MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htth Structured version   Visualization version   GIF version

Theorem htth 29860
Description: Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
Assertion
Ref Expression
htth ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
Distinct variable groups:   𝑥,𝑦,𝑇   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem htth
Dummy variables 𝑤 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htth.3 . . . . . . 7 𝐿 = (𝑈 LnOp 𝑈)
2 oveq12 7366 . . . . . . . 8 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
32anidms 567 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
41, 3eqtrid 2788 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐿 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
54eleq2d 2823 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐿𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
6 htth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
7 fveq2 6842 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
86, 7eqtrid 2788 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
9 htth.2 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
10 fveq2 6842 . . . . . . . . . 10 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
119, 10eqtrid 2788 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1211oveqd 7374 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑥𝑃(𝑇𝑦)) = (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
1311oveqd 7374 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝑥)𝑃𝑦) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
1412, 13eqeq12d 2752 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
158, 14raleqbidv 3319 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
168, 15raleqbidv 3319 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
175, 16anbi12d 631 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) ↔ (𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))))
18 htth.4 . . . . . 6 𝐵 = (𝑈 BLnOp 𝑈)
19 oveq12 7366 . . . . . . 7 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2019anidms 567 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2118, 20eqtrid 2788 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐵 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2221eleq2d 2823 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐵𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
2317, 22imbi12d 344 . . 3 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵) ↔ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
24 eqid 2736 . . . 4 (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 eqid 2736 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2736 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
27 eqid 2736 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
28 eqid 2736 . . . 4 (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
29 eqid 2736 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3029cnchl 29858 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CHilOLD
3130elimel 4555 . . . 4 if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CHilOLD
32 simpl 483 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
33 simpr 485 . . . . 5 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
34 oveq1 7364 . . . . . . 7 (𝑥 = 𝑢 → (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
35 fveq2 6842 . . . . . . . 8 (𝑥 = 𝑢 → (𝑇𝑥) = (𝑇𝑢))
3635oveq1d 7372 . . . . . . 7 (𝑥 = 𝑢 → ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
3734, 36eqeq12d 2752 . . . . . 6 (𝑥 = 𝑢 → ((𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
38 fveq2 6842 . . . . . . . 8 (𝑦 = 𝑣 → (𝑇𝑦) = (𝑇𝑣))
3938oveq2d 7373 . . . . . . 7 (𝑦 = 𝑣 → (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)))
40 oveq2 7365 . . . . . . 7 (𝑦 = 𝑣 → ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4139, 40eqeq12d 2752 . . . . . 6 (𝑦 = 𝑣 → ((𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣)))
4237, 41cbvral2vw 3227 . . . . 5 (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4333, 42sylib 217 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
44 oveq1 7364 . . . . . . 7 (𝑦 = 𝑤 → (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
4544cbvmptv 5218 . . . . . 6 (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
46 fveq2 6842 . . . . . . . 8 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
4746oveq2d 7373 . . . . . . 7 (𝑥 = 𝑧 → (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧)))
4847mpteq2dv 5207 . . . . . 6 (𝑥 = 𝑧 → (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
4945, 48eqtrid 2788 . . . . 5 (𝑥 = 𝑧 → (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
5049cbvmptv 5218 . . . 4 (𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) = (𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
51 fveq2 6842 . . . . . . 7 (𝑥 = 𝑧 → ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) = ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧))
5251breq1d 5115 . . . . . 6 (𝑥 = 𝑧 → (((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1 ↔ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1))
5352cbvrabv 3417 . . . . 5 {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1} = {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1}
5453imaeq2i 6011 . . . 4 ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1}) = ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1})
5524, 25, 26, 27, 28, 31, 29, 32, 43, 50, 54htthlem 29859 . . 3 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
5623, 55dedth 4544 . 2 (𝑈 ∈ CHilOLD → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵))
57563impib 1116 1 ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  {crab 3407  ifcif 4486  cop 4592   class class class wbr 5105  cmpt 5188  cima 5636  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  abscabs 15119  BaseSetcba 29528  normCVcnmcv 29532  ·𝑖OLDcdip 29642   LnOp clno 29682   BLnOp cblo 29684  CHilOLDchlo 29827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-dc 10382  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-lm 22580  df-t1 22665  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-fcls 23292  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-cfil 24619  df-cau 24620  df-cmet 24621  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-dip 29643  df-lno 29686  df-nmoo 29687  df-blo 29688  df-0o 29689  df-ph 29755  df-cbn 29805  df-hlo 29828
This theorem is referenced by:  hmopbdoptHIL  30930
  Copyright terms: Public domain W3C validator