Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicpropdlem Structured version   Visualization version   GIF version

Theorem cicpropdlem 48923
Description: Lemma for cicpropd 48924. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
cicpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
cicpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
cicpropdlem ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))

Proof of Theorem cicpropdlem
StepHypRef Expression
1 cic1st2nd 48921 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
21adantl 481 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
3 cic1st2ndbr 48922 . . . . 5 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
43adantl 481 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
5 cicpropd.1 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
65adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Homf𝐶) = (Homf𝐷))
7 cicpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
87adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (compf𝐶) = (compf𝐷))
96, 8isopropd 48915 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Iso‘𝐶) = (Iso‘𝐷))
109oveqd 7430 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) = ((1st𝑃)(Iso‘𝐷)(2nd𝑃)))
1110neeq1d 2990 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅ ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
12 eqid 2734 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
13 eqid 2734 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 cicrcl2 48917 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → 𝐶 ∈ Cat)
153, 14syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
1615adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐶 ∈ Cat)
17 ciclcl 17818 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (1st𝑃) ∈ (Base‘𝐶))
1814, 17mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (1st𝑃) ∈ (Base‘𝐶))
193, 18syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃) ∈ (Base‘𝐶))
2019adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐶))
21 cicrcl 17819 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (2nd𝑃) ∈ (Base‘𝐶))
2214, 21mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (2nd𝑃) ∈ (Base‘𝐶))
233, 22syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (2nd𝑃) ∈ (Base‘𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐶))
2512, 13, 16, 20, 24brcic 17814 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅))
26 eqid 2734 . . . . . 6 (Iso‘𝐷) = (Iso‘𝐷)
27 eqid 2734 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
285homfeqbas 17711 . . . . . . . . . . 11 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3020, 29eleqtrd 2835 . . . . . . . . 9 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐷))
3130elfvexd 6925 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ V)
326, 8, 16, 31catpropd 17724 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
3316, 32mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ Cat)
3424, 29eleqtrd 2835 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐷))
3526, 27, 33, 30, 34brcic 17814 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
3611, 25, 353bitr4d 311 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ (1st𝑃)( ≃𝑐𝐷)(2nd𝑃)))
374, 36mpbid 232 . . 3 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐷)(2nd𝑃))
38 df-br 5124 . . 3 ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
3937, 38sylib 218 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
402, 39eqeltrd 2833 1 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  c0 4313  cop 4612   class class class wbr 5123  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  Basecbs 17230  Catccat 17679  Homf chomf 17681  compfccomf 17682  Isociso 17762  𝑐 ccic 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-supp 8168  df-cat 17683  df-cid 17684  df-homf 17685  df-comf 17686  df-sect 17763  df-inv 17764  df-iso 17765  df-cic 17812
This theorem is referenced by:  cicpropd  48924
  Copyright terms: Public domain W3C validator