| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppccic | Structured version Visualization version GIF version | ||
| Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| oppccic.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppccic.i | ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) |
| Ref | Expression |
|---|---|
| oppccic | ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccic.i | . . . 4 ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝐶)𝑆) | |
| 2 | cicrcl2 49020 | . . . 4 ⊢ (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝐶 ∈ Cat) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 4 | oppccic.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | 4 | oppccat 17689 | . . 3 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 7 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | cicrcl 17771 | . . . . . . 7 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶)) | |
| 9 | 3, 1, 8 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐶)) |
| 10 | ciclcl 17770 | . . . . . . 7 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) | |
| 11 | 3, 1, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐶)) |
| 12 | eqid 2730 | . . . . . 6 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 13 | eqid 2730 | . . . . . 6 ⊢ (Iso‘𝑂) = (Iso‘𝑂) | |
| 14 | 7, 4, 3, 9, 11, 12, 13 | oppciso 17749 | . . . . 5 ⊢ (𝜑 → (𝑆(Iso‘𝑂)𝑅) = (𝑅(Iso‘𝐶)𝑆)) |
| 15 | 14 | neeq1d 2985 | . . . 4 ⊢ (𝜑 → ((𝑆(Iso‘𝑂)𝑅) ≠ ∅ ↔ (𝑅(Iso‘𝐶)𝑆) ≠ ∅)) |
| 16 | 4, 7 | oppcbas 17685 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 17 | 13, 16, 6, 9, 11 | brcic 17766 | . . . 4 ⊢ (𝜑 → (𝑆( ≃𝑐 ‘𝑂)𝑅 ↔ (𝑆(Iso‘𝑂)𝑅) ≠ ∅)) |
| 18 | 12, 7, 3, 11, 9 | brcic 17766 | . . . 4 ⊢ (𝜑 → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ (𝑅(Iso‘𝐶)𝑆) ≠ ∅)) |
| 19 | 15, 17, 18 | 3bitr4rd 312 | . . 3 ⊢ (𝜑 → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑆( ≃𝑐 ‘𝑂)𝑅)) |
| 20 | 1, 19 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑆( ≃𝑐 ‘𝑂)𝑅) |
| 21 | cicsym 17772 | . 2 ⊢ ((𝑂 ∈ Cat ∧ 𝑆( ≃𝑐 ‘𝑂)𝑅) → 𝑅( ≃𝑐 ‘𝑂)𝑆) | |
| 22 | 6, 20, 21 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑅( ≃𝑐 ‘𝑂)𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Catccat 17631 oppCatcoppc 17678 Isociso 17714 ≃𝑐 ccic 17763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-oppc 17679 df-sect 17715 df-inv 17716 df-iso 17717 df-cic 17764 |
| This theorem is referenced by: oppccicb 49028 oppcciceq 49029 termoeu2 49209 |
| Copyright terms: Public domain | W3C validator |