Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicpropdlem Structured version   Visualization version   GIF version

Theorem cicpropdlem 49026
Description: Lemma for cicpropd 49027. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
cicpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
cicpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
cicpropdlem ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))

Proof of Theorem cicpropdlem
StepHypRef Expression
1 cic1st2nd 49024 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
21adantl 481 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
3 cic1st2ndbr 49025 . . . . 5 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
43adantl 481 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
5 cicpropd.1 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
65adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Homf𝐶) = (Homf𝐷))
7 cicpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
87adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (compf𝐶) = (compf𝐷))
96, 8isopropd 49018 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Iso‘𝐶) = (Iso‘𝐷))
109oveqd 7406 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) = ((1st𝑃)(Iso‘𝐷)(2nd𝑃)))
1110neeq1d 2985 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅ ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
12 eqid 2730 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
13 eqid 2730 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 cicrcl2 49020 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → 𝐶 ∈ Cat)
153, 14syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
1615adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐶 ∈ Cat)
17 ciclcl 17770 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (1st𝑃) ∈ (Base‘𝐶))
1814, 17mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (1st𝑃) ∈ (Base‘𝐶))
193, 18syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃) ∈ (Base‘𝐶))
2019adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐶))
21 cicrcl 17771 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (2nd𝑃) ∈ (Base‘𝐶))
2214, 21mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (2nd𝑃) ∈ (Base‘𝐶))
233, 22syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (2nd𝑃) ∈ (Base‘𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐶))
2512, 13, 16, 20, 24brcic 17766 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅))
26 eqid 2730 . . . . . 6 (Iso‘𝐷) = (Iso‘𝐷)
27 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
285homfeqbas 17663 . . . . . . . . . . 11 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3020, 29eleqtrd 2831 . . . . . . . . 9 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐷))
3130elfvexd 6899 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ V)
326, 8, 16, 31catpropd 17676 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
3316, 32mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ Cat)
3424, 29eleqtrd 2831 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐷))
3526, 27, 33, 30, 34brcic 17766 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
3611, 25, 353bitr4d 311 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ (1st𝑃)( ≃𝑐𝐷)(2nd𝑃)))
374, 36mpbid 232 . . 3 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐷)(2nd𝑃))
38 df-br 5110 . . 3 ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
3937, 38sylib 218 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
402, 39eqeltrd 2829 1 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Catccat 17631  Homf chomf 17633  compfccomf 17634  Isociso 17714  𝑐 ccic 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-supp 8142  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-sect 17715  df-inv 17716  df-iso 17717  df-cic 17764
This theorem is referenced by:  cicpropd  49027
  Copyright terms: Public domain W3C validator