MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsng Structured version   Visualization version   GIF version

Theorem xpsng 7111
Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
xpsng ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})

Proof of Theorem xpsng
StepHypRef Expression
1 fconstg 6747 . . 3 (𝐵𝑊 → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
21adantl 481 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}):{𝐴}⟶{𝐵})
3 fsng 7109 . 2 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐵}):{𝐴}⟶{𝐵} ↔ ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩}))
42, 3mpbid 232 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cop 4595   × cxp 5636  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  xpprsng  7112  xpsn  7113  f1o2sn  7114  residpr  7115  fmptsn  7141  f1ofvswap  7281  mposn  8082  repsw1  14748  s1co  14799  intopsn  18581  grp1inv  18980  psgnsn  19450  ixpsnbasval  21115  mat1dimelbas  22358  mat1dimscm  22362  mat1dimmul  22363  mat1f1o  22365  m1detdiag  22484  pt1hmeo  23693  nosupbnd2lem1  27627  cosnop  32618  cshw1s2  32882  rngosn3  37918  fmptsnxp  45163  lmod1zr  48482  cosn  48822  termcfuncval  49521  diag1f1olem  49522  diag2f1olem  49525
  Copyright terms: Public domain W3C validator