MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsng Structured version   Visualization version   GIF version

Theorem xpsng 7093
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
xpsng ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})

Proof of Theorem xpsng
StepHypRef Expression
1 fconstg 6729 . . 3 (𝐵𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
21adantl 481 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
3 fsng 7091 . 2 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}))
42, 3mpbid 232 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4585  cop 4591   × cxp 5629  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  xpprsng  7094  xpsn  7095  f1o2sn  7096  residpr  7097  fmptsn  7123  f1ofvswap  7263  mposn  8059  repsw1  14724  s1co  14775  intopsn  18557  grp1inv  18956  psgnsn  19426  ixpsnbasval  21091  mat1dimelbas  22334  mat1dimscm  22338  mat1dimmul  22339  mat1f1o  22341  m1detdiag  22460  pt1hmeo  23669  nosupbnd2lem1  27603  cosnop  32591  cshw1s2  32855  rngosn3  37891  fmptsnxp  45136  lmod1zr  48455  cosn  48795  termcfuncval  49494  diag1f1olem  49495  diag2f1olem  49498
  Copyright terms: Public domain W3C validator