Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40t Structured version   Visualization version   GIF version

Theorem cdlemk40t 40328
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x 𝑋 = (𝑧𝑇 𝜑)
cdlemk40.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk40t ((𝐹 = 𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺)
Distinct variable groups:   𝑔,𝐹   𝑔,𝑁   𝑇,𝑔
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝑇(𝑧)   𝑈(𝑧,𝑔)   𝐹(𝑧)   𝐺(𝑧,𝑔)   𝑁(𝑧)   𝑋(𝑧,𝑔)

Proof of Theorem cdlemk40t
StepHypRef Expression
1 cdlemk40.x . . 3 𝑋 = (𝑧𝑇 𝜑)
2 cdlemk40.u . . 3 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
31, 2cdlemk40 40327 . 2 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
4 iftrue 4530 . 2 (𝐹 = 𝑁 → if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋) = 𝐺)
53, 4sylan9eqr 2789 1 ((𝐹 = 𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  csb 3889  ifcif 4524  cmpt 5225  cfv 6542  crio 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-riota 7370
This theorem is referenced by:  cdlemk35u  40374  cdlemk55u  40376  cdlemk39u  40378  cdlemk19u  40380
  Copyright terms: Public domain W3C validator