| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cicrcl2 | Structured version Visualization version GIF version | ||
| Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| cicrcl2 | ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5087 | . 2 ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 〈𝑅, 𝑆〉 ∈ ( ≃𝑐 ‘𝐶)) | |
| 2 | elfvdm 6851 | . . 3 ⊢ (〈𝑅, 𝑆〉 ∈ ( ≃𝑐 ‘𝐶) → 𝐶 ∈ dom ≃𝑐 ) | |
| 3 | cicfn 49074 | . . . 4 ⊢ ≃𝑐 Fn Cat | |
| 4 | 3 | fndmi 6580 | . . 3 ⊢ dom ≃𝑐 = Cat |
| 5 | 2, 4 | eleqtrdi 2841 | . 2 ⊢ (〈𝑅, 𝑆〉 ∈ ( ≃𝑐 ‘𝐶) → 𝐶 ∈ Cat) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 〈cop 4577 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 Catccat 17565 ≃𝑐 ccic 17697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 df-ov 7344 df-cic 17698 |
| This theorem is referenced by: oppccic 49076 cicpropdlem 49081 termfucterm 49576 |
| Copyright terms: Public domain | W3C validator |