Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  logltb Structured version   Visualization version   GIF version

Theorem logltb 25170
 Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.)
Assertion
Ref Expression
logltb ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵)))

Proof of Theorem logltb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relogiso 25168 . . . . 5 (log ↾ ℝ+) Isom < , < (ℝ+, ℝ)
2 df-isom 6337 . . . . 5 ((log ↾ ℝ+) Isom < , < (ℝ+, ℝ) ↔ ((log ↾ ℝ+):ℝ+1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦))))
31, 2mpbi 233 . . . 4 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)))
43simpri 489 . . 3 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦))
5 breq1 5042 . . . . 5 (𝑥 = 𝐴 → (𝑥 < 𝑦𝐴 < 𝑦))
6 fveq2 6643 . . . . . 6 (𝑥 = 𝐴 → ((log ↾ ℝ+)‘𝑥) = ((log ↾ ℝ+)‘𝐴))
76breq1d 5049 . . . . 5 (𝑥 = 𝐴 → (((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)))
85, 7bibi12d 349 . . . 4 (𝑥 = 𝐴 → ((𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦))))
9 breq2 5043 . . . . 5 (𝑦 = 𝐵 → (𝐴 < 𝑦𝐴 < 𝐵))
10 fveq2 6643 . . . . . 6 (𝑦 = 𝐵 → ((log ↾ ℝ+)‘𝑦) = ((log ↾ ℝ+)‘𝐵))
1110breq2d 5051 . . . . 5 (𝑦 = 𝐵 → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))
129, 11bibi12d 349 . . . 4 (𝑦 = 𝐵 → ((𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))))
138, 12rspc2v 3610 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))))
144, 13mpi 20 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))
15 fvres 6662 . . 3 (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴))
16 fvres 6662 . . 3 (𝐵 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐵) = (log‘𝐵))
1715, 16breqan12d 5055 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵) ↔ (log‘𝐴) < (log‘𝐵)))
1814, 17bitrd 282 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3126   class class class wbr 5039   ↾ cres 5530  –1-1-onto→wf1o 6327  ‘cfv 6328   Isom wiso 6329  ℝcr 10513   < clt 10652  ℝ+crp 12367  logclog 25125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-pt 16697  df-prds 16700  df-xrs 16754  df-qtop 16759  df-imas 16760  df-xps 16762  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-mulg 18204  df-cntz 18426  df-cmn 18887  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-fbas 20518  df-fg 20519  df-cnfld 20522  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cld 21603  df-ntr 21604  df-cls 21605  df-nei 21682  df-lp 21720  df-perf 21721  df-cn 21811  df-cnp 21812  df-haus 21899  df-tx 22146  df-hmeo 22339  df-fil 22430  df-fm 22522  df-flim 22523  df-flf 22524  df-xms 22906  df-ms 22907  df-tms 22908  df-cncf 23462  df-limc 24448  df-dv 24449  df-log 25127 This theorem is referenced by:  logleb  25173  rplogcl  25174  loggt0b  25202  loglt1b  25204  logblt  25349  cxploglim2  25543  emcllem4  25563  chtub  25775  chpub  25783  chebbnd1lem1  26032  chebbnd1lem2  26033  chebbnd1  26035  pntlemb  26160  pntlemh  26162  ostth3  26201  xrge0iifiso  31186  hgt750lem  31930  reglogltb  39643  reglogleb  39644  regt1loggt0  44772  logblt1b  44800
 Copyright terms: Public domain W3C validator