![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logltb | Structured version Visualization version GIF version |
Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
logltb | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogiso 26075 | . . . . 5 ⊢ (log ↾ ℝ+) Isom < , < (ℝ+, ℝ) | |
2 | df-isom 6544 | . . . . 5 ⊢ ((log ↾ ℝ+) Isom < , < (ℝ+, ℝ) ↔ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)))) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ ∧ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦))) |
4 | 3 | simpri 487 | . . 3 ⊢ ∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) |
5 | breq1 5147 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 < 𝑦 ↔ 𝐴 < 𝑦)) | |
6 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((log ↾ ℝ+)‘𝑥) = ((log ↾ ℝ+)‘𝐴)) | |
7 | 6 | breq1d 5154 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦))) |
8 | 5, 7 | bibi12d 346 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)))) |
9 | breq2 5148 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 < 𝑦 ↔ 𝐴 < 𝐵)) | |
10 | fveq2 6881 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((log ↾ ℝ+)‘𝑦) = ((log ↾ ℝ+)‘𝐵)) | |
11 | 10 | breq2d 5156 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦) ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))) |
12 | 9, 11 | bibi12d 346 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 < 𝑦 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝑦)) ↔ (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))) |
13 | 8, 12 | rspc2v 3620 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (∀𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ+ (𝑥 < 𝑦 ↔ ((log ↾ ℝ+)‘𝑥) < ((log ↾ ℝ+)‘𝑦)) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵)))) |
14 | 4, 13 | mpi 20 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ ((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵))) |
15 | fvres 6900 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴)) | |
16 | fvres 6900 | . . 3 ⊢ (𝐵 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐵) = (log‘𝐵)) | |
17 | 15, 16 | breqan12d 5160 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (((log ↾ ℝ+)‘𝐴) < ((log ↾ ℝ+)‘𝐵) ↔ (log‘𝐴) < (log‘𝐵))) |
18 | 14, 17 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 class class class wbr 5144 ↾ cres 5674 –1-1-onto→wf1o 6534 ‘cfv 6535 Isom wiso 6536 ℝcr 11096 < clt 11235 ℝ+crp 12961 logclog 26032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-inf2 9623 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 ax-addf 11176 ax-mulf 11177 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-iin 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-of 7657 df-om 7843 df-1st 7962 df-2nd 7963 df-supp 8134 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-2o 8454 df-er 8691 df-map 8810 df-pm 8811 df-ixp 8880 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-fsupp 9350 df-fi 9393 df-sup 9424 df-inf 9425 df-oi 9492 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-9 12269 df-n0 12460 df-z 12546 df-dec 12665 df-uz 12810 df-q 12920 df-rp 12962 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13315 df-ioc 13316 df-ico 13317 df-icc 13318 df-fz 13472 df-fzo 13615 df-fl 13744 df-mod 13822 df-seq 13954 df-exp 14015 df-fac 14221 df-bc 14250 df-hash 14278 df-shft 15001 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-limsup 15402 df-clim 15419 df-rlim 15420 df-sum 15620 df-ef 15998 df-sin 16000 df-cos 16001 df-pi 16003 df-struct 17067 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-mulr 17198 df-starv 17199 df-sca 17200 df-vsca 17201 df-ip 17202 df-tset 17203 df-ple 17204 df-ds 17206 df-unif 17207 df-hom 17208 df-cco 17209 df-rest 17355 df-topn 17356 df-0g 17374 df-gsum 17375 df-topgen 17376 df-pt 17377 df-prds 17380 df-xrs 17435 df-qtop 17440 df-imas 17441 df-xps 17443 df-mre 17517 df-mrc 17518 df-acs 17520 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-submnd 18659 df-mulg 18936 df-cntz 19166 df-cmn 19634 df-psmet 20910 df-xmet 20911 df-met 20912 df-bl 20913 df-mopn 20914 df-fbas 20915 df-fg 20916 df-cnfld 20919 df-top 22365 df-topon 22382 df-topsp 22404 df-bases 22418 df-cld 22492 df-ntr 22493 df-cls 22494 df-nei 22571 df-lp 22609 df-perf 22610 df-cn 22700 df-cnp 22701 df-haus 22788 df-tx 23035 df-hmeo 23228 df-fil 23319 df-fm 23411 df-flim 23412 df-flf 23413 df-xms 23795 df-ms 23796 df-tms 23797 df-cncf 24363 df-limc 25352 df-dv 25353 df-log 26034 |
This theorem is referenced by: logleb 26080 rplogcl 26081 loggt0b 26109 loglt1b 26111 logblt 26256 cxploglim2 26450 emcllem4 26470 chtub 26682 chpub 26690 chebbnd1lem1 26939 chebbnd1lem2 26940 chebbnd1 26942 pntlemb 27067 pntlemh 27069 ostth3 27108 xrge0iifiso 32846 hgt750lem 33594 reglogltb 41500 reglogleb 41501 regt1loggt0 47062 logblt1b 47090 |
Copyright terms: Public domain | W3C validator |