| Step | Hyp | Ref
| Expression |
| 1 | | htth.3 |
. . . . . . 7
⊢ 𝐿 = (𝑈 LnOp 𝑈) |
| 2 | | oveq12 7440 |
. . . . . . . 8
⊢ ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) ∧ 𝑈
= if(𝑈 ∈
CHilOLD, 𝑈,
〈〈 + , · 〉, abs〉)) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 3 | 2 | anidms 566 |
. . . . . . 7
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 4 | 1, 3 | eqtrid 2789 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → 𝐿
= (if(𝑈 ∈
CHilOLD, 𝑈,
〈〈 + , · 〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 5 | 4 | eleq2d 2827 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝑇 ∈ 𝐿 ↔ 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)))) |
| 6 | | htth.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
| 7 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 8 | 6, 7 | eqtrid 2789 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → 𝑋
= (BaseSet‘if(𝑈
∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))) |
| 9 | | htth.2 |
. . . . . . . . . 10
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
| 10 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (·𝑖OLD‘𝑈) =
(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 11 | 9, 10 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → 𝑃
= (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 12 | 11 | oveqd 7448 |
. . . . . . . 8
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝑥𝑃(𝑇‘𝑦)) = (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦))) |
| 13 | 11 | oveqd 7448 |
. . . . . . . 8
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝑇‘𝑥)𝑃𝑦) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) |
| 14 | 12, 13 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦) ↔ (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦))) |
| 15 | 8, 14 | raleqbidv 3346 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦) ↔ ∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦))) |
| 16 | 8, 15 | raleqbidv 3346 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦) ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦))) |
| 17 | 5, 16 | anbi12d 632 |
. . . 4
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → ((𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) ↔ (𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)))) |
| 18 | | htth.4 |
. . . . . 6
⊢ 𝐵 = (𝑈 BLnOp 𝑈) |
| 19 | | oveq12 7440 |
. . . . . . 7
⊢ ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) ∧ 𝑈
= if(𝑈 ∈
CHilOLD, 𝑈,
〈〈 + , · 〉, abs〉)) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 20 | 19 | anidms 566 |
. . . . . 6
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 21 | 18, 20 | eqtrid 2789 |
. . . . 5
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → 𝐵
= (if(𝑈 ∈
CHilOLD, 𝑈,
〈〈 + , · 〉, abs〉) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))) |
| 22 | 21 | eleq2d 2827 |
. . . 4
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (𝑇 ∈ 𝐵 ↔ 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)))) |
| 23 | 17, 22 | imbi12d 344 |
. . 3
⊢ (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) → (((𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) → 𝑇 ∈ 𝐵) ↔ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) BLnOp
if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))))) |
| 24 | | eqid 2737 |
. . . 4
⊢
(BaseSet‘if(𝑈
∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉)) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) |
| 25 | | eqid 2737 |
. . . 4
⊢
(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) |
| 26 | | eqid 2737 |
. . . 4
⊢ (if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) = (if(𝑈
∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉) LnOp if(𝑈 ∈
CHilOLD, 𝑈,
〈〈 + , · 〉, abs〉)) |
| 27 | | eqid 2737 |
. . . 4
⊢ (if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) = (if(𝑈
∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉) BLnOp if(𝑈
∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉)) |
| 28 | | eqid 2737 |
. . . 4
⊢
(normCV‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) = (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) |
| 29 | | eqid 2737 |
. . . . . 6
⊢
〈〈 + , · 〉, abs〉 = 〈〈 + , ·
〉, abs〉 |
| 30 | 29 | cnchl 30935 |
. . . . 5
⊢
〈〈 + , · 〉, abs〉 ∈
CHilOLD |
| 31 | 30 | elimel 4595 |
. . . 4
⊢ if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉) ∈ CHilOLD |
| 32 | | simpl 482 |
. . . 4
⊢ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) LnOp
if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))) |
| 33 | | simpr 484 |
. . . . 5
⊢ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) → ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))∀𝑦 ∈
(BaseSet‘if(𝑈 ∈
CHilOLD, 𝑈, 〈〈 +
, · 〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) |
| 34 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦))) |
| 35 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑇‘𝑥) = (𝑇‘𝑢)) |
| 36 | 35 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦) = ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) |
| 37 | 34, 36 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑥 = 𝑢 → ((𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦))) |
| 38 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → (𝑇‘𝑦) = (𝑇‘𝑣)) |
| 39 | 38 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑣))) |
| 40 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦) = ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑣)) |
| 41 | 39, 40 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑦 = 𝑣 → ((𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑣)) = ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑣))) |
| 42 | 37, 41 | cbvral2vw 3241 |
. . . . 5
⊢
(∀𝑥 ∈
(BaseSet‘if(𝑈 ∈
CHilOLD, 𝑈,
〈〈 + , · 〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦) ↔ ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))∀𝑣 ∈
(BaseSet‘if(𝑈 ∈
CHilOLD, 𝑈, 〈〈 +
, · 〉, abs〉))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑣)) = ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑣)) |
| 43 | 33, 42 | sylib 218 |
. . . 4
⊢ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) → ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))∀𝑣 ∈
(BaseSet‘if(𝑈 ∈
CHilOLD, 𝑈, 〈〈 +
, · 〉, abs〉))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑣)) = ((𝑇‘𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑣)) |
| 44 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥))) |
| 45 | 44 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))
↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥))) |
| 46 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑇‘𝑥) = (𝑇‘𝑧)) |
| 47 | 46 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑧))) |
| 48 | 47 | mpteq2dv 5244 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))
↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑧)))) |
| 49 | 45, 48 | eqtrid 2789 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))
↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑧)))) |
| 50 | 49 | cbvmptv 5255 |
. . . 4
⊢ (𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥)))) = (𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))
↦ (𝑤 ∈
(BaseSet‘if(𝑈 ∈
CHilOLD, 𝑈, 〈〈
+ , · 〉, abs〉)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑧)))) |
| 51 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((normCV‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))‘𝑥) = ((normCV‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))‘𝑧)) |
| 52 | 51 | breq1d 5153 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((normCV‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))‘𝑥) ≤ 1 ↔
((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))‘𝑧) ≤ 1)) |
| 53 | 52 | cbvrabv 3447 |
. . . . 5
⊢ {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉))‘𝑥) ≤ 1} = {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))‘𝑧) ≤ 1} |
| 54 | 53 | imaeq2i 6076 |
. . . 4
⊢ ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD,
𝑈, 〈〈 + ,
· 〉, abs〉)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥)))) “ {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))
∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))‘𝑥) ≤ 1}) =
((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉)) ↦ (𝑦 ∈
(BaseSet‘if(𝑈 ∈
CHilOLD, 𝑈, 〈〈
+ , · 〉, abs〉)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑥)))) “ {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉))
∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))‘𝑧) ≤
1}) |
| 55 | 24, 25, 26, 27, 28, 31, 29, 32, 43, 50, 54 | htthlem 30936 |
. . 3
⊢ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉) LnOp if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , ·
〉, abs〉))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))(𝑇‘𝑦)) = ((𝑇‘𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) BLnOp
if(𝑈 ∈ CHilOLD, 𝑈, 〈〈 + , · 〉,
abs〉))) |
| 56 | 23, 55 | dedth 4584 |
. 2
⊢ (𝑈 ∈ CHilOLD
→ ((𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) → 𝑇 ∈ 𝐵)) |
| 57 | 56 | 3impib 1117 |
1
⊢ ((𝑈 ∈ CHilOLD ∧
𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) → 𝑇 ∈ 𝐵) |