MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htth Structured version   Visualization version   GIF version

Theorem htth 30721
Description: Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
Assertion
Ref Expression
htth ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
Distinct variable groups:   𝑥,𝑦,𝑇   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem htth
Dummy variables 𝑤 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htth.3 . . . . . . 7 𝐿 = (𝑈 LnOp 𝑈)
2 oveq12 7423 . . . . . . . 8 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
32anidms 566 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
41, 3eqtrid 2780 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐿 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
54eleq2d 2815 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐿𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
6 htth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
7 fveq2 6891 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
86, 7eqtrid 2780 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
9 htth.2 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
10 fveq2 6891 . . . . . . . . . 10 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
119, 10eqtrid 2780 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1211oveqd 7431 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑥𝑃(𝑇𝑦)) = (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
1311oveqd 7431 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝑥)𝑃𝑦) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
1412, 13eqeq12d 2744 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
158, 14raleqbidv 3338 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
168, 15raleqbidv 3338 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
175, 16anbi12d 631 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) ↔ (𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))))
18 htth.4 . . . . . 6 𝐵 = (𝑈 BLnOp 𝑈)
19 oveq12 7423 . . . . . . 7 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2019anidms 566 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2118, 20eqtrid 2780 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐵 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2221eleq2d 2815 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐵𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
2317, 22imbi12d 344 . . 3 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵) ↔ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
24 eqid 2728 . . . 4 (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 eqid 2728 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2728 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
27 eqid 2728 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
28 eqid 2728 . . . 4 (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
29 eqid 2728 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3029cnchl 30719 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CHilOLD
3130elimel 4593 . . . 4 if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CHilOLD
32 simpl 482 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
33 simpr 484 . . . . 5 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
34 oveq1 7421 . . . . . . 7 (𝑥 = 𝑢 → (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
35 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑢 → (𝑇𝑥) = (𝑇𝑢))
3635oveq1d 7429 . . . . . . 7 (𝑥 = 𝑢 → ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
3734, 36eqeq12d 2744 . . . . . 6 (𝑥 = 𝑢 → ((𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
38 fveq2 6891 . . . . . . . 8 (𝑦 = 𝑣 → (𝑇𝑦) = (𝑇𝑣))
3938oveq2d 7430 . . . . . . 7 (𝑦 = 𝑣 → (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)))
40 oveq2 7422 . . . . . . 7 (𝑦 = 𝑣 → ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4139, 40eqeq12d 2744 . . . . . 6 (𝑦 = 𝑣 → ((𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣)))
4237, 41cbvral2vw 3234 . . . . 5 (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4333, 42sylib 217 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
44 oveq1 7421 . . . . . . 7 (𝑦 = 𝑤 → (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
4544cbvmptv 5255 . . . . . 6 (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
46 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
4746oveq2d 7430 . . . . . . 7 (𝑥 = 𝑧 → (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧)))
4847mpteq2dv 5244 . . . . . 6 (𝑥 = 𝑧 → (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
4945, 48eqtrid 2780 . . . . 5 (𝑥 = 𝑧 → (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
5049cbvmptv 5255 . . . 4 (𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) = (𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
51 fveq2 6891 . . . . . . 7 (𝑥 = 𝑧 → ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) = ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧))
5251breq1d 5152 . . . . . 6 (𝑥 = 𝑧 → (((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1 ↔ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1))
5352cbvrabv 3438 . . . . 5 {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1} = {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1}
5453imaeq2i 6055 . . . 4 ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1}) = ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1})
5524, 25, 26, 27, 28, 31, 29, 32, 43, 50, 54htthlem 30720 . . 3 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
5623, 55dedth 4582 . 2 (𝑈 ∈ CHilOLD → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵))
57563impib 1114 1 ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  {crab 3428  ifcif 4524  cop 4630   class class class wbr 5142  cmpt 5225  cima 5675  cfv 6542  (class class class)co 7414  1c1 11133   + caddc 11135   · cmul 11137  cle 11273  abscabs 15207  BaseSetcba 30389  normCVcnmcv 30393  ·𝑖OLDcdip 30503   LnOp clno 30543   BLnOp cblo 30545  CHilOLDchlo 30688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-dc 10463  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211  ax-mulf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-cn 23124  df-cnp 23125  df-lm 23126  df-t1 23211  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-fcls 23838  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-cfil 25176  df-cau 25177  df-cmet 25178  df-grpo 30296  df-gid 30297  df-ginv 30298  df-gdiv 30299  df-ablo 30348  df-vc 30362  df-nv 30395  df-va 30398  df-ba 30399  df-sm 30400  df-0v 30401  df-vs 30402  df-nmcv 30403  df-ims 30404  df-dip 30504  df-lno 30547  df-nmoo 30548  df-blo 30549  df-0o 30550  df-ph 30616  df-cbn 30666  df-hlo 30689
This theorem is referenced by:  hmopbdoptHIL  31791
  Copyright terms: Public domain W3C validator