| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsng | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6711 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵}) |
| 3 | fsng 7071 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉})) | |
| 4 | 2, 3 | mpbid 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 〈cop 4583 × cxp 5617 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 |
| This theorem is referenced by: xpprsng 7074 xpsn 7075 f1o2sn 7076 residpr 7077 fmptsn 7103 f1ofvswap 7243 mposn 8036 repsw1 14689 s1co 14740 intopsn 18528 grp1inv 18927 psgnsn 19399 ixpsnbasval 21112 mat1dimelbas 22356 mat1dimscm 22360 mat1dimmul 22361 mat1f1o 22363 m1detdiag 22482 pt1hmeo 23691 nosupbnd2lem1 27625 cosnop 32637 cshw1s2 32902 rngosn3 37904 fmptsnxp 45147 lmod1zr 48478 cosn 48818 termcfuncval 49517 diag1f1olem 49518 diag2f1olem 49521 |
| Copyright terms: Public domain | W3C validator |