![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzisoi | Structured version Visualization version GIF version |
Description: 𝐺 (see om2uz0i 13169) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzisoi | ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 1, 2 | om2uzf1oi 13175 | . 2 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
4 | epel 5364 | . . . 4 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
5 | 1, 2 | om2uzlt2i 13173 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
6 | 4, 5 | syl5bb 284 | . . 3 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
7 | 6 | rgen2a 3195 | . 2 ⊢ ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧)) |
8 | df-isom 6241 | . 2 ⊢ (𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) ↔ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧)))) | |
9 | 3, 7, 8 | mpbir2an 707 | 1 ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∀wral 3107 Vcvv 3440 class class class wbr 4968 ↦ cmpt 5047 E cep 5359 ↾ cres 5452 –1-1-onto→wf1o 6231 ‘cfv 6232 Isom wiso 6233 (class class class)co 7023 ωcom 7443 reccrdg 7904 1c1 10391 + caddc 10393 < clt 10528 ℤcz 11835 ℤ≥cuz 12097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 |
This theorem is referenced by: om2uzoi 13177 ltweuz 13183 fz1isolem 13671 |
Copyright terms: Public domain | W3C validator |