| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppccic | Structured version Visualization version GIF version | ||
| Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| oppccic.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppccic.i | ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) |
| Ref | Expression |
|---|---|
| oppccic | ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccic.i | . . . 4 ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) | |
| 2 | cicrcl2 48917 | . . . 4 ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝐶 ∈ Cat) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 4 | oppccic.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | 4 | oppccat 17737 | . . 3 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 7 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | cicrcl 17819 | . . . . . . 7 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶)) | |
| 9 | 3, 1, 8 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐶)) |
| 10 | ciclcl 17818 | . . . . . . 7 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) | |
| 11 | 3, 1, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐶)) |
| 12 | eqid 2734 | . . . . . 6 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 13 | eqid 2734 | . . . . . 6 ⊢ (Iso‘𝑂) = (Iso‘𝑂) | |
| 14 | 7, 4, 3, 9, 11, 12, 13 | oppciso 17797 | . . . . 5 ⊢ (𝜑 → (𝑆(Iso‘𝑂)𝑅) = (𝑅(Iso‘𝐶)𝑆)) |
| 15 | 14 | neeq1d 2990 | . . . 4 ⊢ (𝜑 → ((𝑆(Iso‘𝑂)𝑅) ≠ ∅ ↔ (𝑅(Iso‘𝐶)𝑆) ≠ ∅)) |
| 16 | 4, 7 | oppcbas 17733 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 17 | 13, 16, 6, 9, 11 | brcic 17814 | . . . 4 ⊢ (𝜑 → (𝑆( ≃𝑐 ‘𝑂)𝑅 ↔ (𝑆(Iso‘𝑂)𝑅) ≠ ∅)) |
| 18 | 12, 7, 3, 11, 9 | brcic 17814 | . . . 4 ⊢ (𝜑 → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ (𝑅(Iso‘𝐶)𝑆) ≠ ∅)) |
| 19 | 15, 17, 18 | 3bitr4rd 312 | . . 3 ⊢ (𝜑 → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑆( ≃𝑐 ‘𝑂)𝑅)) |
| 20 | 1, 19 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑆( ≃𝑐 ‘𝑂)𝑅) |
| 21 | cicsym 17820 | . 2 ⊢ ((𝑂 ∈ Cat ∧ 𝑆( ≃𝑐 ‘𝑂)𝑅) → 𝑅( ≃𝑐 ‘𝑂)𝑆) | |
| 22 | 6, 20, 21 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Catccat 17679 oppCatcoppc 17726 Isociso 17762 ≃𝑐 ccic 17811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-oppc 17727 df-sect 17763 df-inv 17764 df-iso 17765 df-cic 17812 |
| This theorem is referenced by: oppccicb 48925 oppcciceq 48926 termoeu2 48989 |
| Copyright terms: Public domain | W3C validator |