 𝐼) |
| 209 | 208 | sselda 3983 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐼) |
| 210 | 192 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐺 ∈ Mnd) |
| 211 | 7 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑌‘𝑘) ∈
ℕ0) |
| 212 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 213 | 95 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 214 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
| 215 | 92, 137, 104, 212, 213, 214 | mvrcl 22012 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑉‘𝑘) ∈ (Base‘𝑃)) |
| 216 | 186, 136,
210, 211, 215 | mulgnn0cld 19113 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
| 217 | 216 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
| 218 | 209, 217 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝑥) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) ∈ (Base‘𝑃)) |
| 219 | 92, 137, 104, 105, 106, 131 | mvrcl 22012 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑉‘𝑧) ∈ (Base‘𝑃)) |
| 220 | 186, 136,
193, 132, 219 | mulgnn0cld 19113 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑌‘𝑧) ↑ (𝑉‘𝑧)) ∈ (Base‘𝑃)) |
| 221 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑌‘𝑘) = (𝑌‘𝑧)) |
| 222 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑉‘𝑘) = (𝑉‘𝑧)) |
| 223 | 221, 222 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
| 224 | 223 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 = 𝑧) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = ((𝑌‘𝑧) ↑ (𝑉‘𝑧))) |
| 225 | 186, 187,
188, 189, 193, 115, 207, 218, 131, 151, 220, 224 | gsumzunsnd 19974 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧)))) |
| 226 | 185, 225 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0
))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))) = ((𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))(.r‘𝑃)((𝑌‘𝑧) ↑ (𝑉‘𝑧))))) |
| 227 | 103, 226 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 228 | 227 | expr 456 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 229 | 228 | a2d 29 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 230 | 102, 229 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 231 | 230 | expcom 413 |
. . . . . . 7
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → (𝜑 → ((𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 232 | 231 | a2d 29 |
. . . . . 6
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ 𝑥, (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝑥 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))))) |
| 233 | 55, 67, 79, 91, 98, 232 | findcard2s 9205 |
. . . . 5
⊢ ((◡𝑌 “ ℕ) ∈ Fin → (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))))) |
| 234 | 32, 233 | mpcom 38 |
. . . 4
⊢ (𝜑 → ((◡𝑌 “ ℕ) ⊆ 𝐼 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))))) |
| 235 | 31, 234 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 236 | 31 | resmptd 6058 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ)) = (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 237 | 236 | oveq2d 7447 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ (◡𝑌 “ ℕ) ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 238 | 216 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))):𝐼⟶(Base‘𝑃)) |
| 239 | | ssidd 4007 |
. . . . 5
⊢ (𝜑 → 𝐼 ⊆ 𝐼) |
| 240 | 92, 3, 93, 94, 2, 48, 136, 137, 95, 1, 195, 239 | mplcoe5lem 22057 |
. . . 4
⊢ (𝜑 → ran (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 241 | 7, 15, 2, 17 | suppssr 8220 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑌‘𝑘) = 0) |
| 242 | 241 | oveq1d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = (0 ↑ (𝑉‘𝑘))) |
| 243 | | eldifi 4131 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ)) → 𝑘 ∈ 𝐼) |
| 244 | 243, 215 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (𝑉‘𝑘) ∈ (Base‘𝑃)) |
| 245 | 186, 50, 136 | mulg0 19092 |
. . . . . . 7
⊢ ((𝑉‘𝑘) ∈ (Base‘𝑃) → (0 ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
| 246 | 244, 245 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → (0 ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
| 247 | 242, 246 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ (◡𝑌 “ ℕ))) → ((𝑌‘𝑘) ↑ (𝑉‘𝑘)) = (1r‘𝑃)) |
| 248 | 247, 2 | suppss2 8225 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) supp (1r‘𝑃)) ⊆ (◡𝑌 “ ℕ)) |
| 249 | 2 | mptexd 7244 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∈ V) |
| 250 | | funmpt 6604 |
. . . . . 6
⊢ Fun
(𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) |
| 251 | 250 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘)))) |
| 252 | | fvexd 6921 |
. . . . 5
⊢ (𝜑 → (1r‘𝑃) ∈ V) |
| 253 | | suppssfifsupp 9420 |
. . . . 5
⊢ ((((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∈ V ∧ Fun (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ∧ (1r‘𝑃) ∈ V) ∧ ((◡𝑌 “ ℕ) ∈ Fin ∧ ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) supp (1r‘𝑃)) ⊆ (◡𝑌 “ ℕ))) → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) finSupp (1r‘𝑃)) |
| 254 | 249, 251,
252, 32, 248, 253 | syl32anc 1380 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) finSupp (1r‘𝑃)) |
| 255 | 186, 50, 188, 192, 2, 238, 240, 248, 254 | gsumzres 19927 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ↾ (◡𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 256 | 235, 237,
255 | 3eqtr2d 2783 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑖 ∈ 𝐼 ↦ if(𝑖 ∈ (◡𝑌 “ ℕ), (𝑌‘𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| 257 | 29, 256 | eqtrd 2777 |
1
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |