Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicpropdlem Structured version   Visualization version   GIF version

Theorem cicpropdlem 49081
Description: Lemma for cicpropd 49082. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
cicpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
cicpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
cicpropdlem ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))

Proof of Theorem cicpropdlem
StepHypRef Expression
1 cic1st2nd 49079 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
21adantl 481 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
3 cic1st2ndbr 49080 . . . . 5 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
43adantl 481 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
5 cicpropd.1 . . . . . . . . 9 (𝜑 → (Homf𝐶) = (Homf𝐷))
65adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Homf𝐶) = (Homf𝐷))
7 cicpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
87adantr 480 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (compf𝐶) = (compf𝐷))
96, 8isopropd 49073 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Iso‘𝐶) = (Iso‘𝐷))
109oveqd 7358 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) = ((1st𝑃)(Iso‘𝐷)(2nd𝑃)))
1110neeq1d 2987 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅ ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
12 eqid 2731 . . . . . 6 (Iso‘𝐶) = (Iso‘𝐶)
13 eqid 2731 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
14 cicrcl2 49075 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → 𝐶 ∈ Cat)
153, 14syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
1615adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐶 ∈ Cat)
17 ciclcl 17704 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (1st𝑃) ∈ (Base‘𝐶))
1814, 17mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (1st𝑃) ∈ (Base‘𝐶))
193, 18syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃) ∈ (Base‘𝐶))
2019adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐶))
21 cicrcl 17705 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (1st𝑃)( ≃𝑐𝐶)(2nd𝑃)) → (2nd𝑃) ∈ (Base‘𝐶))
2214, 21mpancom 688 . . . . . . . 8 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) → (2nd𝑃) ∈ (Base‘𝐶))
233, 22syl 17 . . . . . . 7 (𝑃 ∈ ( ≃𝑐𝐶) → (2nd𝑃) ∈ (Base‘𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐶))
2512, 13, 16, 20, 24brcic 17700 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐶)(2nd𝑃)) ≠ ∅))
26 eqid 2731 . . . . . 6 (Iso‘𝐷) = (Iso‘𝐷)
27 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
285homfeqbas 17597 . . . . . . . . . . 11 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3020, 29eleqtrd 2833 . . . . . . . . 9 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃) ∈ (Base‘𝐷))
3130elfvexd 6853 . . . . . . . 8 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ V)
326, 8, 16, 31catpropd 17610 . . . . . . 7 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
3316, 32mpbid 232 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝐷 ∈ Cat)
3424, 29eleqtrd 2833 . . . . . 6 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (2nd𝑃) ∈ (Base‘𝐷))
3526, 27, 33, 30, 34brcic 17700 . . . . 5 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ((1st𝑃)(Iso‘𝐷)(2nd𝑃)) ≠ ∅))
3611, 25, 353bitr4d 311 . . . 4 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ (1st𝑃)( ≃𝑐𝐷)(2nd𝑃)))
374, 36mpbid 232 . . 3 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → (1st𝑃)( ≃𝑐𝐷)(2nd𝑃))
38 df-br 5087 . . 3 ((1st𝑃)( ≃𝑐𝐷)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
3937, 38sylib 218 . 2 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐷))
402, 39eqeltrd 2831 1 ((𝜑𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 ∈ ( ≃𝑐𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4278  cop 4577   class class class wbr 5086  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Catccat 17565  Homf chomf 17567  compfccomf 17568  Isociso 17648  𝑐 ccic 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-supp 8086  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572  df-sect 17649  df-inv 17650  df-iso 17651  df-cic 17698
This theorem is referenced by:  cicpropd  49082
  Copyright terms: Public domain W3C validator