Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logltb | Structured version Visualization version GIF version |
Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
logltb | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogiso 25341 | . . . . 5 ⊢ (log ↾ ℝ+) Isom < , < (ℝ+, ℝ) | |
2 | df-isom 6348 | . . . . 5 ⊢ ((log ↾ ℝ+) Isom < , < (ℝ+, ℝ) ↔ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)))) | |
3 | 1, 2 | mpbi 233 | . . . 4 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦))) |
4 | 3 | simpri 489 | . . 3 ⊢ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) |
5 | breq1 5033 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 < 𝑦 ↔ 𝐴 < 𝑦)) | |
6 | fveq2 6674 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((log ↾ ℝ+)‘𝑥) = ((log ↾ ℝ+)‘𝐴)) | |
7 | 6 | breq1d 5040 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦))) |
8 | 5, 7 | bibi12d 349 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)))) |
9 | breq2 5034 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 < 𝑦 ↔ 𝐴 < 𝐵)) | |
10 | fveq2 6674 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((log ↾ ℝ+)‘𝑦) = ((log ↾ ℝ+)‘𝐵)) | |
11 | 10 | breq2d 5042 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))) |
12 | 9, 11 | bibi12d 349 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))) |
13 | 8, 12 | rspc2v 3536 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))) |
14 | 4, 13 | mpi 20 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))) |
15 | fvres 6693 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴)) | |
16 | fvres 6693 | . . 3 ⊢ (𝐵 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐵) = (log‘𝐵)) | |
17 | 15, 16 | breqan12d 5046 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵) ↔ (log‘𝐴) < (log‘𝐵))) |
18 | 14, 17 | bitrd 282 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 class class class wbr 5030 ↾ cres 5527 –1-1-onto→wf1o 6338 ‘cfv 6339 Isom wiso 6340 ℝcr 10614 < clt 10753 ℝ+crp 12472 logclog 25298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ioc 12826 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-mod 13329 df-seq 13461 df-exp 13522 df-fac 13726 df-bc 13755 df-hash 13783 df-shft 14516 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-limsup 14918 df-clim 14935 df-rlim 14936 df-sum 15136 df-ef 15513 df-sin 15515 df-cos 15516 df-pi 15518 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-mulg 18343 df-cntz 18565 df-cmn 19026 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-fg 20215 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-lp 21887 df-perf 21888 df-cn 21978 df-cnp 21979 df-haus 22066 df-tx 22313 df-hmeo 22506 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-xms 23073 df-ms 23074 df-tms 23075 df-cncf 23630 df-limc 24618 df-dv 24619 df-log 25300 |
This theorem is referenced by: logleb 25346 rplogcl 25347 loggt0b 25375 loglt1b 25377 logblt 25522 cxploglim2 25716 emcllem4 25736 chtub 25948 chpub 25956 chebbnd1lem1 26205 chebbnd1lem2 26206 chebbnd1 26208 pntlemb 26333 pntlemh 26335 ostth3 26374 xrge0iifiso 31457 hgt750lem 32201 reglogltb 40285 reglogleb 40286 regt1loggt0 45416 logblt1b 45444 |
Copyright terms: Public domain | W3C validator |