MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsng Structured version   Visualization version   GIF version

Theorem xpsng 7130
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
xpsng ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})

Proof of Theorem xpsng
StepHypRef Expression
1 fconstg 6769 . . 3 (𝐵𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
21adantl 481 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
3 fsng 7128 . 2 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}))
42, 3mpbid 231 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {csn 4621  cop 4627   × cxp 5665  wf 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541
This theorem is referenced by:  xpprsng  7131  xpsn  7132  f1o2sn  7133  residpr  7134  fmptsn  7158  f1ofvswap  7297  mposn  8084  repsw1  14731  s1co  14782  intopsn  18579  grp1inv  18968  psgnsn  19432  ixpsnbasval  21056  mat1dimelbas  22297  mat1dimscm  22301  mat1dimmul  22302  mat1f1o  22304  m1detdiag  22423  pt1hmeo  23634  nosupbnd2lem1  27567  cosnop  32389  cshw1s2  32594  rngosn3  37286  fmptsnxp  44378  lmod1zr  47387
  Copyright terms: Public domain W3C validator