Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicrcl2 Structured version   Visualization version   GIF version

Theorem cicrcl2 49075
Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025.)
Assertion
Ref Expression
cicrcl2 (𝑅( ≃𝑐𝐶)𝑆𝐶 ∈ Cat)

Proof of Theorem cicrcl2
StepHypRef Expression
1 df-br 5087 . 2 (𝑅( ≃𝑐𝐶)𝑆 ↔ ⟨𝑅, 𝑆⟩ ∈ ( ≃𝑐𝐶))
2 elfvdm 6851 . . 3 (⟨𝑅, 𝑆⟩ ∈ ( ≃𝑐𝐶) → 𝐶 ∈ dom ≃𝑐 )
3 cicfn 49074 . . . 4 𝑐 Fn Cat
43fndmi 6580 . . 3 dom ≃𝑐 = Cat
52, 4eleqtrdi 2841 . 2 (⟨𝑅, 𝑆⟩ ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
61, 5sylbi 217 1 (𝑅( ≃𝑐𝐶)𝑆𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cop 4577   class class class wbr 5086  dom cdm 5611  cfv 6476  Catccat 17565  𝑐 ccic 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-ov 7344  df-cic 17698
This theorem is referenced by:  oppccic  49076  cicpropdlem  49081  termfucterm  49576
  Copyright terms: Public domain W3C validator