Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2 Structured version   Visualization version   GIF version

Theorem dfmgc2 31176
Description: Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
Assertion
Ref Expression
dfmgc2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢, ,𝑣   𝑥, ,𝑦   𝑢,   𝑥, ,𝑦   𝑢,𝐵   𝑢,𝐹,𝑣   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑥,𝐻,𝑦   𝜑,𝑢,𝑣   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2
Dummy variables 𝑖 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcoval.1 . . . . 5 𝐴 = (Base‘𝑉)
2 mgcoval.2 . . . . 5 𝐵 = (Base‘𝑊)
3 mgcoval.3 . . . . 5 = (le‘𝑉)
4 mgcoval.4 . . . . 5 = (le‘𝑊)
5 mgcval.1 . . . . 5 𝐻 = (𝑉MGalConn𝑊)
6 mgcval.2 . . . . 5 (𝜑𝑉 ∈ Proset )
7 mgcval.3 . . . . 5 (𝜑𝑊 ∈ Proset )
81, 2, 3, 4, 5, 6, 7mgcval 31167 . . . 4 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
98simprbda 498 . . 3 ((𝜑𝐹𝐻𝐺) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
106ad4antr 728 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑉 ∈ Proset )
117ad4antr 728 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑊 ∈ Proset )
12 simp-4r 780 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝐹𝐻𝐺)
13 simpllr 772 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥𝐴)
14 simplr 765 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑦𝐴)
15 simpr 484 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥 𝑦)
161, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15mgcmnt1 31172 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → (𝐹𝑥) (𝐹𝑦))
1716ex 412 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1817anasss 466 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1918ralrimivva 3114 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
206ad4antr 728 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑉 ∈ Proset )
217ad4antr 728 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑊 ∈ Proset )
22 simp-4r 780 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝐹𝐻𝐺)
23 simpllr 772 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢𝐵)
24 simplr 765 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑣𝐵)
25 simpr 484 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢 𝑣)
261, 2, 3, 4, 5, 20, 21, 22, 23, 24, 25mgcmnt2 31173 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → (𝐺𝑢) (𝐺𝑣))
2726ex 412 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2827anasss 466 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2928ralrimivva 3114 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
3019, 29jca 511 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
316ad2antrr 722 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑉 ∈ Proset )
327ad2antrr 722 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑊 ∈ Proset )
33 simplr 765 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝐹𝐻𝐺)
34 simpr 484 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑢𝐵)
351, 2, 3, 4, 5, 31, 32, 33, 34mgccole2 31171 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
3635ralrimiva 3107 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
376ad2antrr 722 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
387ad2antrr 722 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
39 simplr 765 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
40 simpr 484 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥𝐴)
411, 2, 3, 4, 5, 37, 38, 39, 40mgccole1 31170 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
4241ralrimiva 3107 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
4336, 42jca 511 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))
4430, 43jca 511 . . 3 ((𝜑𝐹𝐻𝐺) → ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))
459, 44jca 511 . 2 ((𝜑𝐹𝐻𝐺) → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
466ad4antr 728 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑉 ∈ Proset )
477ad4antr 728 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑊 ∈ Proset )
48 simp-4r 780 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4948simpld 494 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹:𝐴𝐵)
5048simprd 495 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
51 simpllr 772 . . . . . . . 8 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
5251simpld 494 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
53 breq1 5073 . . . . . . . . 9 (𝑥 = 𝑚 → (𝑥 𝑦𝑚 𝑦))
54 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5554breq1d 5080 . . . . . . . . 9 (𝑥 = 𝑚 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑦)))
5653, 55imbi12d 344 . . . . . . . 8 (𝑥 = 𝑚 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦))))
57 breq2 5074 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑚 𝑦𝑚 𝑛))
58 fveq2 6756 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
5958breq2d 5082 . . . . . . . . 9 (𝑦 = 𝑛 → ((𝐹𝑚) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑛)))
6057, 59imbi12d 344 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦)) ↔ (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛))))
6156, 60cbvral2vw 3385 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6252, 61sylib 217 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6351simprd 495 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
64 breq1 5073 . . . . . . . . 9 (𝑢 = 𝑖 → (𝑢 𝑣𝑖 𝑣))
65 fveq2 6756 . . . . . . . . . 10 (𝑢 = 𝑖 → (𝐺𝑢) = (𝐺𝑖))
6665breq1d 5080 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑣)))
6764, 66imbi12d 344 . . . . . . . 8 (𝑢 = 𝑖 → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ (𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣))))
68 breq2 5074 . . . . . . . . 9 (𝑣 = 𝑗 → (𝑖 𝑣𝑖 𝑗))
69 fveq2 6756 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
7069breq2d 5082 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑖) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑗)))
7168, 70imbi12d 344 . . . . . . . 8 (𝑣 = 𝑗 → ((𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣)) ↔ (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗))))
7267, 71cbvral2vw 3385 . . . . . . 7 (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
7363, 72sylib 217 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
74 id 22 . . . . . . . 8 (𝑥 = 𝑚𝑥 = 𝑚)
75 2fveq3 6761 . . . . . . . 8 (𝑥 = 𝑚 → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑚)))
7674, 75breq12d 5083 . . . . . . 7 (𝑥 = 𝑚 → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑚 (𝐺‘(𝐹𝑚))))
77 simplr 765 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
78 simpr 484 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚𝐴)
7976, 77, 78rspcdva 3554 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚 (𝐺‘(𝐹𝑚)))
80 2fveq3 6761 . . . . . . . 8 (𝑢 = 𝑖 → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑖)))
81 id 22 . . . . . . . 8 (𝑢 = 𝑖𝑢 = 𝑖)
8280, 81breq12d 5083 . . . . . . 7 (𝑢 = 𝑖 → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑖)) 𝑖))
83 simpllr 772 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
84 simpr 484 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → 𝑖𝐵)
8582, 83, 84rspcdva 3554 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → (𝐹‘(𝐺𝑖)) 𝑖)
861, 2, 3, 4, 5, 46, 47, 49, 50, 62, 73, 79, 85dfmgc2lem 31175 . . . . 5 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹𝐻𝐺)
8786anasss 466 . . . 4 ((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))) → 𝐹𝐻𝐺)
8887anasss 466 . . 3 (((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))) → 𝐹𝐻𝐺)
8988anasss 466 . 2 ((𝜑 ∧ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))) → 𝐹𝐻𝐺)
9045, 89impbida 797 1 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895   Proset cproset 17926  MGalConncmgc 31159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-proset 17928  df-mgc 31161
This theorem is referenced by:  mgcmnt1d  31177  mgcmnt2d  31178  mgcf1olem1  31181  mgcf1olem2  31182  mgcf1o  31183
  Copyright terms: Public domain W3C validator