| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppccic | Structured version Visualization version GIF version | ||
| Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| oppccic.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppccic.i | ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) |
| Ref | Expression |
|---|---|
| oppccic | ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccic.i | . . . 4 ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) | |
| 2 | cicrcl2 49075 | . . . 4 ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝐶 ∈ Cat) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 4 | oppccic.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | 4 | oppccat 17623 | . . 3 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | cicrcl 17705 | . . . . . . 7 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶)) | |
| 9 | 3, 1, 8 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐶)) |
| 10 | ciclcl 17704 | . . . . . . 7 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) | |
| 11 | 3, 1, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐶)) |
| 12 | eqid 2731 | . . . . . 6 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (Iso‘𝑂) = (Iso‘𝑂) | |
| 14 | 7, 4, 3, 9, 11, 12, 13 | oppciso 17683 | . . . . 5 ⊢ (𝜑 → (𝑆(Iso‘𝑂)𝑅) = (𝑅(Iso‘𝐶)𝑆)) |
| 15 | 14 | neeq1d 2987 | . . . 4 ⊢ (𝜑 → ((𝑆(Iso‘𝑂)𝑅) ≠ ∅ ↔ (𝑅(Iso‘𝐶)𝑆) ≠ ∅)) |
| 16 | 4, 7 | oppcbas 17619 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 17 | 13, 16, 6, 9, 11 | brcic 17700 | . . . 4 ⊢ (𝜑 → (𝑆( ≃𝑐 ‘𝑂)𝑅 ↔ (𝑆(Iso‘𝑂)𝑅) ≠ ∅)) |
| 18 | 12, 7, 3, 11, 9 | brcic 17700 | . . . 4 ⊢ (𝜑 → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ (𝑅(Iso‘𝐶)𝑆) ≠ ∅)) |
| 19 | 15, 17, 18 | 3bitr4rd 312 | . . 3 ⊢ (𝜑 → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑆( ≃𝑐 ‘𝑂)𝑅)) |
| 20 | 1, 19 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑆( ≃𝑐 ‘𝑂)𝑅) |
| 21 | cicsym 17706 | . 2 ⊢ ((𝑂 ∈ Cat ∧ 𝑆( ≃𝑐 ‘𝑂)𝑅) → 𝑅( ≃𝑐 ‘𝑂)𝑆) | |
| 22 | 6, 20, 21 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Catccat 17565 oppCatcoppc 17612 Isociso 17648 ≃𝑐 ccic 17697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-oppc 17613 df-sect 17649 df-inv 17650 df-iso 17651 df-cic 17698 |
| This theorem is referenced by: oppccicb 49083 oppcciceq 49084 termoeu2 49270 |
| Copyright terms: Public domain | W3C validator |