MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsng Structured version   Visualization version   GIF version

Theorem xpsng 6549
Description: The Cartesian product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
xpsng ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})

Proof of Theorem xpsng
StepHypRef Expression
1 fconstg 6232 . . 3 (𝐵𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
21adantl 467 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
3 fsng 6547 . 2 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}))
42, 3mpbid 222 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  {csn 4316  cop 4322   × cxp 5247  wf 6027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038
This theorem is referenced by:  xpsn  6550  f1o2sn  6551  residpr  6552  fmptsn  6577  mpt2sn  7419  repsw1  13739  s1co  13788  xpscg  16426  xpsc0  16428  xpsc1  16429  intopsn  17461  grp1inv  17731  psgnsn  18147  ixpsnbasval  19424  mat1dimelbas  20495  mat1dimscm  20499  mat1dimmul  20500  mat1f1o  20502  m1detdiag  20621  pt1hmeo  21830  nosupbnd2lem1  32198  rngosn3  34055  fmptsnxp  39869  xpprsng  42638  lmod1zr  42810
  Copyright terms: Public domain W3C validator