Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2 Structured version   Visualization version   GIF version

Theorem dfmgc2 32977
Description: Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
Assertion
Ref Expression
dfmgc2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢,   𝜑,𝑥,𝑦   𝑥,𝐻,𝑦   𝜑,𝑢,𝑣   𝑢,𝐻,𝑣   𝑢,𝐺,𝑣   𝑢,𝐹,𝑣   𝑢,𝐵   𝑢,   𝑥, ,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝐴(𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2
Dummy variables 𝑖 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcoval.1 . . . . 5 𝐴 = (Base‘𝑉)
2 mgcoval.2 . . . . 5 𝐵 = (Base‘𝑊)
3 mgcoval.3 . . . . 5 = (le‘𝑉)
4 mgcoval.4 . . . . 5 = (le‘𝑊)
5 mgcval.1 . . . . 5 𝐻 = (𝑉MGalConn𝑊)
6 mgcval.2 . . . . 5 (𝜑𝑉 ∈ Proset )
7 mgcval.3 . . . . 5 (𝜑𝑊 ∈ Proset )
81, 2, 3, 4, 5, 6, 7mgcval 32968 . . . 4 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
98simprbda 498 . . 3 ((𝜑𝐹𝐻𝐺) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
106ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑉 ∈ Proset )
117ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑊 ∈ Proset )
12 simp-4r 783 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝐹𝐻𝐺)
13 simpllr 775 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥𝐴)
14 simplr 768 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑦𝐴)
15 simpr 484 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → 𝑥 𝑦)
161, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15mgcmnt1 32973 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → (𝐹𝑥) (𝐹𝑦))
1716ex 412 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1817anasss 466 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
1918ralrimivva 3175 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
206ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑉 ∈ Proset )
217ad4antr 732 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑊 ∈ Proset )
22 simp-4r 783 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝐹𝐻𝐺)
23 simpllr 775 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢𝐵)
24 simplr 768 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑣𝐵)
25 simpr 484 . . . . . . . . 9 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → 𝑢 𝑣)
261, 2, 3, 4, 5, 20, 21, 22, 23, 24, 25mgcmnt2 32974 . . . . . . . 8 (((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) ∧ 𝑢 𝑣) → (𝐺𝑢) (𝐺𝑣))
2726ex 412 . . . . . . 7 ((((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) ∧ 𝑣𝐵) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2827anasss 466 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2928ralrimivva 3175 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
3019, 29jca 511 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
316ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑉 ∈ Proset )
327ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑊 ∈ Proset )
33 simplr 768 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝐹𝐻𝐺)
34 simpr 484 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → 𝑢𝐵)
351, 2, 3, 4, 5, 31, 32, 33, 34mgccole2 32972 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
3635ralrimiva 3124 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
376ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
387ad2antrr 726 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
39 simplr 768 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
40 simpr 484 . . . . . . 7 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥𝐴)
411, 2, 3, 4, 5, 37, 38, 39, 40mgccole1 32971 . . . . . 6 (((𝜑𝐹𝐻𝐺) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
4241ralrimiva 3124 . . . . 5 ((𝜑𝐹𝐻𝐺) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
4336, 42jca 511 . . . 4 ((𝜑𝐹𝐻𝐺) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))
4430, 43jca 511 . . 3 ((𝜑𝐹𝐻𝐺) → ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))
459, 44jca 511 . 2 ((𝜑𝐹𝐻𝐺) → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
466ad4antr 732 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑉 ∈ Proset )
477ad4antr 732 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝑊 ∈ Proset )
48 simp-4r 783 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4948simpld 494 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹:𝐴𝐵)
5048simprd 495 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
51 simpllr 775 . . . . . . . 8 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
5251simpld 494 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
53 breq1 5092 . . . . . . . . 9 (𝑥 = 𝑚 → (𝑥 𝑦𝑚 𝑦))
54 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐹𝑥) = (𝐹𝑚))
5554breq1d 5099 . . . . . . . . 9 (𝑥 = 𝑚 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑦)))
5653, 55imbi12d 344 . . . . . . . 8 (𝑥 = 𝑚 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦))))
57 breq2 5093 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑚 𝑦𝑚 𝑛))
58 fveq2 6822 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
5958breq2d 5101 . . . . . . . . 9 (𝑦 = 𝑛 → ((𝐹𝑚) (𝐹𝑦) ↔ (𝐹𝑚) (𝐹𝑛)))
6057, 59imbi12d 344 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑚 𝑦 → (𝐹𝑚) (𝐹𝑦)) ↔ (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛))))
6156, 60cbvral2vw 3214 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6252, 61sylib 218 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑚𝐴𝑛𝐴 (𝑚 𝑛 → (𝐹𝑚) (𝐹𝑛)))
6351simprd 495 . . . . . . 7 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
64 breq1 5092 . . . . . . . . 9 (𝑢 = 𝑖 → (𝑢 𝑣𝑖 𝑣))
65 fveq2 6822 . . . . . . . . . 10 (𝑢 = 𝑖 → (𝐺𝑢) = (𝐺𝑖))
6665breq1d 5099 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑣)))
6764, 66imbi12d 344 . . . . . . . 8 (𝑢 = 𝑖 → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ (𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣))))
68 breq2 5093 . . . . . . . . 9 (𝑣 = 𝑗 → (𝑖 𝑣𝑖 𝑗))
69 fveq2 6822 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
7069breq2d 5101 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑖) (𝐺𝑣) ↔ (𝐺𝑖) (𝐺𝑗)))
7168, 70imbi12d 344 . . . . . . . 8 (𝑣 = 𝑗 → ((𝑖 𝑣 → (𝐺𝑖) (𝐺𝑣)) ↔ (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗))))
7267, 71cbvral2vw 3214 . . . . . . 7 (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
7363, 72sylib 218 . . . . . 6 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → ∀𝑖𝐵𝑗𝐵 (𝑖 𝑗 → (𝐺𝑖) (𝐺𝑗)))
74 id 22 . . . . . . . 8 (𝑥 = 𝑚𝑥 = 𝑚)
75 2fveq3 6827 . . . . . . . 8 (𝑥 = 𝑚 → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑚)))
7674, 75breq12d 5102 . . . . . . 7 (𝑥 = 𝑚 → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑚 (𝐺‘(𝐹𝑚))))
77 simplr 768 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
78 simpr 484 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚𝐴)
7976, 77, 78rspcdva 3573 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑚𝐴) → 𝑚 (𝐺‘(𝐹𝑚)))
80 2fveq3 6827 . . . . . . . 8 (𝑢 = 𝑖 → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑖)))
81 id 22 . . . . . . . 8 (𝑢 = 𝑖𝑢 = 𝑖)
8280, 81breq12d 5102 . . . . . . 7 (𝑢 = 𝑖 → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑖)) 𝑖))
83 simpllr 775 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
84 simpr 484 . . . . . . 7 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → 𝑖𝐵)
8582, 83, 84rspcdva 3573 . . . . . 6 ((((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) ∧ 𝑖𝐵) → (𝐹‘(𝐺𝑖)) 𝑖)
861, 2, 3, 4, 5, 46, 47, 49, 50, 62, 73, 79, 85dfmgc2lem 32976 . . . . 5 (((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢) ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))) → 𝐹𝐻𝐺)
8786anasss 466 . . . 4 ((((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))) → 𝐹𝐻𝐺)
8887anasss 466 . . 3 (((𝜑 ∧ (𝐹:𝐴𝐵𝐺:𝐵𝐴)) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))) → 𝐹𝐻𝐺)
8988anasss 466 . 2 ((𝜑 ∧ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))) → 𝐹𝐻𝐺)
9045, 89impbida 800 1 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168   Proset cproset 18198  MGalConncmgc 32960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-proset 18200  df-mgc 32962
This theorem is referenced by:  mgcmnt1d  32978  mgcmnt2d  32979  mgcf1olem1  32982  mgcf1olem2  32983  mgcf1o  32984
  Copyright terms: Public domain W3C validator