Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk35u Structured version   Visualization version   GIF version

Theorem cdlemk35u 39477
Description: Substitution version of cdlemk35 39425. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk5.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
cdlemk5.y π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdlemk5.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
cdlemk5.u π‘ˆ = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk35u ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (π‘ˆβ€˜πΊ) ∈ 𝑇)
Distinct variable groups:   ∧ ,𝑔   ∨ ,𝑔   𝐡,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ∧ ,𝑏,𝑧   ≀ ,𝑏   𝑧,𝑔, ≀   ∨ ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐡,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝐺,𝑏
Allowed substitution hints:   π‘ˆ(𝑧,𝑔,𝑏)   𝑋(𝑧,𝑔,𝑏)   π‘Œ(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk35u
StepHypRef Expression
1 simpr 486 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = 𝑁) β†’ 𝐹 = 𝑁)
2 simpl23 1254 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = 𝑁) β†’ 𝐺 ∈ 𝑇)
3 cdlemk5.x . . . . 5 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
4 cdlemk5.u . . . . 5 π‘ˆ = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
53, 4cdlemk40t 39431 . . . 4 ((𝐹 = 𝑁 ∧ 𝐺 ∈ 𝑇) β†’ (π‘ˆβ€˜πΊ) = 𝐺)
61, 2, 5syl2anc 585 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = 𝑁) β†’ (π‘ˆβ€˜πΊ) = 𝐺)
76, 2eqeltrd 2834 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = 𝑁) β†’ (π‘ˆβ€˜πΊ) ∈ 𝑇)
8 simpr 486 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ 𝐹 β‰  𝑁)
9 simpl23 1254 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ 𝐺 ∈ 𝑇)
103, 4cdlemk40f 39432 . . . 4 ((𝐹 β‰  𝑁 ∧ 𝐺 ∈ 𝑇) β†’ (π‘ˆβ€˜πΊ) = ⦋𝐺 / π‘”β¦Œπ‘‹)
118, 9, 10syl2anc 585 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ (π‘ˆβ€˜πΊ) = ⦋𝐺 / π‘”β¦Œπ‘‹)
12 simpl1l 1225 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
13 simpl21 1252 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ 𝐹 ∈ 𝑇)
14 simpl22 1253 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ 𝑁 ∈ 𝑇)
15 simpl1r 1226 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
16 cdlemk5.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
17 cdlemk5.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
18 cdlemk5.t . . . . . . 7 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
19 cdlemk5.r . . . . . . 7 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
2016, 17, 18, 19trlnid 38692 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐹 β‰  𝑁 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
2112, 13, 14, 8, 15, 20syl122anc 1380 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
2213, 21jca 513 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)))
23 simpl3 1194 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
24 cdlemk5.l . . . . 5 ≀ = (leβ€˜πΎ)
25 cdlemk5.j . . . . 5 ∨ = (joinβ€˜πΎ)
26 cdlemk5.m . . . . 5 ∧ = (meetβ€˜πΎ)
27 cdlemk5.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
28 cdlemk5.z . . . . 5 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
29 cdlemk5.y . . . . 5 π‘Œ = ((𝑃 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
3016, 24, 25, 26, 27, 17, 18, 19, 28, 29, 3cdlemk35s-id 39451 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ 𝐺 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇)
3112, 22, 9, 14, 23, 15, 30syl132anc 1389 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ ⦋𝐺 / π‘”β¦Œπ‘‹ ∈ 𝑇)
3211, 31eqeltrd 2834 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  𝑁) β†’ (π‘ˆβ€˜πΊ) ∈ 𝑇)
337, 32pm2.61dane 3029 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (π‘ˆβ€˜πΊ) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  βˆ€wral 3061  β¦‹csb 3859  ifcif 4490   class class class wbr 5109   ↦ cmpt 5192   I cid 5534  β—‘ccnv 5636   β†Ύ cres 5639   ∘ ccom 5641  β€˜cfv 6500  β„©crio 7316  (class class class)co 7361  Basecbs 17091  lecple 17148  joincjn 18208  meetcmee 18209  Atomscatm 37775  HLchlt 37862  LHypclh 38497  LTrncltrn 38614  trLctrl 38671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-riotaBAD 37465
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-undef 8208  df-map 8773  df-proset 18192  df-poset 18210  df-plt 18227  df-lub 18243  df-glb 18244  df-join 18245  df-meet 18246  df-p0 18322  df-p1 18323  df-lat 18329  df-clat 18396  df-oposet 37688  df-ol 37690  df-oml 37691  df-covers 37778  df-ats 37779  df-atl 37810  df-cvlat 37834  df-hlat 37863  df-llines 38011  df-lplanes 38012  df-lvols 38013  df-lines 38014  df-psubsp 38016  df-pmap 38017  df-padd 38309  df-lhyp 38501  df-laut 38502  df-ldil 38617  df-ltrn 38618  df-trl 38672
This theorem is referenced by:  cdlemk19u  39483  cdlemk56  39484
  Copyright terms: Public domain W3C validator