Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2 Structured version   Visualization version   GIF version

Theorem dfmgc2 32971
Description: Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
Assertion
Ref Expression
dfmgc2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢, ,𝑣   𝑥, ,𝑦   𝑢,   𝑥, ,𝑦   𝑢,𝐵   𝑢,𝐹,𝑣   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑥,𝐻,𝑦   𝜑,𝑢,𝑣   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2
Dummy variables 𝑖 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcoval.1 . . . . 5 𝐴 = (Base‘𝑉)
2 mgcoval.2 . . . . 5 𝐵 = (Base‘𝑊)
3 mgcoval.3 . . . . 5 = (le‘𝑉)
4 mgcoval.4 . . . . 5 = (le‘𝑊)
5 mgcval.1 . . . . 5 𝐻 = (𝑉MGalConn𝑊)
6 mgcval.2 . . . . 5 (𝜑𝑉 ∈ Proset )
7 mgcval.3 . . . . 5 (𝜑𝑊 ∈ Proset )
81, 2, 3, 4, 5, 6, 7mgcval 32962 . . . 4 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
98simprbda 498 . . 3 ((𝜑𝐹𝐻𝐺) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
106ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑉 ∈ Proset )
117ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑊 ∈ Proset )
12 simp-4r 784 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝐹𝐻𝐺)
13 simpllr 776 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥𝐴)
14 simplr 769 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑦𝐴)
15 simpr 484 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥 𝑦)
161, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15mgcmnt1 32967 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → (𝐹𝑥) (𝐹𝑦))
1716ex 412 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1817anasss 466 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1918ralrimivva 3200 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
206ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑉 ∈ Proset )
217ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑊 ∈ Proset )
22 simp-4r 784 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝐹𝐻𝐺)
23 simpllr 776 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢𝐵)
24 simplr 769 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑣𝐵)
25 simpr 484 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢 𝑣)
261, 2, 3, 4, 5, 20, 21, 22, 23, 24, 25mgcmnt2 32968 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → (𝐺𝑢) (𝐺𝑣))
2726ex 412 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2827anasss 466 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2928ralrimivva 3200 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
3019, 29jca 511 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
316ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑉 ∈ Proset )
327ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑊 ∈ Proset )
33 simplr 769 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝐹𝐻𝐺)
34 simpr 484 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑢𝐵)
351, 2, 3, 4, 5, 31, 32, 33, 34mgccole2 32966 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
3635ralrimiva 3144 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
376ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
387ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
39 simplr 769 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
40 simpr 484 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥𝐴)
411, 2, 3, 4, 5, 37, 38, 39, 40mgccole1 32965 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
4241ralrimiva 3144 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
4336, 42jca 511 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))
4430, 43jca 511 . . 3 ((𝜑𝐹𝐻𝐺) → ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))
459, 44jca 511 . 2 ((𝜑𝐹𝐻𝐺) → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
466ad4antr 732 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑉 ∈ Proset )
477ad4antr 732 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑊 ∈ Proset )
48 simp-4r 784 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4948simpld 494 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹:𝐴𝐵)
5048simprd 495 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
51 simpllr 776 . . . . . . . 8 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
5251simpld 494 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
53 breq1 5151 . . . . . . . . 9 (𝑥 = 𝑚 → (𝑥 𝑦𝑚 𝑦))
54 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5554breq1d 5158 . . . . . . . . 9 (𝑥 = 𝑚 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑦)))
5653, 55imbi12d 344 . . . . . . . 8 (𝑥 = 𝑚 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦))))
57 breq2 5152 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑚 𝑦𝑚 𝑛))
58 fveq2 6907 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
5958breq2d 5160 . . . . . . . . 9 (𝑦 = 𝑛 → ((𝐹𝑚) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑛)))
6057, 59imbi12d 344 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦)) ↔ (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛))))
6156, 60cbvral2vw 3239 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6252, 61sylib 218 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6351simprd 495 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
64 breq1 5151 . . . . . . . . 9 (𝑢 = 𝑖 → (𝑢 𝑣𝑖 𝑣))
65 fveq2 6907 . . . . . . . . . 10 (𝑢 = 𝑖 → (𝐺𝑢) = (𝐺𝑖))
6665breq1d 5158 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑣)))
6764, 66imbi12d 344 . . . . . . . 8 (𝑢 = 𝑖 → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ (𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣))))
68 breq2 5152 . . . . . . . . 9 (𝑣 = 𝑗 → (𝑖 𝑣𝑖 𝑗))
69 fveq2 6907 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
7069breq2d 5160 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑖) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑗)))
7168, 70imbi12d 344 . . . . . . . 8 (𝑣 = 𝑗 → ((𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣)) ↔ (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗))))
7267, 71cbvral2vw 3239 . . . . . . 7 (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
7363, 72sylib 218 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
74 id 22 . . . . . . . 8 (𝑥 = 𝑚𝑥 = 𝑚)
75 2fveq3 6912 . . . . . . . 8 (𝑥 = 𝑚 → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑚)))
7674, 75breq12d 5161 . . . . . . 7 (𝑥 = 𝑚 → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑚 (𝐺‘(𝐹𝑚))))
77 simplr 769 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
78 simpr 484 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚𝐴)
7976, 77, 78rspcdva 3623 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚 (𝐺‘(𝐹𝑚)))
80 2fveq3 6912 . . . . . . . 8 (𝑢 = 𝑖 → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑖)))
81 id 22 . . . . . . . 8 (𝑢 = 𝑖𝑢 = 𝑖)
8280, 81breq12d 5161 . . . . . . 7 (𝑢 = 𝑖 → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑖)) 𝑖))
83 simpllr 776 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
84 simpr 484 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → 𝑖𝐵)
8582, 83, 84rspcdva 3623 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → (𝐹‘(𝐺𝑖)) 𝑖)
861, 2, 3, 4, 5, 46, 47, 49, 50, 62, 73, 79, 85dfmgc2lem 32970 . . . . 5 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹𝐻𝐺)
8786anasss 466 . . . 4 ((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))) → 𝐹𝐻𝐺)
8887anasss 466 . . 3 (((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))) → 𝐹𝐻𝐺)
8988anasss 466 . 2 ((𝜑 ∧ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))) → 𝐹𝐻𝐺)
9045, 89impbida 801 1 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305   Proset cproset 18350  MGalConncmgc 32954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-proset 18352  df-mgc 32956
This theorem is referenced by:  mgcmnt1d  32972  mgcmnt2d  32973  mgcf1olem1  32976  mgcf1olem2  32977  mgcf1o  32978
  Copyright terms: Public domain W3C validator