Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39u Structured version   Visualization version   GIF version

Theorem cdlemk39u 40680
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. Trace-preserving property of the value of tau, represented by (𝑈𝐺). (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
cdlemk5.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk39u ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏
Allowed substitution hints:   𝑈(𝑧,𝑔,𝑏)   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk39u
StepHypRef Expression
1 simpr 483 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → 𝐹 = 𝑁)
2 simpl2r 1224 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → 𝐺𝑇)
3 cdlemk5.x . . . . . 6 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
4 cdlemk5.u . . . . . 6 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
53, 4cdlemk40t 40630 . . . . 5 ((𝐹 = 𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺)
61, 2, 5syl2anc 582 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑈𝐺) = 𝐺)
76fveq2d 6897 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑅‘(𝑈𝐺)) = (𝑅𝐺))
8 simp11l 1281 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
98hllatd 39075 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
10 simp11 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simp2r 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
12 cdlemk5.b . . . . . . 7 𝐵 = (Base‘𝐾)
13 cdlemk5.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
14 cdlemk5.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemk5.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
1612, 13, 14, 15trlcl 39876 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
1710, 11, 16syl2anc 582 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) ∈ 𝐵)
18 cdlemk5.l . . . . . 6 = (le‘𝐾)
1912, 18latref 18461 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅𝐺) ∈ 𝐵) → (𝑅𝐺) (𝑅𝐺))
209, 17, 19syl2anc 582 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) (𝑅𝐺))
2120adantr 479 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑅𝐺) (𝑅𝐺))
227, 21eqbrtrd 5167 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
23 simpl1 1188 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇))
24 simpl2l 1223 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑅𝐹) = (𝑅𝑁))
25 simpr 483 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → 𝐹𝑁)
26 simpl2r 1224 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → 𝐺𝑇)
27 simpl3 1190 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
28 cdlemk5.j . . . 4 = (join‘𝐾)
29 cdlemk5.m . . . 4 = (meet‘𝐾)
30 cdlemk5.a . . . 4 𝐴 = (Atoms‘𝐾)
31 cdlemk5.z . . . 4 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
32 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
3312, 18, 28, 29, 30, 13, 14, 15, 31, 32, 3, 4cdlemk39u1 40679 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
3423, 24, 25, 26, 27, 33syl131anc 1380 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
3522, 34pm2.61dane 3019 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  ifcif 4523   class class class wbr 5145  cmpt 5228   I cid 5571  ccnv 5673  cres 5676  ccom 5678  cfv 6546  crio 7371  (class class class)co 7416  Basecbs 17208  lecple 17268  joincjn 18331  meetcmee 18332  Latclat 18451  Atomscatm 38974  HLchlt 39061  LHypclh 39696  LTrncltrn 39813  trLctrl 39870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-riotaBAD 38664
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-undef 8280  df-map 8849  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-p1 18446  df-lat 18452  df-clat 18519  df-oposet 38887  df-ol 38889  df-oml 38890  df-covers 38977  df-ats 38978  df-atl 39009  df-cvlat 39033  df-hlat 39062  df-llines 39210  df-lplanes 39211  df-lvols 39212  df-lines 39213  df-psubsp 39215  df-pmap 39216  df-padd 39508  df-lhyp 39700  df-laut 39701  df-ldil 39816  df-ltrn 39817  df-trl 39871
This theorem is referenced by:  cdlemk56  40683
  Copyright terms: Public domain W3C validator