Proof of Theorem cicpropdlem
| Step | Hyp | Ref
| Expression |
| 1 | | cic1st2nd 48921 |
. . 3
⊢ (𝑃 ∈ (
≃𝑐 ‘𝐶) → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 2 | 1 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) → 𝑃 = 〈(1st
‘𝑃), (2nd
‘𝑃)〉) |
| 3 | | cic1st2ndbr 48922 |
. . . . 5
⊢ (𝑃 ∈ (
≃𝑐 ‘𝐶) → (1st ‘𝑃)( ≃𝑐
‘𝐶)(2nd
‘𝑃)) |
| 4 | 3 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(1st ‘𝑃)(
≃𝑐 ‘𝐶)(2nd ‘𝑃)) |
| 5 | | cicpropd.1 |
. . . . . . . . 9
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 6 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(Homf ‘𝐶) = (Homf ‘𝐷)) |
| 7 | | cicpropd.2 |
. . . . . . . . 9
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 9 | 6, 8 | isopropd 48915 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(Iso‘𝐶) =
(Iso‘𝐷)) |
| 10 | 9 | oveqd 7430 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
((1st ‘𝑃)(Iso‘𝐶)(2nd ‘𝑃)) = ((1st ‘𝑃)(Iso‘𝐷)(2nd ‘𝑃))) |
| 11 | 10 | neeq1d 2990 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(((1st ‘𝑃)(Iso‘𝐶)(2nd ‘𝑃)) ≠ ∅ ↔ ((1st
‘𝑃)(Iso‘𝐷)(2nd ‘𝑃)) ≠
∅)) |
| 12 | | eqid 2734 |
. . . . . 6
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
| 13 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 14 | | cicrcl2 48917 |
. . . . . . . 8
⊢
((1st ‘𝑃)( ≃𝑐 ‘𝐶)(2nd ‘𝑃) → 𝐶 ∈ Cat) |
| 15 | 3, 14 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ (
≃𝑐 ‘𝐶) → 𝐶 ∈ Cat) |
| 16 | 15 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) → 𝐶 ∈ Cat) |
| 17 | | ciclcl 17818 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧
(1st ‘𝑃)(
≃𝑐 ‘𝐶)(2nd ‘𝑃)) → (1st ‘𝑃) ∈ (Base‘𝐶)) |
| 18 | 14, 17 | mpancom 688 |
. . . . . . . 8
⊢
((1st ‘𝑃)( ≃𝑐 ‘𝐶)(2nd ‘𝑃) → (1st
‘𝑃) ∈
(Base‘𝐶)) |
| 19 | 3, 18 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ (
≃𝑐 ‘𝐶) → (1st ‘𝑃) ∈ (Base‘𝐶)) |
| 20 | 19 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(1st ‘𝑃)
∈ (Base‘𝐶)) |
| 21 | | cicrcl 17819 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧
(1st ‘𝑃)(
≃𝑐 ‘𝐶)(2nd ‘𝑃)) → (2nd ‘𝑃) ∈ (Base‘𝐶)) |
| 22 | 14, 21 | mpancom 688 |
. . . . . . . 8
⊢
((1st ‘𝑃)( ≃𝑐 ‘𝐶)(2nd ‘𝑃) → (2nd
‘𝑃) ∈
(Base‘𝐶)) |
| 23 | 3, 22 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ (
≃𝑐 ‘𝐶) → (2nd ‘𝑃) ∈ (Base‘𝐶)) |
| 24 | 23 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(2nd ‘𝑃)
∈ (Base‘𝐶)) |
| 25 | 12, 13, 16, 20, 24 | brcic 17814 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
((1st ‘𝑃)(
≃𝑐 ‘𝐶)(2nd ‘𝑃) ↔ ((1st ‘𝑃)(Iso‘𝐶)(2nd ‘𝑃)) ≠ ∅)) |
| 26 | | eqid 2734 |
. . . . . 6
⊢
(Iso‘𝐷) =
(Iso‘𝐷) |
| 27 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 28 | 5 | homfeqbas 17711 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(Base‘𝐶) =
(Base‘𝐷)) |
| 30 | 20, 29 | eleqtrd 2835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(1st ‘𝑃)
∈ (Base‘𝐷)) |
| 31 | 30 | elfvexd 6925 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) → 𝐷 ∈ V) |
| 32 | 6, 8, 16, 31 | catpropd 17724 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 33 | 16, 32 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) → 𝐷 ∈ Cat) |
| 34 | 24, 29 | eleqtrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(2nd ‘𝑃)
∈ (Base‘𝐷)) |
| 35 | 26, 27, 33, 30, 34 | brcic 17814 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
((1st ‘𝑃)(
≃𝑐 ‘𝐷)(2nd ‘𝑃) ↔ ((1st ‘𝑃)(Iso‘𝐷)(2nd ‘𝑃)) ≠ ∅)) |
| 36 | 11, 25, 35 | 3bitr4d 311 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
((1st ‘𝑃)(
≃𝑐 ‘𝐶)(2nd ‘𝑃) ↔ (1st ‘𝑃)( ≃𝑐
‘𝐷)(2nd
‘𝑃))) |
| 37 | 4, 36 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
(1st ‘𝑃)(
≃𝑐 ‘𝐷)(2nd ‘𝑃)) |
| 38 | | df-br 5124 |
. . 3
⊢
((1st ‘𝑃)( ≃𝑐 ‘𝐷)(2nd ‘𝑃) ↔ 〈(1st
‘𝑃), (2nd
‘𝑃)〉 ∈ (
≃𝑐 ‘𝐷)) |
| 39 | 37, 38 | sylib 218 |
. 2
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) →
〈(1st ‘𝑃), (2nd ‘𝑃)〉 ∈ ( ≃𝑐
‘𝐷)) |
| 40 | 2, 39 | eqeltrd 2833 |
1
⊢ ((𝜑 ∧ 𝑃 ∈ ( ≃𝑐
‘𝐶)) → 𝑃 ∈ (
≃𝑐 ‘𝐷)) |