Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsng | Structured version Visualization version GIF version |
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
xpsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6552 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵}) | |
2 | 1 | adantl 486 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵}) |
3 | fsng 6891 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉})) | |
4 | 2, 3 | mpbid 235 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 {csn 4523 〈cop 4529 × cxp 5523 ⟶wf 6332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 |
This theorem is referenced by: xpprsng 6894 xpsn 6895 f1o2sn 6896 residpr 6897 fmptsn 6921 f1ofvswap 7055 mposn 7804 repsw1 14193 s1co 14243 intopsn 17931 grp1inv 18275 psgnsn 18716 ixpsnbasval 20051 mat1dimelbas 21172 mat1dimscm 21176 mat1dimmul 21177 mat1f1o 21179 m1detdiag 21298 pt1hmeo 22507 cosnop 30553 cshw1s2 30757 nosupbnd2lem1 33484 rngosn3 35643 fmptsnxp 42165 lmod1zr 45268 |
Copyright terms: Public domain | W3C validator |