Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicpropdlem Structured version   Visualization version   GIF version

Theorem cicpropdlem 49011
Description: Lemma for cicpropd 49012. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
cicpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
cicpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
cicpropdlem ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))

Proof of Theorem cicpropdlem
StepHypRef Expression
1 cic1st2nd 49009 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
21adantl 481 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
3 cic1st2ndbr 49010 . . . . 5 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
43adantl 481 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
5 cicpropd.1 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
65adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Homf𝐶) = (Homf𝐷))
7 cicpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
87adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (compf𝐶) = (compf𝐷))
96, 8isopropd 49003 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Iso‘𝐶) = (Iso‘𝐷))
109oveqd 7386 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) = ((1st𝑃)(Iso‘𝐷)(2nd𝑃)))
1110neeq1d 2984 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅ ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
12 eqid 2729 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
13 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 cicrcl2 49005 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → 𝐶 ∈ Cat)
153, 14syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
1615adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐶 ∈ Cat)
17 ciclcl 17740 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (1st𝑃) ∈ (Base‘𝐶))
1814, 17mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (1st𝑃) ∈ (Base‘𝐶))
193, 18syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃) ∈ (Base‘𝐶))
2019adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐶))
21 cicrcl 17741 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (2nd𝑃) ∈ (Base‘𝐶))
2214, 21mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (2nd𝑃) ∈ (Base‘𝐶))
233, 22syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (2nd𝑃) ∈ (Base‘𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐶))
2512, 13, 16, 20, 24brcic 17736 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅))
26 eqid 2729 . . . . . 6 (Iso‘𝐷) = (Iso‘𝐷)
27 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
285homfeqbas 17633 . . . . . . . . . . 11 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3020, 29eleqtrd 2830 . . . . . . . . 9 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐷))
3130elfvexd 6879 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ V)
326, 8, 16, 31catpropd 17646 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
3316, 32mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ Cat)
3424, 29eleqtrd 2830 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐷))
3526, 27, 33, 30, 34brcic 17736 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
3611, 25, 353bitr4d 311 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ (1st𝑃)( ≃𝑐𝐷)(2nd𝑃)))
374, 36mpbid 232 . . 3 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐷)(2nd𝑃))
38 df-br 5103 . . 3 ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
3937, 38sylib 218 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
402, 39eqeltrd 2828 1 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Catccat 17601  Homf chomf 17603  compfccomf 17604  Isociso 17684  𝑐 ccic 17733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-supp 8117  df-cat 17605  df-cid 17606  df-homf 17607  df-comf 17608  df-sect 17685  df-inv 17686  df-iso 17687  df-cic 17734
This theorem is referenced by:  cicpropd  49012
  Copyright terms: Public domain W3C validator