Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk40t | Structured version Visualization version GIF version |
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk40.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) |
cdlemk40.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
Ref | Expression |
---|---|
cdlemk40t | ⊢ ((𝐹 = 𝑁 ∧ 𝐺 ∈ 𝑇) → (𝑈‘𝐺) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk40.x | . . 3 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) | |
2 | cdlemk40.u | . . 3 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
3 | 1, 2 | cdlemk40 38858 | . 2 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
4 | iftrue 4462 | . 2 ⊢ (𝐹 = 𝑁 → if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋) = 𝐺) | |
5 | 3, 4 | sylan9eqr 2801 | 1 ⊢ ((𝐹 = 𝑁 ∧ 𝐺 ∈ 𝑇) → (𝑈‘𝐺) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⦋csb 3828 ifcif 4456 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 |
This theorem is referenced by: cdlemk35u 38905 cdlemk55u 38907 cdlemk39u 38909 cdlemk19u 38911 |
Copyright terms: Public domain | W3C validator |