Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om2uzisoi | Structured version Visualization version GIF version |
Description: 𝐺 (see om2uz0i 13364) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzisoi | ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 1, 2 | om2uzf1oi 13370 | . 2 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
4 | epel 5438 | . . . 4 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
5 | 1, 2 | om2uzlt2i 13368 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
6 | 4, 5 | syl5bb 286 | . . 3 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
7 | 6 | rgen2 3132 | . 2 ⊢ ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧)) |
8 | df-isom 6344 | . 2 ⊢ (𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) ↔ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺‘𝑦) < (𝐺‘𝑧)))) | |
9 | 3, 7, 8 | mpbir2an 710 | 1 ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 class class class wbr 5032 ↦ cmpt 5112 E cep 5434 ↾ cres 5526 –1-1-onto→wf1o 6334 ‘cfv 6335 Isom wiso 6336 (class class class)co 7150 ωcom 7579 reccrdg 8055 1c1 10576 + caddc 10578 < clt 10713 ℤcz 12020 ℤ≥cuz 12282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 |
This theorem is referenced by: om2uzoi 13372 ltweuz 13378 fz1isolem 13871 |
Copyright terms: Public domain | W3C validator |