Step | Hyp | Ref
| Expression |
1 | | mgcoval.1 |
. . . . 5
⊢ 𝐴 = (Base‘𝑉) |
2 | | mgcoval.2 |
. . . . 5
⊢ 𝐵 = (Base‘𝑊) |
3 | | mgcoval.3 |
. . . . 5
⊢ ≤ =
(le‘𝑉) |
4 | | mgcoval.4 |
. . . . 5
⊢ ≲ =
(le‘𝑊) |
5 | | mgcval.1 |
. . . . 5
⊢ 𝐻 = (𝑉MGalConn𝑊) |
6 | | mgcval.2 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ Proset ) |
7 | | mgcval.3 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Proset ) |
8 | 1, 2, 3, 4, 5, 6, 7 | mgcval 30791 |
. . . 4
⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
9 | 8 | simprbda 502 |
. . 3
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) |
10 | 6 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → 𝑉 ∈ Proset ) |
11 | 7 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → 𝑊 ∈ Proset ) |
12 | | simp-4r 783 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → 𝐹𝐻𝐺) |
13 | | simpllr 775 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → 𝑥 ∈ 𝐴) |
14 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐴) |
15 | | simpr 488 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) |
16 | 1, 2, 3, 4, 5, 10,
11, 12, 13, 14, 15 | mgcmnt1 30796 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) |
17 | 16 | ex 416 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
18 | 17 | anasss 470 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
19 | 18 | ralrimivva 3120 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
20 | 6 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ≲ 𝑣) → 𝑉 ∈ Proset ) |
21 | 7 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ≲ 𝑣) → 𝑊 ∈ Proset ) |
22 | | simp-4r 783 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ≲ 𝑣) → 𝐹𝐻𝐺) |
23 | | simpllr 775 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ≲ 𝑣) → 𝑢 ∈ 𝐵) |
24 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ≲ 𝑣) → 𝑣 ∈ 𝐵) |
25 | | simpr 488 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ≲ 𝑣) → 𝑢 ≲ 𝑣) |
26 | 1, 2, 3, 4, 5, 20,
21, 22, 23, 24, 25 | mgcmnt2 30797 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ≲ 𝑣) → (𝐺‘𝑢) ≤ (𝐺‘𝑣)) |
27 | 26 | ex 416 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) |
28 | 27 | anasss 470 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) |
29 | 28 | ralrimivva 3120 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) |
30 | 19, 29 | jca 515 |
. . . 4
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) |
31 | 6 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) → 𝑉 ∈ Proset ) |
32 | 7 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) → 𝑊 ∈ Proset ) |
33 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) → 𝐹𝐻𝐺) |
34 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
35 | 1, 2, 3, 4, 5, 31,
32, 33, 34 | mgccole2 30795 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑢 ∈ 𝐵) → (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) |
36 | 35 | ralrimiva 3113 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) |
37 | 6 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) → 𝑉 ∈ Proset ) |
38 | 7 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) → 𝑊 ∈ Proset ) |
39 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) → 𝐹𝐻𝐺) |
40 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
41 | 1, 2, 3, 4, 5, 37,
38, 39, 40 | mgccole1 30794 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹𝐻𝐺) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) |
42 | 41 | ralrimiva 3113 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) |
43 | 36, 42 | jca 515 |
. . . 4
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))) |
44 | 30, 43 | jca 515 |
. . 3
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))) |
45 | 9, 44 | jca 515 |
. 2
⊢ ((𝜑 ∧ 𝐹𝐻𝐺) → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
46 | 6 | ad4antr 731 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → 𝑉 ∈ Proset ) |
47 | 7 | ad4antr 731 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → 𝑊 ∈ Proset ) |
48 | | simp-4r 783 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) |
49 | 48 | simpld 498 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → 𝐹:𝐴⟶𝐵) |
50 | 48 | simprd 499 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → 𝐺:𝐵⟶𝐴) |
51 | | simpllr 775 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) |
52 | 51 | simpld 498 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
53 | | breq1 5035 |
. . . . . . . . 9
⊢ (𝑥 = 𝑚 → (𝑥 ≤ 𝑦 ↔ 𝑚 ≤ 𝑦)) |
54 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑚 → (𝐹‘𝑥) = (𝐹‘𝑚)) |
55 | 54 | breq1d 5042 |
. . . . . . . . 9
⊢ (𝑥 = 𝑚 → ((𝐹‘𝑥) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑚) ≲ (𝐹‘𝑦))) |
56 | 53, 55 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ↔ (𝑚 ≤ 𝑦 → (𝐹‘𝑚) ≲ (𝐹‘𝑦)))) |
57 | | breq2 5036 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → (𝑚 ≤ 𝑦 ↔ 𝑚 ≤ 𝑛)) |
58 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑛 → (𝐹‘𝑦) = (𝐹‘𝑛)) |
59 | 58 | breq2d 5044 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → ((𝐹‘𝑚) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑚) ≲ (𝐹‘𝑛))) |
60 | 57, 59 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑦 = 𝑛 → ((𝑚 ≤ 𝑦 → (𝐹‘𝑚) ≲ (𝐹‘𝑦)) ↔ (𝑚 ≤ 𝑛 → (𝐹‘𝑚) ≲ (𝐹‘𝑛)))) |
61 | 56, 60 | cbvral2vw 3373 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ↔ ∀𝑚 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (𝑚 ≤ 𝑛 → (𝐹‘𝑚) ≲ (𝐹‘𝑛))) |
62 | 52, 61 | sylib 221 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → ∀𝑚 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (𝑚 ≤ 𝑛 → (𝐹‘𝑚) ≲ (𝐹‘𝑛))) |
63 | 51 | simprd 499 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) |
64 | | breq1 5035 |
. . . . . . . . 9
⊢ (𝑢 = 𝑖 → (𝑢 ≲ 𝑣 ↔ 𝑖 ≲ 𝑣)) |
65 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑖 → (𝐺‘𝑢) = (𝐺‘𝑖)) |
66 | 65 | breq1d 5042 |
. . . . . . . . 9
⊢ (𝑢 = 𝑖 → ((𝐺‘𝑢) ≤ (𝐺‘𝑣) ↔ (𝐺‘𝑖) ≤ (𝐺‘𝑣))) |
67 | 64, 66 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑢 = 𝑖 → ((𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)) ↔ (𝑖 ≲ 𝑣 → (𝐺‘𝑖) ≤ (𝐺‘𝑣)))) |
68 | | breq2 5036 |
. . . . . . . . 9
⊢ (𝑣 = 𝑗 → (𝑖 ≲ 𝑣 ↔ 𝑖 ≲ 𝑗)) |
69 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑗 → (𝐺‘𝑣) = (𝐺‘𝑗)) |
70 | 69 | breq2d 5044 |
. . . . . . . . 9
⊢ (𝑣 = 𝑗 → ((𝐺‘𝑖) ≤ (𝐺‘𝑣) ↔ (𝐺‘𝑖) ≤ (𝐺‘𝑗))) |
71 | 68, 70 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑣 = 𝑗 → ((𝑖 ≲ 𝑣 → (𝐺‘𝑖) ≤ (𝐺‘𝑣)) ↔ (𝑖 ≲ 𝑗 → (𝐺‘𝑖) ≤ (𝐺‘𝑗)))) |
72 | 67, 71 | cbvral2vw 3373 |
. . . . . . 7
⊢
(∀𝑢 ∈
𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)) ↔ ∀𝑖 ∈ 𝐵 ∀𝑗 ∈ 𝐵 (𝑖 ≲ 𝑗 → (𝐺‘𝑖) ≤ (𝐺‘𝑗))) |
73 | 63, 72 | sylib 221 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → ∀𝑖 ∈ 𝐵 ∀𝑗 ∈ 𝐵 (𝑖 ≲ 𝑗 → (𝐺‘𝑖) ≤ (𝐺‘𝑗))) |
74 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → 𝑥 = 𝑚) |
75 | | 2fveq3 6663 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → (𝐺‘(𝐹‘𝑥)) = (𝐺‘(𝐹‘𝑚))) |
76 | 74, 75 | breq12d 5045 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (𝑥 ≤ (𝐺‘(𝐹‘𝑥)) ↔ 𝑚 ≤ (𝐺‘(𝐹‘𝑚)))) |
77 | | simplr 768 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) ∧ 𝑚 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) |
78 | | simpr 488 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐴) |
79 | 76, 77, 78 | rspcdva 3543 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) ∧ 𝑚 ∈ 𝐴) → 𝑚 ≤ (𝐺‘(𝐹‘𝑚))) |
80 | | 2fveq3 6663 |
. . . . . . . 8
⊢ (𝑢 = 𝑖 → (𝐹‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝑖))) |
81 | | id 22 |
. . . . . . . 8
⊢ (𝑢 = 𝑖 → 𝑢 = 𝑖) |
82 | 80, 81 | breq12d 5045 |
. . . . . . 7
⊢ (𝑢 = 𝑖 → ((𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ↔ (𝐹‘(𝐺‘𝑖)) ≲ 𝑖)) |
83 | | simpllr 775 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) ∧ 𝑖 ∈ 𝐵) → ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) |
84 | | simpr 488 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) ∧ 𝑖 ∈ 𝐵) → 𝑖 ∈ 𝐵) |
85 | 82, 83, 84 | rspcdva 3543 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) ∧ 𝑖 ∈ 𝐵) → (𝐹‘(𝐺‘𝑖)) ≲ 𝑖) |
86 | 1, 2, 3, 4, 5, 46,
47, 49, 50, 62, 73, 79, 85 | dfmgc2lem 30799 |
. . . . 5
⊢
(((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ ∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) → 𝐹𝐻𝐺) |
87 | 86 | anasss 470 |
. . . 4
⊢ ((((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))) → 𝐹𝐻𝐺) |
88 | 87 | anasss 470 |
. . 3
⊢ (((𝜑 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))) → 𝐹𝐻𝐺) |
89 | 88 | anasss 470 |
. 2
⊢ ((𝜑 ∧ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) → 𝐹𝐻𝐺) |
90 | 45, 89 | impbida 800 |
1
⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |