| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsng | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6747 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵}) |
| 3 | fsng 7109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉})) | |
| 4 | 2, 3 | mpbid 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 × cxp 5636 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: xpprsng 7112 xpsn 7113 f1o2sn 7114 residpr 7115 fmptsn 7141 f1ofvswap 7281 mposn 8082 repsw1 14748 s1co 14799 intopsn 18581 grp1inv 18980 psgnsn 19450 ixpsnbasval 21115 mat1dimelbas 22358 mat1dimscm 22362 mat1dimmul 22363 mat1f1o 22365 m1detdiag 22484 pt1hmeo 23693 nosupbnd2lem1 27627 cosnop 32618 cshw1s2 32882 rngosn3 37918 fmptsnxp 45163 lmod1zr 48482 cosn 48822 termcfuncval 49521 diag1f1olem 49522 diag2f1olem 49525 |
| Copyright terms: Public domain | W3C validator |