Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicrcl2 Structured version   Visualization version   GIF version

Theorem cicrcl2 49020
Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025.)
Assertion
Ref Expression
cicrcl2 (𝑅( ≃𝑐𝐶)𝑆𝐶 ∈ Cat)

Proof of Theorem cicrcl2
StepHypRef Expression
1 df-br 5110 . 2 (𝑅( ≃𝑐𝐶)𝑆 ↔ ⟨𝑅, 𝑆⟩ ∈ ( ≃𝑐𝐶))
2 elfvdm 6897 . . 3 (⟨𝑅, 𝑆⟩ ∈ ( ≃𝑐𝐶) → 𝐶 ∈ dom ≃𝑐 )
3 cicfn 49019 . . . 4 𝑐 Fn Cat
43fndmi 6624 . . 3 dom ≃𝑐 = Cat
52, 4eleqtrdi 2839 . 2 (⟨𝑅, 𝑆⟩ ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
61, 5sylbi 217 1 (𝑅( ≃𝑐𝐶)𝑆𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4597   class class class wbr 5109  dom cdm 5640  cfv 6513  Catccat 17631  𝑐 ccic 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fn 6516  df-fv 6521  df-ov 7392  df-cic 17764
This theorem is referenced by:  oppccic  49021  cicpropdlem  49026  termfucterm  49513
  Copyright terms: Public domain W3C validator