Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2 Structured version   Visualization version   GIF version

Theorem dfmgc2 31274
Description: Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
Assertion
Ref Expression
dfmgc2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢, ,𝑣   𝑥, ,𝑦   𝑢,   𝑥, ,𝑦   𝑢,𝐵   𝑢,𝐹,𝑣   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑥,𝐻,𝑦   𝜑,𝑢,𝑣   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2
Dummy variables 𝑖 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcoval.1 . . . . 5 𝐴 = (Base‘𝑉)
2 mgcoval.2 . . . . 5 𝐵 = (Base‘𝑊)
3 mgcoval.3 . . . . 5 = (le‘𝑉)
4 mgcoval.4 . . . . 5 = (le‘𝑊)
5 mgcval.1 . . . . 5 𝐻 = (𝑉MGalConn𝑊)
6 mgcval.2 . . . . 5 (𝜑𝑉 ∈ Proset )
7 mgcval.3 . . . . 5 (𝜑𝑊 ∈ Proset )
81, 2, 3, 4, 5, 6, 7mgcval 31265 . . . 4 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
98simprbda 499 . . 3 ((𝜑𝐹𝐻𝐺) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
106ad4antr 729 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑉 ∈ Proset )
117ad4antr 729 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑊 ∈ Proset )
12 simp-4r 781 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝐹𝐻𝐺)
13 simpllr 773 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥𝐴)
14 simplr 766 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑦𝐴)
15 simpr 485 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥 𝑦)
161, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15mgcmnt1 31270 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → (𝐹𝑥) (𝐹𝑦))
1716ex 413 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1817anasss 467 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1918ralrimivva 3123 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
206ad4antr 729 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑉 ∈ Proset )
217ad4antr 729 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑊 ∈ Proset )
22 simp-4r 781 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝐹𝐻𝐺)
23 simpllr 773 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢𝐵)
24 simplr 766 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑣𝐵)
25 simpr 485 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢 𝑣)
261, 2, 3, 4, 5, 20, 21, 22, 23, 24, 25mgcmnt2 31271 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → (𝐺𝑢) (𝐺𝑣))
2726ex 413 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2827anasss 467 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2928ralrimivva 3123 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
3019, 29jca 512 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
316ad2antrr 723 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑉 ∈ Proset )
327ad2antrr 723 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑊 ∈ Proset )
33 simplr 766 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝐹𝐻𝐺)
34 simpr 485 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑢𝐵)
351, 2, 3, 4, 5, 31, 32, 33, 34mgccole2 31269 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
3635ralrimiva 3103 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
376ad2antrr 723 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
387ad2antrr 723 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
39 simplr 766 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
40 simpr 485 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥𝐴)
411, 2, 3, 4, 5, 37, 38, 39, 40mgccole1 31268 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
4241ralrimiva 3103 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
4336, 42jca 512 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))
4430, 43jca 512 . . 3 ((𝜑𝐹𝐻𝐺) → ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))
459, 44jca 512 . 2 ((𝜑𝐹𝐻𝐺) → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
466ad4antr 729 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑉 ∈ Proset )
477ad4antr 729 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑊 ∈ Proset )
48 simp-4r 781 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4948simpld 495 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹:𝐴𝐵)
5048simprd 496 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
51 simpllr 773 . . . . . . . 8 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
5251simpld 495 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
53 breq1 5077 . . . . . . . . 9 (𝑥 = 𝑚 → (𝑥 𝑦𝑚 𝑦))
54 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5554breq1d 5084 . . . . . . . . 9 (𝑥 = 𝑚 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑦)))
5653, 55imbi12d 345 . . . . . . . 8 (𝑥 = 𝑚 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦))))
57 breq2 5078 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑚 𝑦𝑚 𝑛))
58 fveq2 6774 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
5958breq2d 5086 . . . . . . . . 9 (𝑦 = 𝑛 → ((𝐹𝑚) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑛)))
6057, 59imbi12d 345 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦)) ↔ (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛))))
6156, 60cbvral2vw 3396 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6252, 61sylib 217 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6351simprd 496 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
64 breq1 5077 . . . . . . . . 9 (𝑢 = 𝑖 → (𝑢 𝑣𝑖 𝑣))
65 fveq2 6774 . . . . . . . . . 10 (𝑢 = 𝑖 → (𝐺𝑢) = (𝐺𝑖))
6665breq1d 5084 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑣)))
6764, 66imbi12d 345 . . . . . . . 8 (𝑢 = 𝑖 → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ (𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣))))
68 breq2 5078 . . . . . . . . 9 (𝑣 = 𝑗 → (𝑖 𝑣𝑖 𝑗))
69 fveq2 6774 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
7069breq2d 5086 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑖) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑗)))
7168, 70imbi12d 345 . . . . . . . 8 (𝑣 = 𝑗 → ((𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣)) ↔ (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗))))
7267, 71cbvral2vw 3396 . . . . . . 7 (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
7363, 72sylib 217 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
74 id 22 . . . . . . . 8 (𝑥 = 𝑚𝑥 = 𝑚)
75 2fveq3 6779 . . . . . . . 8 (𝑥 = 𝑚 → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑚)))
7674, 75breq12d 5087 . . . . . . 7 (𝑥 = 𝑚 → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑚 (𝐺‘(𝐹𝑚))))
77 simplr 766 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
78 simpr 485 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚𝐴)
7976, 77, 78rspcdva 3562 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚 (𝐺‘(𝐹𝑚)))
80 2fveq3 6779 . . . . . . . 8 (𝑢 = 𝑖 → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑖)))
81 id 22 . . . . . . . 8 (𝑢 = 𝑖𝑢 = 𝑖)
8280, 81breq12d 5087 . . . . . . 7 (𝑢 = 𝑖 → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑖)) 𝑖))
83 simpllr 773 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
84 simpr 485 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → 𝑖𝐵)
8582, 83, 84rspcdva 3562 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → (𝐹‘(𝐺𝑖)) 𝑖)
861, 2, 3, 4, 5, 46, 47, 49, 50, 62, 73, 79, 85dfmgc2lem 31273 . . . . 5 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹𝐻𝐺)
8786anasss 467 . . . 4 ((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))) → 𝐹𝐻𝐺)
8887anasss 467 . . 3 (((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))) → 𝐹𝐻𝐺)
8988anasss 467 . 2 ((𝜑 ∧ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))) → 𝐹𝐻𝐺)
9045, 89impbida 798 1 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969   Proset cproset 18011  MGalConncmgc 31257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-mgc 31259
This theorem is referenced by:  mgcmnt1d  31275  mgcmnt2d  31276  mgcf1olem1  31279  mgcf1olem2  31280  mgcf1o  31281
  Copyright terms: Public domain W3C validator